1
|
Battaglini D, Al-Husinat L, Normando AG, Leme AP, Franchini K, Morales M, Pelosi P, Rocco PR. Personalized medicine using omics approaches in acute respiratory distress syndrome to identify biological phenotypes. Respir Res 2022; 23:318. [PMID: 36403043 PMCID: PMC9675217 DOI: 10.1186/s12931-022-02233-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022] Open
Abstract
In the last decade, research on acute respiratory distress syndrome (ARDS) has made considerable progress. However, ARDS remains a leading cause of mortality in the intensive care unit. ARDS presents distinct subphenotypes with different clinical and biological features. The pathophysiologic mechanisms of ARDS may contribute to the biological variability and partially explain why some pharmacologic therapies for ARDS have failed to improve patient outcomes. Therefore, identifying ARDS variability and heterogeneity might be a key strategy for finding effective treatments. Research involving studies on biomarkers and genomic, metabolomic, and proteomic technologies is increasing. These new approaches, which are dedicated to the identification and quantitative analysis of components from biological matrixes, may help differentiate between different types of damage and predict clinical outcome and risk. Omics technologies offer a new opportunity for the development of diagnostic tools and personalized therapy in ARDS. This narrative review assesses recent evidence regarding genomics, proteomics, and metabolomics in ARDS research.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Science and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Lou'i Al-Husinat
- Department of Clinical Medical Sciences, Faculty of Medicine, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Ana Gabriela Normando
- Brazilian Biosciences National Laboratory, LNBio, Brazilian Center for Research in Energy and Materials, CNPEM, Campinas, Brazil
| | - Adriana Paes Leme
- Brazilian Biosciences National Laboratory, LNBio, Brazilian Center for Research in Energy and Materials, CNPEM, Campinas, Brazil
| | - Kleber Franchini
- Brazilian Biosciences National Laboratory, LNBio, Brazilian Center for Research in Energy and Materials, CNPEM, Campinas, Brazil
| | - Marcelo Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Science and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia Rm Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Kisia LE, Cheng Q, Raballah E, Munde EO, McMahon BH, Hengartner NW, Ong'echa JM, Chelimo K, Lambert CG, Ouma C, Kempaiah P, Perkins DJ, Schneider KA, Anyona SB. Genetic variation in CSF2 (5q31.1) is associated with longitudinal susceptibility to pediatric malaria, severe malarial anemia, and all-cause mortality in a high-burden malaria and HIV region of Kenya. Trop Med Health 2022; 50:41. [PMID: 35752805 PMCID: PMC9233820 DOI: 10.1186/s41182-022-00432-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/14/2022] [Indexed: 01/13/2023] Open
Abstract
Plasmodium falciparum infections remain among the leading causes of morbidity and mortality in holoendemic transmission areas. Located within region 5q31.1, the colony-stimulating factor 2 gene (CSF2) encodes granulocyte–macrophage colony-stimulating factor (GM-CSF), a hematopoietic growth factor that mediates host immune responses. Since the effect of CSF2 variation on malaria pathogenesis remains unreported, we investigated the impact of two genetic variants in the 5q31.1 gene region flanking CSF2:g-7032 G > A (rs168681:G > A) and CSF2:g.64544T > C (rs246835:T > C) on the rate and timing of malaria and severe malarial anemia (SMA, Hb < 5.0 g/dL) episodes over 36 months of follow-up. Children (n = 1654, aged 2–70 months) were recruited from a holoendemic P. falciparum transmission area of western Kenya. Decreased incidence rate ratio (IRR) for malaria was conferred by inheritance of the CSF2:g.64544 TC genotype (P = 0.0277) and CSF2 AC/GC diplotype (P = 0.0015). Increased IRR for malaria was observed in carriers of the CSF2 AT/GC diplotype (P = 0.0237), while the inheritance of the CSF2 AT haplotype increased the IRR for SMA (P = 0.0166). A model estimating the longitudinal risk of malaria showed decreased hazard rates among CSF2 AC haplotype carriers (P = 0.0045). Investigation of all-cause mortality revealed that inheritance of the GA genotype at CSF2:g-7032 increased the risk of mortality (P = 0.0315). Higher risk of SMA and all-cause mortality were observed in younger children (P < 0.0001 and P = 0.0015), HIV-1(+) individuals (P < 0.0001 and P < 0.0001), and carriers of HbSS (P = 0.0342 and P = 0.0019). Results from this holoendemic P. falciparum area show that variation in gene region 5q31.1 influences susceptibility to malaria, SMA, and mortality, as does age, HIV-1 status, and inheritance of HbSS.
Collapse
Affiliation(s)
- Lily E Kisia
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya.,University of New Mexico-Kenya Global Health Programs, Kisumu, Siaya, Kenya
| | - Qiuying Cheng
- Center for Global Health, University of New Mexico, Albuquerque, NM, USA
| | - Evans Raballah
- University of New Mexico-Kenya Global Health Programs, Kisumu, Siaya, Kenya.,Department of Medical Laboratory Sciences, School of Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Elly O Munde
- University of New Mexico-Kenya Global Health Programs, Kisumu, Siaya, Kenya.,Department of Clinical Medicine, School of Health Sciences, Kirinyaga University, Kerugoya, Kenya
| | - Benjamin H McMahon
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Nick W Hengartner
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - John M Ong'echa
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Kiprotich Chelimo
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | | | - Collins Ouma
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya.,University of New Mexico-Kenya Global Health Programs, Kisumu, Siaya, Kenya
| | - Prakasha Kempaiah
- Department of Medicine, Loyola University Medical Center, Chicago, IL, USA
| | - Douglas J Perkins
- University of New Mexico-Kenya Global Health Programs, Kisumu, Siaya, Kenya.,Center for Global Health, University of New Mexico, Albuquerque, NM, USA
| | - Kristan A Schneider
- Department Applied Computer and Bio-Sciences, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Samuel B Anyona
- University of New Mexico-Kenya Global Health Programs, Kisumu, Siaya, Kenya. .,Department of Medical Biochemistry, School of Medicine, Maseno University, P.O. Box 333-40105, Maseno, Kenya.
| |
Collapse
|
3
|
Lynn H, Sun X, Casanova N, Gonzales-Garay M, Bime C, Garcia JGN. Genomic and Genetic Approaches to Deciphering Acute Respiratory Distress Syndrome Risk and Mortality. Antioxid Redox Signal 2019; 31:1027-1052. [PMID: 31016989 PMCID: PMC6939590 DOI: 10.1089/ars.2018.7701] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Acute respiratory distress syndrome (ARDS) is a severe, highly heterogeneous critical illness with staggering mortality that is influenced by environmental factors, such as mechanical ventilation, and genetic factors. Significant unmet needs in ARDS are addressing the paucity of validated predictive biomarkers for ARDS risk and susceptibility that hamper the conduct of successful clinical trials in ARDS and the complete absence of novel disease-modifying therapeutic strategies. Recent Advances: The current ARDS definition relies on clinical characteristics that fail to capture the diversity of disease pathology, severity, and mortality risk. We undertook a comprehensive survey of the available ARDS literature to identify genes and genetic variants (candidate gene and limited genome-wide association study approaches) implicated in susceptibility to developing ARDS in hopes of uncovering novel biomarkers for ARDS risk and mortality and potentially novel therapeutic targets in ARDS. We further attempted to address the well-known health disparities that exist in susceptibility to and mortality from ARDS. Critical Issues: Bioinformatic analyses identified 201 ARDS candidate genes with pathway analysis indicating a strong predominance in key evolutionarily conserved inflammatory pathways, including reactive oxygen species, innate immunity-related inflammation, and endothelial vascular signaling pathways. Future Directions: Future studies employing a system biology approach that combines clinical characteristics, genomics, transcriptomics, and proteomics may allow for a better definition of biologically relevant pathways and genotype-phenotype connections and result in improved strategies for the sub-phenotyping of diverse ARDS patients via molecular signatures. These efforts should facilitate the potential for successful clinical trials in ARDS and yield a better fundamental understanding of ARDS pathobiology.
Collapse
Affiliation(s)
- Heather Lynn
- Department of Physiological Sciences and University of Arizona, Tucson, Arizona.,Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Xiaoguang Sun
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Nancy Casanova
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | | | - Christian Bime
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Joe G N Garcia
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
4
|
The Basic Science and Molecular Mechanisms of Lung Injury and Acute Respiratory Distress Syndrome. Int Anesthesiol Clin 2019; 56:1-25. [PMID: 29227309 DOI: 10.1097/aia.0000000000000177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Relation between Red Cell Distribution Width and Mortality in Critically Ill Patients with Acute Respiratory Distress Syndrome. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1942078. [PMID: 31016186 PMCID: PMC6448335 DOI: 10.1155/2019/1942078] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/25/2018] [Accepted: 02/27/2019] [Indexed: 12/14/2022]
Abstract
Background Currently, evidence regarding the predictive significance of red blood cell distribution width (RDW) among patients with acute respiratory distress syndrome (ARDS) remains scarce. The aim of this study was to determine the prognostic value of RDW for critically ill patients with ARDS. Methods We studied all patients with ARDS from the Multiparameter Intelligent Monitoring in Intensive Care Database III (MIMIC-III) for whom RDW was available. The clinical outcomes were 30-day and 90-day mortality. Analyses included logistic multivariate regression model, Receiver Operating Characteristic (ROC) analysis, and subgroup analysis. Results A total of 404 eligible ARDS patients were included. After adjustment for several clinical characteristics related to 30-day mortality, the adjusted OR (95% CIs) for RDW levels ≥14.5% was 1.91 (1.08, 3.39). A similar trend was observed for 90-day mortality. The RDW levels ≥14.5% were also an independent predictor of 90-day mortality (OR, 2.56; 95% CI, 1.50 to 4.37; P = 0.0006) compared with the low RDW levels (<14.5%). In subgroup analyses, RDW showed no significant interactions with other relevant risk factors for 30-day mortality. Conclusions RDW appeared to be a novel, independent predictor of mortality in critically ill patients with ARDS.
Collapse
|
6
|
Benson MD, Khor CC, Gage PJ, Lehmann OJ. A targeted approach to genome-wide studies reveals new genetic associations with central corneal thickness. Mol Vis 2017; 23:952-962. [PMID: 29296075 PMCID: PMC5741379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/13/2017] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To evaluate the ability of a targeted genome-wide association study (GWAS) to identify genes associated with central corneal thickness (CCT). METHODS A targeted GWAS was used to investigate whether ten candidate genes with known roles in corneal development were associated with CCT in two Singaporean populations. The single nucleotide polymorphisms (SNPs) within a 500 kb interval encompassing each candidate were analyzed, and in light of the resulting data, members of the Wnt pathway were subsequently screened using similar methodology. RESULTS Variants within the 500 kb interval encompassing three candidate genes, DKK1 (rs1896368, p=1.32×10-3), DKK2 (rs17510449, p=7.34×10-4), and FOXO1 (rs7326616, p=1.56×10-4 and rs4943785, p=1.19×10-3), were statistically significantly associated with CCT in the Singapore Indian population. DKK2 was statistically significantly associated with CCT in a separate Singapore Malaysian population (rs10015200, p=2.26×10-3). Analysis of Wnt signaling pathway genes in each population demonstrated that TCF7L2 (rs3814573, p=1.18×10-3), RYK (rs6763231, p=1.12×10-3 and rs4854785, p=1.11×10-3), and FZD8 (rs640827, p=5.17×10-4) were statistically significantly associated with CCT. CONCLUSIONS The targeted GWAS identified four genes (DKK1, DKK2, RYK, and FZD8) with novel associations with CCT and confirmed known associations with two genes, FOXO1 and TCF7L2. All six participate in the Wnt pathway, supporting a broader role for Wnt signaling in regulating the thickness of the cornea. In parallel, this study demonstrated that a hypothesis-driven candidate gene approach can identify associations in existing GWAS data sets.
Collapse
Affiliation(s)
- Matthew D. Benson
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Canada
| | | | - Philip J. Gage
- Department of Ophthalmology and Visual Science, Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Ordan J. Lehmann
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Canada,Department of Medical Genetics, University of Alberta, Edmonton, Canada
| |
Collapse
|
7
|
Reilly JP, Christie JD, Meyer NJ. Fifty Years of Research in ARDS. Genomic Contributions and Opportunities. Am J Respir Crit Care Med 2017; 196:1113-1121. [PMID: 28481621 PMCID: PMC5694838 DOI: 10.1164/rccm.201702-0405cp] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
Clinical factors alone poorly explain acute respiratory distress syndrome (ARDS) risk and ARDS outcome. In the search for individual factors that may influence ARDS risk, the past 20 years have witnessed the identification of numerous genes and genetic variants that are associated with ARDS. The field of ARDS genomics has cycled from candidate gene association studies to bias-free approaches that identify new candidates, and increasing effort is made to understand the functional consequences that may underlie significant associations. More recently, methodologies of causal inference are being applied to maximize the information gained from genetic associations. Although challenges of sample size, both recognized and unrecognized phenotypic heterogeneity, and the paucity of early ARDS lung tissue limit some applications of the rapidly evolving field of genomic investigation, ongoing genetic research offers unique contributions to elucidating ARDS pathogenesis and the paradigm of precision ARDS medicine.
Collapse
Affiliation(s)
- John P. Reilly
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine
- Center for Translational Lung Biology, and
| | - Jason D. Christie
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine
- Center for Translational Lung Biology, and
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine
- Center for Translational Lung Biology, and
| |
Collapse
|
8
|
Meyer NJ, Calfee CS. Novel translational approaches to the search for precision therapies for acute respiratory distress syndrome. THE LANCET. RESPIRATORY MEDICINE 2017; 5:512-523. [PMID: 28664850 PMCID: PMC7103930 DOI: 10.1016/s2213-2600(17)30187-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/30/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023]
Abstract
In the 50 years since acute respiratory distress syndrome (ARDS) was first described, substantial progress has been made in identifying the risk factors for and the pathogenic contributors to the syndrome and in characterising the protein expression patterns in plasma and bronchoalveolar lavage fluid from patients with ARDS. Despite this effort, however, pharmacological options for ARDS remain scarce. Frequently cited reasons for this absence of specific drug therapies include the heterogeneity of patients with ARDS, the potential for a differential response to drugs, and the possibility that the wrong targets have been studied. Advances in applied biomolecular technology and bioinformatics have enabled breakthroughs for other complex traits, such as cardiovascular disease or asthma, particularly when a precision medicine paradigm, wherein a biomarker or gene expression pattern indicates a patient's likelihood of responding to a treatment, has been pursued. In this Review, we consider the biological and analytical techniques that could facilitate a precision medicine approach for ARDS.
Collapse
Affiliation(s)
- Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine and Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carolyn S Calfee
- Department of Medicine and Department of Anesthesia, University of California, San Francisco, CA, USA.
| |
Collapse
|