1
|
Ambigapathy G, McCowan TJ, Carvelli L. Amphetamine exposure during embryogenesis changes expression and function of the dopamine transporter in Caenorhabditis elegans offspring. J Neurochem 2024; 168:2989-2998. [PMID: 38960397 PMCID: PMC11449651 DOI: 10.1111/jnc.16166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
The dopamine transporter (DAT) is a transmembrane protein that regulates dopamine (DA) neurotransmission by binding to and moving DA from the synaptic cleft back into the neurons. Besides moving DA and other endogenous monoamines, DAT is also a neuronal carrier for exogenous compounds such as the psychostimulant amphetamine (Amph), and several studies have shown that Amph-induced behaviors require a functional DAT. Here, we demonstrate that exposure to Amph during early development causes behavioral, functional, and epigenetic modifications at the Caenorhabditis elegans DAT gene homolog, dat-1, in C. elegans offspring. Specifically, we show that, while embryos exposed to Amph generate adults that produce offspring with no obvious behavioral alterations, both adults and offspring exhibit an increased behavioral response when challenged with Amph. Our functional studies suggest that a decrease in DAT-1 expression underlies the increased behavioral response to Amph seen in offspring. Moreover, our epigenetic data suggest that histone methylation is a mechanism utilized by Amph to maintain changes in DAT-1 expression in offspring. Taken together, our data reveal that Amph, by altering the epigenetic landscape of DAT, propagates long-lasting functional and behavioral changes in offspring.
Collapse
Affiliation(s)
- Ganesh Ambigapathy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Talus J McCowan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Lucia Carvelli
- Harriet L. Wilkes Honors College Florida Atlantic University, Jupiter, Florida, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
2
|
He L, Zheng H, Qiu J, Chen H, Li H, Ma Y, Wang Y, Wang Q, Hao Y, Liu Y, Yang Q, Wang X, Li M, Xu H, Peng P, Li Z, Zhou Y, Wu Q, Chen S, Zhang X, Liu T. Effects of Multiple High-Dose Methamphetamine Administration on Enteric Dopaminergic Neurons and Intestinal Motility in the Rat Model. Neurotox Res 2023; 41:604-614. [PMID: 37755670 DOI: 10.1007/s12640-023-00668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Several studies have identified the effects of methamphetamine (MA) on central dopaminergic neurons, but its effects on enteric dopaminergic neurons (EDNs) are unclear. The aim of this study was to investigate the effects of MA on EDNs and intestinal motility. Male Sprague-Dawley rats were randomly divided into MA group and saline group. The MA group received the multiple high-dose MA treatment paradigm, while the controls received the same saline treatment. After enteric motility was assessed, different intestinal segments (i.e., duodenum, jejunum, ileum, and colon) were taken for histopathological, molecular biological, and immunological analysis. The EDNs were assessed by measuring the expression of two dopaminergic neuronal markers, dopamine transporter (DAT) and tyrosine hydroxylase (TH), at the transcriptional and protein levels. We also used c-Fos protein, a marker of neural activity, to detect the activation of EDNs. MA resulted in a significant reduction in TH and DAT mRNA expression as well as in the number of EDNs in the duodenum and jejunum (p < 0.05). MA caused a dramatic increase in c-Fos expression of EDNs in the ileum (p < 0.001). The positional variability of MA effects on EDNs paralleled the positional variability of its effect on intestinal motility, as evidenced by the marked inhibitory effect of MA on small intestinal motility (p < 0.0001). This study found significant effects of MA on EDNs with locational variability, which might be relevant to locational variability in the potential effects of MA on intestinal functions, such as motility.
Collapse
Affiliation(s)
- Li He
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huihui Zheng
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jilong Qiu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Hong Chen
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huan Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yuejiao Ma
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yingying Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- School of Physical Education and Health, Hunan University of Technology and Business, Changsha, 410000, China
| | - Qianjin Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yuzhu Hao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yueheng Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Qian Yang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xin Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Manyun Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huixue Xu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Pu Peng
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zejun Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yanan Zhou
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province), Changsha, China
| | - Qiuxia Wu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Shubao Chen
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaojie Zhang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Tieqiao Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
3
|
Black EM, Samels SB, Xu W, Barson JR, Bass CE, Kortagere S, España RA. Hypocretin / Orexin Receptor 1 Knockdown in GABA or Dopamine Neurons in the Ventral Tegmental Area Differentially Impact Mesolimbic Dopamine and Motivation for Cocaine. ADDICTION NEUROSCIENCE 2023; 7:100104. [PMID: 37854172 PMCID: PMC10583964 DOI: 10.1016/j.addicn.2023.100104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The hypocretins/orexins (HCRT) have been demonstrated to influence motivation for cocaine through actions on dopamine (DA) transmission. Pharmacological or genetic disruption of the hypocretin receptor 1 (Hcrtr1) reduces cocaine self-administration, blocks reinstatement of cocaine seeking, and decreases conditioned place preference for cocaine. These effects are likely mediated through actions in the ventral tegmental area (VTA) and resulting alterations in DA transmission. For example, HCRT drives VTA DA neuron activity and enhances the effects of cocaine on DA transmission, while disrupting Hcrtr1 attenuates DA responses to cocaine. These findings have led to the perspective that HCRT exerts its effects through Hcrtr1 actions in VTA DA neurons. However, this assumption is complicated by the observation that Hcrtr1 are present on both DA and GABA neurons in the VTA and HCRT drives the activity of both neuronal populations. To address this issue, we selectively knocked down Hcrtr1 on either DA or GABA neurons in the VTA and examined alterations in DA transmission and cocaine self-administration in female and male rats. We found that Hcrtr1 knockdown in DA neurons decreased DA responses to cocaine, increased days to acquire cocaine self-administration, and reduced motivation for cocaine. Although, Hcrtr1 knockdown in GABA neurons enhanced DA responses to cocaine, this manipulation did not affect cocaine self-administration. These observations indicate that while Hcrtr1 on DA versus GABA neurons exert opposing effects on DA transmission, only Hcrtr1 on DA neurons affected acquisition or motivation for cocaine - suggesting a complex interplay between DA transmission and behavior.
Collapse
Affiliation(s)
- Emily M. Black
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Shanna B. Samels
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Wei Xu
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Jessica R. Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Caroline E. Bass
- Department of Pharmacology and Toxicology, Jacobs School of Medicine, State University of New York at Buffalo, Buffalo NY 14214
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Rodrigo A. España
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
4
|
Vilca S, Wahlestedt C, Izenwasser S, Gainetdinov RR, Pardo M. Dopamine Transporter Knockout Rats Display Epigenetic Alterations in Response to Cocaine Exposure. Biomolecules 2023; 13:1107. [PMID: 37509143 PMCID: PMC10377455 DOI: 10.3390/biom13071107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: There is an urgent need for effective treatments for cocaine use disorder (CUD), and new pharmacological approaches targeting epigenetic mechanisms appear to be promising options for the treatment of this disease. Dopamine Transporter (DAT) transgenic rats recently have been proposed as a new animal model for studying susceptibility to CUD. (2) Methods: DAT transgenic rats were treated chronically with cocaine (10 mg/kg) for 8 days, and the expression of epigenetic modulators, Lysine Demethylase 6B (KDM6B) and Bromodomain-containing protein 4 (BRD4), was examined in the prefrontal cortex (PFC). (3) Results: We show that only full knockout (KO) of DAT impacts basal levels of KDM6B in females. Additionally, cocaine altered the expression of both epigenetic markers in a sex- and genotype-dependent manner. In response to chronic cocaine, KDM6B expression was decreased in male rats with partial DAT mutation (HET), while no changes were observed in wild-type (WT) or KO rats. Indeed, while HET male rats have reduced KDM6B and BRD4 expression, HET female rats showed increased KDM6B and BRD4 expression levels, highlighting the impact of sex on epigenetic mechanisms in response to cocaine. Finally, both male and female KO rats showed increased expression of BRD4, but only KO females exhibited significantly increased KDM6B expression in response to cocaine. Additionally, the magnitude of these effects was bigger in females when compared to males for both epigenetic enzymes. (4) Conclusions: This preliminary study provides additional support that targeting KDM6B and/or BRD4 may potentially be therapeutic in treating addiction-related behaviors in a sex-dependent manner.
Collapse
Affiliation(s)
- Samara Vilca
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.V.); (C.W.); (S.I.)
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Claes Wahlestedt
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.V.); (C.W.); (S.I.)
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sari Izenwasser
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.V.); (C.W.); (S.I.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia;
| | - Marta Pardo
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
5
|
Kaare M, Jayaram M, Jagomäe T, Singh K, Kilk K, Mikheim K, Leevik M, Leidmaa E, Varul J, Nõmm H, Rähn K, Visnapuu T, Plaas M, Lilleväli K, Schäfer MKE, Philips MA, Vasar E. Depression-Associated Negr1 Gene-Deficiency Induces Alterations in the Monoaminergic Neurotransmission Enhancing Time-Dependent Sensitization to Amphetamine in Male Mice. Brain Sci 2022; 12:1696. [PMID: 36552158 PMCID: PMC9776224 DOI: 10.3390/brainsci12121696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
In GWAS studies, the neural adhesion molecule encoding the neuronal growth regulator 1 (NEGR1) gene has been consistently linked with both depression and obesity. Although the linkage between NEGR1 and depression is the strongest, evidence also suggests the involvement of NEGR1 in a wide spectrum of psychiatric conditions. Here we show the expression of NEGR1 both in tyrosine- and tryptophan hydroxylase-positive cells. Negr1-/- mice show a time-dependent increase in behavioral sensitization to amphetamine associated with increased dopamine release in both the dorsal and ventral striatum. Upregulation of transcripts encoding dopamine and serotonin transporters and higher levels of several monoamines and their metabolites was evident in distinct brain areas of Negr1-/- mice. Chronic (23 days) escitalopram-induced reduction of serotonin and dopamine turnover is enhanced in Negr1-/- mice, and escitalopram rescued reduced weight of hippocampi in Negr1-/- mice. The current study is the first to show alterations in the brain monoaminergic systems in Negr1-deficient mice, suggesting that monoaminergic neural circuits contribute to both depressive and obesity-related phenotypes linked to the human NEGR1 gene.
Collapse
Affiliation(s)
- Maria Kaare
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Mohan Jayaram
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Toomas Jagomäe
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Centre, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Katyayani Singh
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kalle Kilk
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Kaie Mikheim
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Marko Leevik
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Este Leidmaa
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53129 Bonn, Germany
| | - Jane Varul
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Helis Nõmm
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kristi Rähn
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Tanel Visnapuu
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Mario Plaas
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Centre, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Kersti Lilleväli
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Michael K. E. Schäfer
- Department of Anesthesiology, Focus Program Translational Neurosciences, Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
- Focus Program Translational Neurosciences, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Mari-Anne Philips
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
6
|
Pardo M, Martin M, Gainetdinov RR, Mash DC, Izenwasser S. Heterozygote Dopamine Transporter Knockout Rats Display Enhanced Cocaine Locomotion in Adolescent Females. Int J Mol Sci 2022; 23:ijms232315414. [PMID: 36499749 PMCID: PMC9736933 DOI: 10.3390/ijms232315414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Cocaine is a powerful psychostimulant that is one of the most widely used illicit addictive. The dopamine transporter (DAT) plays a major role in mediating cocaine's reward effect. Decreases in DAT expression increase rates of drug abuse and vulnerability to comorbid psychiatric disorders. We used the novel DAT transgenic rat model to study the effects of cocaine on locomotor behaviors in adolescent rats, with an emphasis on sex. Female rats showed higher response rates to cocaine at lower acute and chronic doses, highlighting a higher vulnerability and perceived gender effects. In contrast, locomotor responses to an acute high dose of cocaine were more marked and sustained in male DAT heterozygous (HET) adolescents. The results demonstrate the augmented effects of chronic cocaine in HET DAT adolescent female rats. Knockout (KO) DAT led to a level of hyperdopaminergia which caused a marked basal hyperactivity that was unchanged, consistent with a possible ceiling effect. We suggest a role of alpha synuclein (α-syn) and PICK 1 protein expressions to the increased vulnerability in female rats. These proteins showed a lower expression in female HET and KO rats. This study highlights gender differences associated with mutations which affect DAT expression and can increase susceptibility to cocaine abuse in adolescence.
Collapse
Affiliation(s)
- Marta Pardo
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Correspondence: ; Tel.: +1-786-230-7181
| | - Michele Martin
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine and St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia
| | - Deborah C Mash
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sari Izenwasser
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
7
|
Fernández G, Krapacher F, Ferreras S, Quassollo G, Mari MM, Pisano MV, Montemerlo A, Rubianes MD, Bregonzio C, Arias C, Paglini MG. Lack of Cdk5 activity is involved on Dopamine Transporter expression and function: Evidences from an animal model of Attention-Deficit Hyperactivity Disorder. Exp Neurol 2021; 346:113866. [PMID: 34537209 DOI: 10.1016/j.expneurol.2021.113866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022]
Abstract
Attention deficit/Hyperactivity disorder (ADHD) is one of the most diagnosed psychiatric disorders nowadays. The core symptoms of the condition include hyperactivity, impulsiveness and inattention. The main pharmacological treatment consists of psychostimulant drugs affecting Dopamine Transporter (DAT) function. We have previously shown that genetically modified mice lacking p35 protein (p35KO), which have reduced Cdk5 activity, present key hallmarks resembling those described in animal models useful for studying ADHD. The p35KO mouse displays spontaneous hyperactivity and shows a calming effect of methylphenidate or amphetamine treatment. Interestingly, dopaminergic neurotransmission is altered in these mice as they have an increased Dopamine (DA) content together with a low DA turnover. This led us to hypothesize that the lack of Cdk5 activity affects DAT expression and/or function in this animal model. In this study, we performed biochemical assays, cell-based approaches, quantitative fluorescence analysis and functional studies that allowed us to demonstrate that p35KO mice exhibit decreased DA uptake and reduced cell surface DAT expression levels in the striatum (STR). These findings are supported by in vitro observations in which the inhibition of Cdk5 activity in N2a cells induced a significant increase in constitutive DAT endocytosis with a concomitant increase in DAT localization to recycling endosomes. Taken together, these data provide evidences regarding the role of Cdk5/p35 in DAT expression and function, thus contributing to the knowledge of DA neurotransmission physiology and also providing therapeutic options for the treatment of DA pathologies such as ADHD.
Collapse
Affiliation(s)
- Guillermo Fernández
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Favio Krapacher
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Soledad Ferreras
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gonzalo Quassollo
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Macarena Mariel Mari
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Victoria Pisano
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Antonella Montemerlo
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Dolores Rubianes
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental Córdoba, IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Carlos Arias
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto de Investigaciones Psicológicas, IIPSI-CONICET, Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Gabriela Paglini
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
8
|
Individual differences in dopamine uptake in the dorsomedial striatum prior to cocaine exposure predict motivation for cocaine in male rats. Neuropsychopharmacology 2021; 46:1757-1767. [PMID: 33953341 PMCID: PMC8357974 DOI: 10.1038/s41386-021-01009-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 11/08/2022]
Abstract
A major theme of addiction research has focused on the neural substrates of individual differences in the risk for addiction; however, little is known about how vulnerable populations differ from those that are relatively protected. Here, we prospectively measured dopamine (DA) neurotransmission prior to cocaine exposure to predict the onset and course of cocaine use. Using in vivo voltammetry, we first generated baseline profiles of DA release and uptake in the dorsomedial striatum (DMS) and nucleus accumbens of drug-naïve male rats prior to exposing them to cocaine using conditioned place preference (CPP) or operant self-administration. We found that the innate rate of DA uptake in the DMS strongly predicted motivation for cocaine and drug-primed reinstatement, but not CPP, responding when "price" was low, or extinction. We then assessed the impact of baseline variations in DA uptake on cocaine potency in the DMS using ex vivo voltammetry in naïve rats and in rats with DA transporter (DAT) knockdown. DA uptake in the DMS of naïve rats predicted the neurochemical response to cocaine, such that rats with innately faster rates of DA uptake demonstrated higher cocaine potency at the DAT and rats with DAT knockdown displayed reduced potency compared to controls. Together, these data demonstrate that inherent variability in DA uptake in the DMS predicts the behavioral response to cocaine, potentially by altering the apparent potency of cocaine.
Collapse
|
9
|
Alterations of Amphetamine Reward by Prior Nicotine and Alcohol Treatment: The Role of Age and Dopamine. Brain Sci 2021; 11:brainsci11040420. [PMID: 33810331 PMCID: PMC8065622 DOI: 10.3390/brainsci11040420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022] Open
Abstract
Evidence suggests that nicotine and alcohol can each serve as a gateway drug. We determined whether prior nicotine and alcohol treatment would alter amphetamine reward. Also, we examined whether age and dopaminergic neurotransmission are important in this regard. Male and female adolescent and adult C57BL/6J mice were tested for baseline place preference. Mice then received six conditioning with saline/nicotine (0.25 mg/kg) twice daily, followed by six conditioning with saline/ethanol (2 g/kg). Control mice were conditioned with saline/saline throughout. Finally, mice were conditioned with amphetamine (3 mg/kg), once in the nicotine-alcohol-paired chamber, and tested for place preference 24 h later. The following day, mice were challenged with amphetamine (1 mg/kg) and tested for place preference under a drugged state. Mice were then immediately euthanized, their brain removed, and nucleus accumbens isolated and processed for the level of dopamine receptors and transporter and glutamate receptors. We observed a greater amphetamine-induced place preference in naïve adolescents than adult mice with no change in state-dependent place preference between the two age groups. In contrast, amphetamine induced a significant place preference in adult but not adolescent mice with prior nicotine-alcohol exposure under the drug-free state. The preference was significantly greater in adults than adolescents under the drugged state. The enhanced response was associated with higher dopamine-transporter and D1 but reduced D2 receptors’ expression in adult rather than adolescent mice, with no changes in glutamate receptors levels. These results suggest that prior nicotine and alcohol treatment differentially alters amphetamine reward in adult and adolescent mice. Alterations in dopaminergic neurotransmission may be involved in this phenotype.
Collapse
|
10
|
Kreisler AD, Terranova MJ, Somkuwar SS, Purohit DC, Wang S, Head BP, Mandyam CD. In vivo reduction of striatal D1R by RNA interference alters expression of D1R signaling-related proteins and enhances methamphetamine addiction in male rats. Brain Struct Funct 2020; 225:1073-1088. [PMID: 32246242 DOI: 10.1007/s00429-020-02059-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/18/2020] [Indexed: 01/06/2023]
Abstract
This study sought to determine if reducing dopamine D1 receptor (D1R) expression in the dorsal striatum (DS) via RNA-interference alters methamphetamine self-administration. A lentiviral construct containing a short hairpin RNA (shRNA) was used to knock down D1R expression (D1RshRNA). D1RshRNA in male rats increased responding for methamphetamine (i.v.) under a fixed-ratio schedule in an extended access paradigm, compared to D1R-intact rats. D1RshRNA also produced a vertical shift in a dose-response paradigm and enhanced responding for methamphetamine in a progressive-ratio schedule, generating a drug-vulnerable phenotype. D1RshRNA did not alter responding for sucrose (oral) under a fixed-ratio schedule compared to D1R-intact rats. Western blotting confirmed reduced D1R expression in methamphetamine and sucrose D1RshRNA rats. D1RshRNA reduced the expression of PSD-95 and MAPK-1 and increased the expression of dopamine transporter (DAT) in the DS from methamphetamine, but not sucrose rats. Sucrose density gradient fractionation was performed in behavior-naïve controls, D1RshRNA- and D1R-intact rats to determine the subcellular localization of D1Rs, DAT and D1R signaling proteins. D1Rs, DAT, MAPK-1 and PSD-95 predominantly localized to heavy fractions, and the membrane/lipid raft protein caveolin-1 (Cav-1) and flotillin-1 were distributed equally between buoyant and heavy fractions in controls. Methamphetamine increased localization of PSD-95, Cav-1, and flotillin-1 in D1RshRNA and D1R-intact rats to buoyant fractions. Our studies indicate that reduced D1R expression in the DS increases vulnerability to methamphetamine addiction-like behavior, and this is accompanied by striatal alterations in the expression of DAT and D1R signaling proteins and is independent of the subcellular localization of these proteins.
Collapse
Affiliation(s)
| | | | | | | | - Shanshan Wang
- VA San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA, 92161, USA
| | - Brian P Head
- VA San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA, 92161, USA
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA, 92161, USA.
- Department of Anesthesiology, University of California San Diego, San Diego, CA, 92161, USA.
| |
Collapse
|
11
|
G protein-coupled receptor signaling in VTA dopaminergic neurons bidirectionally regulates the acute locomotor response to amphetamine but does not affect behavioral sensitization. Neuropharmacology 2019; 161:107663. [PMID: 31173760 DOI: 10.1016/j.neuropharm.2019.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 11/20/2022]
Abstract
Amphetamine (AMPH) acts as a substrate of the dopamine transporter (DAT) and causes a dramatic increase in extracellular dopamine (DA). Upon entering DA neurons, AMPH promotes DA efflux via DAT through a mechanism implicating depletion of DA from vesicular stores, activation of kinase pathways and transporter phosphorylation. Despite the role of intracellular signaling for AMPH action, it remains elusive how the response to AMPH is affected in vivo by metabotropic regulation via G protein coupled receptor signaling pathways. Here, we show by employment of Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) that the acute hyperlocomotor response to AMPH is bidirectionally regulated by metabotropic input to VTA DA neurons with a markedly enhanced response upon activation of a Gs-coupled pathway and a markedly decreased locomotor response upon activation of a Gi-coupled pathway. The unique mechanism of action for AMPH was underlined by the absence of an effect of Gs activation on the locomotor response to the DAT inhibitor cocaine. Regardless of the profound effect on the acute AMPH response, repeated Gs activation or Gi activation did not affect development of AMPH sensitization. Furthermore, activation of a Gs-pathway or activation of a Gi-pathway in DA neurons did not have any effect on the AMPH-induced locomotor response in the AMPH sensitized mice. This suggests induction of alterations in DA neuronal functions that overrule the stimulatory or inhibitory effect of metabotropic input seen in drug-naïve mice. The data thereby underline the remarkable strength of maladaptive changes that occur upon intake of strong psychostimulants. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
|
12
|
Kwiatkowski MA, Hellemann G, Sugar CA, Cope ZA, Minassian A, Perry W, Geyer MA, Young JW. Dopamine transporter knockdown mice in the behavioral pattern monitor: A robust, reproducible model for mania-relevant behaviors. Pharmacol Biochem Behav 2019; 178:42-50. [PMID: 29289701 PMCID: PMC10014035 DOI: 10.1016/j.pbb.2017.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/18/2017] [Accepted: 12/27/2017] [Indexed: 12/16/2022]
Abstract
Efforts to replicate results from both basic and clinical models have highlighted problems with reproducibility in science. In psychiatry, reproducibility issues are compounded because the complex behavioral syndromes make many disorders challenging to model. We develop translatable tasks that quantitatively measure psychiatry-relevant behaviors across species. The behavioral pattern monitor (BPM) was designed to analyze exploratory behaviors, which are altered in patients with bipolar disorder (BD), especially during mania episodes. We have repeatedly assessed the behavioral effects of reduced dopamine transporter (DAT) expression in the BPM using a DAT knockdown (KD) mouse line (~10% normal expression). DAT KD mice exhibit a profile in the BPM consistent with acutely manic BD patients in the human version of the task-hyperactivity, increased exploratory behavior, and reduced spatial d (Perry et al., 2009). We collected data from multiple DAT KD BPM experiments in our laboratory to assess the reproducibility of behavioral outcomes across experiments. The four outcomes analyzed were: 1) transitions (amount of locomotor activity); 2) rearings (exploratory activity); 3) holepokes (exploratory activity); and 4) spatial d (geometrical pattern of locomotor activity). By comparing DAT KD mice to wildtype (WT) littermates in every experiment, we calculated effect sizes for each of the four outcomes and then calculated a mean effect size using a random effects model. DAT KD mice exhibited robust, reproducible changes in each of the four outcomes, including increased transitions, rearings, and holepokes, and reduced spatial d, vs. WT littermates. Our results demonstrate that the DAT KD mouse line in the BPM is a consistent, reproducible model of mania-relevant behaviors. More work must be done to assess reproducibility of behavioral outcomes across experiments in order to advance the field of psychiatry and develop more effective therapeutics for patients.
Collapse
Affiliation(s)
| | - Gerhard Hellemann
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, USA
| | - Catherine A Sugar
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, USA.; Department of Biostatistics, University of California Los Angeles, USA
| | - Zackary A Cope
- Department of Psychiatry, University of California San Diego, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, USA
| | - William Perry
- Department of Psychiatry, University of California San Diego, USA
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, USA.; Research Service, VA San Diego Healthcare System, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, USA.; Research Service, VA San Diego Healthcare System, USA..
| |
Collapse
|
13
|
Solinas M, Belujon P, Fernagut PO, Jaber M, Thiriet N. Dopamine and addiction: what have we learned from 40 years of research. J Neural Transm (Vienna) 2018; 126:481-516. [PMID: 30569209 DOI: 10.1007/s00702-018-1957-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/17/2018] [Indexed: 12/22/2022]
Abstract
Among the neurotransmitters involved in addiction, dopamine (DA) is clearly the best known. The critical role of DA in addiction is supported by converging evidence that has been accumulated in the last 40 years. In the present review, first we describe the dopaminergic system in terms of connectivity, functioning and involvement in reward processes. Second, we describe the functional, structural, and molecular changes induced by drugs within the DA system in terms of neuronal activity, synaptic plasticity and transcriptional and molecular adaptations. Third, we describe how genetic mouse models have helped characterizing the role of DA in addiction. Fourth, we describe the involvement of the DA system in the vulnerability to addiction and the interesting case of addiction DA replacement therapy in Parkinson's disease. Finally, we describe how the DA system has been targeted to treat patients suffering from addiction and the result obtained in clinical settings and we discuss how these different lines of evidence have been instrumental in shaping our understanding of the physiopathology of drug addiction.
Collapse
Affiliation(s)
- Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France.
| | - Pauline Belujon
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pierre Olivier Fernagut
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Mohamed Jaber
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| |
Collapse
|
14
|
Wisłowska-Stanek A, Płaźnik A, Kołosowska K, Skórzewska A, Turzyńska D, Liguz-Lęcznar M, Krząścik P, Gryz M, Szyndler J, Sobolewska A, Lehner M. Differences in the dopaminergic reward system in rats that passively and actively behave in the Porsolt test. Behav Brain Res 2018; 359:181-189. [PMID: 30366032 DOI: 10.1016/j.bbr.2018.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
The aim of the study was to assess appetitive responses and central dopaminergic neurotransmission in passive and active rats divided according to their immobility time in the Porsolt swim test and exposed to restraint stress. Passive rats had more episodes of appetitive 50-kHz ultrasonic vocalization (USV) during rat encounter after social isolation and spent significantly more time in the amphetamine-associated context in conditioned place preference test, compared to active rats. Restraint stress decreased sucrose preference, but increased appetitive vocalization and reinforced the conditioned place preference only in passive animals that was associated with increased dopamine concentration in the amygdala. Restraint stress increased also the level of Cocaine- and Amphetamine Regulated Transcript (CART) peptide, a neuromodulator linked to dopamine neurotransmission, in the central nucleus of amygdala, while decreasing it the nucleus accumbens shell in passive rats. In the parvocellular region of paraventricular nucleus of the hypothalamus passive animals had a higher expression of CART compared to passive restraint rats and active control rats. The obtained results show that active and passive rats in the Porsolt test differ significantly in response to appetitive stimuli, which can be additionally changed under stress conditions. The underlying mechanisms are probably associated with differences in dopaminergic activity and CART signaling in reward system.
Collapse
Affiliation(s)
- Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre For Preclinical Research and Technology (CEPT), 1B Banacha Street, 02-097, Warsaw, Poland.
| | - Adam Płaźnik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre For Preclinical Research and Technology (CEPT), 1B Banacha Street, 02-097, Warsaw, Poland; Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Karolina Kołosowska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Danuta Turzyńska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Monika Liguz-Lęcznar
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Paweł Krząścik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre For Preclinical Research and Technology (CEPT), 1B Banacha Street, 02-097, Warsaw, Poland
| | - Marek Gryz
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre For Preclinical Research and Technology (CEPT), 1B Banacha Street, 02-097, Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| |
Collapse
|
15
|
Goldberg LR, Gould TJ. Multigenerational and transgenerational effects of paternal exposure to drugs of abuse on behavioral and neural function. Eur J Neurosci 2018; 50:2453-2466. [PMID: 29949212 DOI: 10.1111/ejn.14060] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023]
Abstract
Addictions are highly heritable disorders, with heritability estimates ranging from 39% to 72%. Multiple studies suggest a link between paternal drug abuse and addiction in their children. However, patterns of inheritance cannot be explained purely by Mendelian genetic mechanisms. Exposure to drugs of abuse results in epigenetic changes that may be passed on through the germline. This mechanism of epigenetic transgenerational inheritance may provide a link between paternal drug exposure and addiction susceptibility in the offspring. Recent studies have begun to investigate the effect of paternal drug exposure on behavioral and neurobiological phenotypes in offspring of drug-exposed fathers in rodent models. This review aims to discuss behavioral and neural effects of paternal exposure to alcohol, cocaine, opioids, and nicotine. Although a special focus will be on addiction-relevant behaviors, additional behavioral effects including cognition, anxiety, and depressive-like behaviors will be discussed.
Collapse
Affiliation(s)
- Lisa R Goldberg
- Department of Biobehavioral Health, Penn State University, 219 Biobehavioral Health Building, University Park, PA, 16801, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, 219 Biobehavioral Health Building, University Park, PA, 16801, USA
| |
Collapse
|
16
|
Efimova EV, Gainetdinov RR, Budygin EA, Sotnikova TD. Dopamine transporter mutant animals: a translational perspective. J Neurogenet 2017; 30:5-15. [PMID: 27276191 DOI: 10.3109/01677063.2016.1144751] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The dopamine transporter (DAT) plays an important homeostatic role in the control of both the extracellular and intraneuronal concentrations of dopamine, thereby providing effective control over activity of dopaminergic transmission. Since brain dopamine is known to be involved in numerous neuropsychiatric disorders, investigations using mice with genetically altered DAT function and thus intensity of dopamine-mediated signaling have provided numerous insights into the pathology of these disorders and novel pathological mechanisms that could be targeted to provide new therapeutic approaches for these disorders. In this brief overview, we discuss recent investigations involving animals with genetically altered DAT function, particularly focusing on translational studies providing new insights into pathology and pharmacology of dopamine-related disorders. Perspective applications of these and newly developed models of DAT dysfunction are also discussed.
Collapse
Affiliation(s)
- Evgeniya V Efimova
- a Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia ;,b Skolkovo Institute of Science and Technology , Skolkovo , Moscow Region , Russia
| | - Raul R Gainetdinov
- a Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia ;,b Skolkovo Institute of Science and Technology , Skolkovo , Moscow Region , Russia
| | - Evgeny A Budygin
- a Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia ;,c Department of Neurobiology and Anatomy , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Tatyana D Sotnikova
- a Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia
| |
Collapse
|
17
|
Research Domain Criteria versus DSM V: How does this debate affect attempts to model corticostriatal dysfunction in animals? Neurosci Biobehav Rev 2016; 76:301-316. [PMID: 27826070 DOI: 10.1016/j.neubiorev.2016.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/03/2016] [Accepted: 10/31/2016] [Indexed: 01/29/2023]
Abstract
For decades, the nosology of mental illness has been based largely upon the descriptions in the Diagnostic and Statistical Manual of the American Psychiatric Association (DSM). A recent challenge to the DSM approach to psychiatric nosology from the National Institute on Mental Health (USA) defines Research Domain Criteria (RDoC) as an alternative. For RDoC, psychiatric illnesses are not defined as discrete categories, but instead as specific behavioral dysfunctions irrespective of DSM diagnostic categories. This approach was driven by two primary weaknesses noted in the DSM: (1) the same symptoms occur in very different disease states; and (2) DSM criteria lack grounding in the underlying biological causes of mental illness. RDoC intends to ground psychiatric nosology in those underlying mechanisms. This review addresses the suitability of RDoC vs. DSM from the view of modeling mental illness in animals. A consideration of all types of psychiatric dysfunction is beyond the scope of this review, which will focus on models of conditions associated with frontostriatal dysfunction.
Collapse
|
18
|
Womersley JS, Mpeta B, Dimatelis JJ, Kellaway LA, Stein DJ, Russell VA. Developmental stress elicits preference for methamphetamine in the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2016; 12:18. [PMID: 27317355 PMCID: PMC4912802 DOI: 10.1186/s12993-016-0102-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/09/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Developmental stress has been hypothesised to interact with genetic predisposition to increase the risk of developing substance use disorders. Here we have investigated the effects of maternal separation-induced developmental stress using a behavioural proxy of methamphetamine preference in an animal model of attention-deficit/hyperactivity disorder, the spontaneously hypertensive rat, versus Wistar Kyoto and Sprague-Dawley comparator strains. RESULTS Analysis of results obtained using a conditioned place preference paradigm revealed a significant strain × stress interaction with maternal separation inducing preference for the methamphetamine-associated compartment in spontaneously hypertensive rats. Maternal separation increased behavioural sensitization to the locomotor-stimulatory effects of methamphetamine in both spontaneously hypertensive and Sprague-Dawley strains but not in Wistar Kyoto rats. CONCLUSIONS Our findings indicate that developmental stress in a genetic rat model of attention-deficit/hyperactivity disorder may foster a vulnerability to the development of substance use disorders.
Collapse
Affiliation(s)
- Jacqueline S. Womersley
- />Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
| | - Bafokeng Mpeta
- />Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
| | - Jacqueline J. Dimatelis
- />Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
| | - Lauriston A. Kellaway
- />Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
| | - Dan J. Stein
- />Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Observatory, Cape Town, 7925 South Africa
| | - Vivienne A. Russell
- />Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
| |
Collapse
|
19
|
Hryhorczuk C, Florea M, Rodaros D, Poirier I, Daneault C, Des Rosiers C, Arvanitogiannis A, Alquier T, Fulton S. Dampened Mesolimbic Dopamine Function and Signaling by Saturated but not Monounsaturated Dietary Lipids. Neuropsychopharmacology 2016; 41:811-21. [PMID: 26171719 PMCID: PMC4707827 DOI: 10.1038/npp.2015.207] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 01/04/2023]
Abstract
Overconsumption of dietary fat is increasingly linked with motivational and emotional impairments. Human and animal studies demonstrate associations between obesity and blunted reward function at the behavioral and neural level, but it is unclear to what degree such changes are a consequence of an obese state and whether they are contingent on dietary lipid class. We sought to determine the impact of prolonged ad libitum intake of diets rich in saturated or monounsaturated fat, separate from metabolic signals associated with increased adiposity, on dopamine (DA)-dependent behaviors and to identify pertinent signaling changes in the nucleus accumbens (NAc). Male rats fed a saturated (palm oil), but not an isocaloric monounsaturated (olive oil), high-fat diet exhibited decreased sensitivity to the rewarding (place preference) and locomotor-sensitizing effects of amphetamine as compared with low-fat diet controls. Blunted amphetamine action by saturated high-fat feeding was entirely independent of caloric intake, weight gain, and plasma levels of leptin, insulin, and glucose and was accompanied by biochemical and behavioral evidence of reduced D1R signaling in the NAc. Saturated high-fat feeding was also tied to protein markers of increased AMPA receptor-mediated plasticity and decreased DA transporter expression in the NAc but not to alterations in DA turnover and biosynthesis. Collectively, the results suggest that intake of saturated lipids can suppress DA signaling apart from increases in body weight and adiposity-related signals known to affect mesolimbic DA function, in part by diminishing D1 receptor signaling, and that equivalent intake of monounsaturated dietary fat protects against such changes.
Collapse
Affiliation(s)
- Cecile Hryhorczuk
- Centre de Recherche du CHUM and Montreal Diabetes Research Center, Montreal, QC, Canada,Department of Physiology, Université de Montréal, Montreal, QC, Canada
| | - Marc Florea
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Demetra Rodaros
- Centre de Recherche du CHUM and Montreal Diabetes Research Center, Montreal, QC, Canada
| | - Isabelle Poirier
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada
| | | | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada,Montreal Heart Institute, Montreal, QC, Canada
| | | | - Thierry Alquier
- Centre de Recherche du CHUM and Montreal Diabetes Research Center, Montreal, QC, Canada,Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Stephanie Fulton
- Centre de Recherche du CHUM and Montreal Diabetes Research Center, Montreal, QC, Canada,Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada,Department of Nutrition, Université de Montréal, Montreal, QC, Canada,CRCHUM and Montreal Diabetes Research Center, 900 rue Saint-Denis, Office 8-428, Montreal, QC H2X 0A9, Canada, Tel: +1 514 890 8000, ex 23602, E-mail:
| |
Collapse
|
20
|
Crunelle CL, Kaag AM, van den Munkhof HE, Reneman L, Homberg JR, Sabbe B, van den Brink W, van Wingen G. Dysfunctional amygdala activation and connectivity with the prefrontal cortex in current cocaine users. Hum Brain Mapp 2015. [PMID: 26220024 DOI: 10.1002/hbm.22913] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Stimulant use is associated with increased anxiety and a single administration of dexamphetamine increases amygdala activation to biologically salient stimuli in healthy individuals. Here, we investigate how current cocaine use affects amygdala activity and amygdala connectivity with the prefrontal cortex in response to biologically salient stimuli in an emotional face matching task (EFMT). EXPERIMENTAL DESIGN Amygdala activity and amygdala connectivity during the EFMT were assessed in 51 cocaine using males and 32 non-drug-using healthy males using functional magnetic resonance imaging (fMRI). Within the cocaine use group, we explored whether amygdala activation was associated with age of first use of cocaine and duration of cocaine use to distinguish between amygdala activation alterations as a cause or a consequence of cocaine use. PRINCIPAL OBSERVATIONS We observed hyperactivity of the amygdala, thalamus, and hippocampus and reduced amygdala connectivity with the anterior cingulate gyrus in response to angry and fearful facial expressions in current cocaine users compared to controls. Increased amygdala activation was independently associated with earlier age of first cocaine use and with longer exposure to cocaine. CONCLUSIONS Our findings suggest that amygdala hyperactivity to biologically salient stimuli may represent a risk factor for an early onset of cocaine use and that prolonged cocaine use may further sensitize amygdala activation. High amygdala activation to emotional face processing in current cocaine users may result from low prefrontal control of the amygdala response to such stimuli.
Collapse
Affiliation(s)
- Cleo L Crunelle
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Toxicological Center, University of Antwerp, Antwerp, Belgium
| | - Anne Marije Kaag
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanna E van den Munkhof
- Department of Neurochemistry and Neuropharmacology, Institute of Biomedical Sciences of Barcelona, Barcelona, Spain
| | - Liesbeth Reneman
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bernard Sabbe
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
| | - Wim van den Brink
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Guido van Wingen
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Affiliation(s)
- Wei-Dong Yao
- Guest Editor, New England Primate Research Center, Harvard Medical School Southborough , Massachusetts , USA
| | | |
Collapse
|
22
|
McHugh PC, Buckley DA. The Structure and Function of the Dopamine Transporter and its Role in CNS Diseases. HORMONES AND TRANSPORT SYSTEMS 2015; 98:339-69. [DOI: 10.1016/bs.vh.2014.12.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Vecchio LM, Bermejo MK, Beerepoot P, Ramsey AJ, Salahpour A. N-terminal tagging of the dopamine transporter impairs protein expression and trafficking in vivo. Mol Cell Neurosci 2014; 61:123-32. [PMID: 24886986 DOI: 10.1016/j.mcn.2014.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 05/22/2014] [Accepted: 05/29/2014] [Indexed: 01/26/2023] Open
Abstract
The dopamine transporter (DAT) is the primary protein responsible for the uptake of dopamine from the extracellular space back into presynaptic neurons. As such, it plays an important role in the cessation of dopaminergic neurotransmission and in the maintenance of extracellular dopamine homeostasis. Here, we report the development of a new BAC transgenic mouse line that expresses DAT with an N-terminal HA-epitope (HAD-Tg). In this line, two copies of the HA-DAT BAC are incorporated into the genome, increasing DAT mRNA levels by 47%. Despite the increase in mRNA levels, HAD-Tg mice show no significant increase in the level of DAT protein in the striatum, indicating a defect in protein trafficking or stability. By crossing HAD-Tg mice with DAT knockout mice (DAT-KO), we engineered mice that exclusively express HA-tagged DAT in the absence of endogenous DAT (DAT-KO/HAD-Tg). We show that DAT-KO/HAD-Tg mice express only 8.5% of WT DAT levels in the striatum. Importantly, the HA-tagged DAT that is present in DAT-KO/HAD-Tg mice is functional, as it is able to partially rescue the DAT-KO hyperactive phenotype. Finally, we provide evidence that the HA-tagged DAT is retained in the cell body based on a reduction in the striatum:midbrain protein ratio. These results demonstrate that the presence of the N-terminal tag leads to impaired DAT protein expression in vivo due in part to improper trafficking of the tagged transporter, and highlight the importance of the N-terminus in the transport of DAT to striatal terminals.
Collapse
Affiliation(s)
- Laura M Vecchio
- Department of Pharmacology, University of Toronto: Medical Sciences Building, Room 4302, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - M Kristel Bermejo
- Department of Pharmacology, University of Toronto: Medical Sciences Building, Room 4302, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Pieter Beerepoot
- Department of Pharmacology, University of Toronto: Medical Sciences Building, Room 4302, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Amy J Ramsey
- Department of Pharmacology, University of Toronto: Medical Sciences Building, Room 4302, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Ali Salahpour
- Department of Pharmacology, University of Toronto: Medical Sciences Building, Room 4302, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|