1
|
Cantor J. The Role of the Extracellular Matrix in the Pathogenesis and Treatment of Pulmonary Emphysema. Int J Mol Sci 2024; 25:10613. [PMID: 39408941 PMCID: PMC11477147 DOI: 10.3390/ijms251910613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Pulmonary emphysema involves progressive destruction of alveolar walls, leading to enlarged air spaces and impaired gas exchange. While the precise mechanisms responsible for these changes remain unclear, there is growing evidence that the extracellular matrix plays a critical role in the process. An essential feature of pulmonary emphysema is damage to the elastic fiber network surrounding the airspaces, which stores the energy needed to expel air from the lungs. The degradation of these fibers disrupts the mechanical forces involved in respiration, resulting in distension and rupture of alveolar walls. While the initial repair process mainly consists of elastin degradation and resynthesis, continued alveolar wall injury may be associated with increased collagen deposition, resulting in a mixed pattern of emphysema and interstitial fibrosis. Due to the critical role of elastic fiber injury in pulmonary emphysema, preventing damage to this matrix component has emerged as a potential therapeutic strategy. One treatment approach involves the intratracheal administration of hyaluronan, a polysaccharide that prevents elastin breakdown by binding to lung elastic fibers. In clinical trials, inhalation of aerosolized HA decreased elastic fiber injury, as measured by the release of the elastin-specific cross-linking amino acids, desmosine, and isodesmosine. By protecting elastic fibers from enzymatic and oxidative damage, aerosolized HA could alter the natural history of pulmonary emphysema, thereby reducing the risk of respiratory failure.
Collapse
Affiliation(s)
- Jerome Cantor
- School of Pharmacy and Allied Health Sciences, St John's University, Queens, NY 11439, USA
| |
Collapse
|
2
|
Cantor J. Desmosine as a biomarker for the emergent properties of pulmonary emphysema. Front Med (Lausanne) 2023; 10:1322283. [PMID: 38164218 PMCID: PMC10758135 DOI: 10.3389/fmed.2023.1322283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Developing an effective treatment for pulmonary emphysema will require a better understanding of the molecular changes responsible for distention and rupture of alveolar walls. A potentially useful approach to studying this process involves the concept of emergence in which interactions at different levels of scale induce a phase transition comprising a spontaneous reorganization of chemical and physical systems. Recent studies in our laboratory provide evidence of this phenomenon in pulmonary emphysema by relating the emergence of airspace enlargement to the release of elastin-specific desmosine and isodesmosine (DID) crosslinks from damaged elastic fibers. When the mean alveolar diameter exceeded 400 μm, the level of peptide-free DID in human lungs was greatly increased, reflecting rapid acceleration of elastin breakdown, alveolar wall rupture, and a phase transition to an active disease state that is less responsive to treatment. Based on this finding, it is hypothesized that free DID in urine and other body fluids may serve as a biomarker for early detection of airspace enlargement, thereby facilitating timely therapeutic intervention and reducing the risk of respiratory failure.
Collapse
Affiliation(s)
- Jerome Cantor
- College of Pharmacy and Health Sciences, St John’s University, Queens, NY, United States
| |
Collapse
|
3
|
Cantor JO, Ma S, Liu X, Campos MA, Strange C, Stocks JM, Devine MS, El Bayadi SG, Lipchik RJ, Sandhaus RA, Turino GM. A 28-day clinical trial of aerosolized hyaluronan in alpha-1 antiprotease deficiency COPD using desmosine as a surrogate marker for drug efficacy. Respir Med 2021; 182:106402. [PMID: 33906126 DOI: 10.1016/j.rmed.2021.106402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION A previous 2-week clinical trial of aerosolized hyaluronan (HA) in COPD showed a rapid reduction in lung elastic fiber breakdown, as measured by sputum levels of the unique elastin crosslinks, desmosine and isodesmosine (DID). To further assess the therapeutic efficacy of HA and the utility of DID as surrogate markers for the development of pulmonary emphysema, we have conducted a 28-day randomized, double-blind, placebo-controlled, phase 2 trial of HA involving 27 subjects with alpha-1 antiprotease deficiency COPD. METHODS The study drug consisted of a 3 ml inhalation solution containing 0.03% HA with an average molecular weight of 150 kDa that was self-administered twice daily. DID levels were measured in urine, sputum, and plasma using tandem mass spectrometry. RESULTS Free urine DID in the HA group showed a significant negative correlation with time between days 14 and 35 (r = -1.0, p = 0.023) and was statistically significantly decreased from baseline at day 35 (15.4 vs 14.2 ng/mg creatinine, p = 0.035). A marked decrease in sputum DID was also seen in the HA group between days 1 and 28 (0.96 vs 0.18 ng/mg protein), but the difference was not significant, possibly due to the small number of adequate specimens. Plasma DID remained unchanged following HA treatment and no significant reductions in urine, sputum, or plasma DID were seen in the placebo group. CONCLUSIONS The results support additional clinical trials to further evaluate the therapeutic effect of HA and the use of DID as a real-time marker of drug efficacy.
Collapse
Affiliation(s)
| | - Shuren Ma
- Mt Sinai-St Luke's Hospital Center, NY, NY, USA
| | | | | | | | - James M Stocks
- University of Texas Health Science Center, Tyler, TX, USA
| | - Megan S Devine
- University of Texas Health Science Center, Tyler, TX, USA
| | | | | | | | | |
Collapse
|
4
|
Karakioulaki M, Papakonstantinou E, Stolz D. Extracellular matrix remodelling in COPD. Eur Respir Rev 2020; 29:29/158/190124. [PMID: 33208482 DOI: 10.1183/16000617.0124-2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/16/2020] [Indexed: 12/30/2022] Open
Abstract
The extracellular matrix (ECM) of the lung plays several important roles in lung function, as it offers a low resistant pathway that allows the exchange of gases, provides compressive strength and elasticity that supports the fragile alveolar-capillary intersection, controls the binding of cells with growth factors and cell surface receptors and acts as a buffer against retention of water.COPD is a chronic inflammatory respiratory condition, characterised by various conditions that result in progressive airflow limitation. At any stage in the course of the disease, acute exacerbations of COPD may occur and lead to accelerated deterioration of pulmonary function. A key factor of COPD is airway remodelling, which refers to the serious alterations of the ECM affecting airway wall thickness, resistance and elasticity. Various studies have shown that serum biomarkers of ECM turnover are significantly associated with disease severity in patients with COPD and may serve as potential targets to control airway inflammation and remodelling in COPD. Unravelling the complete molecular composition of the ECM in the diseased lungs will help to identify novel biomarkers for disease progression and therapy.
Collapse
Affiliation(s)
- Meropi Karakioulaki
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland
| | - Eleni Papakonstantinou
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland.,Dept of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daiana Stolz
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland
| |
Collapse
|
5
|
Cantor J. Giants in Chest Medicine: Gerard M. Turino, MD. Chest 2018; 154:1274-1275. [PMID: 30526965 DOI: 10.1016/j.chest.2018.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 10/27/2022] Open
Affiliation(s)
- Jerome Cantor
- Department of Pharmaceutical and Allied Health Sciences, St John's University, Queens, NY.
| |
Collapse
|
6
|
Cantor JO, Turino GM. COPD Pathogenesis: Finding the Common in the Complex. Chest 2018; 155:266-271. [PMID: 30080996 DOI: 10.1016/j.chest.2018.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 01/21/2023] Open
Abstract
Developing an effective treatment for COPD, and especially pulmonary emphysema, will require an understanding of how fundamental changes at the molecular level affect the macroscopic structure of the lung. Currently, there is no accepted model that encompasses the biochemical and mechanical processes responsible for pulmonary airspace enlargement. We propose that pulmonary emphysematous changes may be more accurately described as an emergent phenomenon, involving alterations at the molecular level that eventually reach a critical structural threshold where uneven mechanical forces produce alveolar wall rupture, accompanied by advanced clinical signs of COPD. The coupling of emergent morphologic changes with biomarkers to detect the process, and counteract it therapeutically, represents a practical approach to the disease.
Collapse
Affiliation(s)
- Jerome O Cantor
- Department of Pharmaceutical and Allied Health Sciences, St. John's University and St. Luke's-Mount Sinai Hospital Center, New York, NY.
| | - Gerard M Turino
- Department of Pharmaceutical and Allied Health Sciences, St. John's University and St. Luke's-Mount Sinai Hospital Center, New York, NY
| |
Collapse
|
7
|
Abstract
This article assesses developments in cardiorespiratory medicine since the Nobel Prize in Physiology or Medicine was awarded in 1956 for advancements in the study of cardiorespiratory disease. In chronic obstructive pulmonary disease, advances were accelerated by the discovery of a genetically determined cause for pulmonary emphysema in the genetic abnormality alpha-1 antitrypsin deficiency. This causes a deficiency of the inhibitor of neutrophil elastase, which results in increased degradation of lung elastin and the development of pulmonary emphysema. This discovery gave focus to two amino acids that reside only in body elastin, desmosine and isodesmosine, which can be measured as biomarkers of elastin degradation in body fluids with increased accuracy and sensitivity. Studies of this biomarker have shown that augmentation therapy in alpha-1 antitrypsin deficiency does decrease lung and body elastic tissue degradation and in the RAPID (Randomized, Placebo-controlled Trial of Augmentation Therapy in Alpha-1 Proteinase Inhibitor Deficiency) Study, over 4 years, showed a preservation of lung density by computer tomography correlating with decreases in plasma levels of desmosine and isodesmosine. This insight indicates the potential of agents that prevent lung elastin degradation. Such an agent is hyaluronan aerosol, which is deficient in post mortem lungs with chronic obstructive pulmonary disease and has been shown to block elastin degradation, possibly by a barrier function. Thus it would appear that hyaluronan could have therapeutic potential in chronic obstructive pulmonary disease.
Collapse
|
8
|
Turino GM, Ma S, Lin YY, Cantor JO. The Therapeutic Potential of Hyaluronan in COPD. Chest 2017; 153:792-798. [PMID: 29289686 DOI: 10.1016/j.chest.2017.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 11/25/2022] Open
Abstract
Insights into the clinical course of COPD indicate the need for new therapies for this condition. The discovery of alpha-1 antitrypsin deficiency (AATD) led to the protease-antiprotease imbalance hypothesis, which was applied to COPD related to AATD as well as COPD not related to AATD. The discovery of AATD brought recognition to the importance of elastin fibers in maintaining lung matrix structure. Two cross-linking amino acids, desmosine and isodesmosine (DI), are unique to mature elastin and can serve as biomarkers of the degradation of elastin. The intravenous augmentation treatment and lung density in severe alpha-1 antitrypsin deficiency (RAPID) study shows a correlation of an anatomic index of COPD (on CT imaging) correlating with a chemical indicator of matrix injury in COPD, DI. The results suggest that preservation of lung elastin structure may slow the progression of COPD. Hyaluronan aerosol decreases the severity of elastase-induced emphysema in animals and has induced reductions in DI levels in preliminary human studies. Hyaluronan deserves further development as a therapy for COPD.
Collapse
Affiliation(s)
- Gerard M Turino
- Department of Medicine, Mt. Sinai-St. Luke's-Roosevelt Hospital, New York, NY; Department of Medicine, Mt. Sinai Icahn School of Medicine, New York, NY.
| | - Shuren Ma
- Department of Medicine, Mt. Sinai-St. Luke's-Roosevelt Hospital, New York, NY; Department of Medicine, Mt. Sinai Icahn School of Medicine, New York, NY
| | - Yong Y Lin
- Department of Medicine, Mt. Sinai-St. Luke's-Roosevelt Hospital, New York, NY; Department of Medicine, Mt. Sinai Icahn School of Medicine, New York, NY
| | - Jerome O Cantor
- Department of Medicine, St. John's University College of Pharmacy and Health Sciences, New York, NY
| |
Collapse
|
9
|
Cantor J, Ma S, Turino G. A pilot clinical trial to determine the safety and efficacy of aerosolized hyaluronan as a treatment for COPD. Int J Chron Obstruct Pulmon Dis 2017; 12:2747-2752. [PMID: 29075107 PMCID: PMC5609793 DOI: 10.2147/copd.s142156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A novel therapy for COPD involving the use of aerosolized hyaluronan (HA) was tested on a small cohort of COPD patients to determine both its safety and efficacy in reducing levels of desmosine and isodesmosine (DID), biomarkers for elastin degradation. In a 2-week, randomized, double-blind trial, 8 patients receiving 150 kDa HA (mean molecular weight) and 3 others given placebo did not show significant adverse effects with regard to spirometry, electrocardiograms, and hematological indices. Furthermore, measurements of DID in plasma from HA-treated patients indicated a progressive decrease over a 3-week period following initiation of treatment (r=−0.98; p=0.02), whereas patients receiving placebo showed no reduction in DID (r=−0.70; p=0.30). Measurements of sputum in the HA-treated group also revealed a progressive decrease in DID (r=−0.97; p=0.03), but this finding was limited by the absence of similar measurements in the placebo group. Nevertheless, the results of this small, pilot study support a longer-term trial of HA in a larger population of COPD patients.
Collapse
Affiliation(s)
- Jerome Cantor
- Department of Pharmaceutical Sciences, St John's University
| | - Shuren Ma
- Department of Medicine, St Luke's Mount Sinai Hospital Center, New York, NY, USA
| | - Gerard Turino
- Department of Medicine, St Luke's Mount Sinai Hospital Center, New York, NY, USA
| |
Collapse
|
10
|
Cantor JO, Shteyngart B, Cerreta JM, Ma S, Turino GM. Synergistic Effect of Hydrogen Peroxide and Elastase on Elastic Fiber Injury In Vitro. Exp Biol Med (Maywood) 2016; 231:107-11. [PMID: 16380651 DOI: 10.1177/153537020623100113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This laboratory has previously shown that hyperoxia enhances airspace enlargement in a hamster model of elastase-induced emphysema. To further understand the mechanism responsible for this finding, the effect of oxidants on elastase activity was studied in vitro, using a radiolabeled elastic fiber matrix derived from rat pleural mesothelial cells. Matrix samples were treated with either 0.1%, 1%, 3%, or 10% hydrogen peroxide (H2O2) for 1 hr, then incubated with 1.0 μg/ml porcine pancreatic elastase for 2 hrs. Radioactivity released from the matrix was used as a measure of elastolysis. Results indicate that sequential exposure to H2O2 and elastase markedly enhanced elastolysis compared to enzyme treatment alone. A 22% increase in elastolysis was seen with 0.1% H2O2 (325 vs. 396 cpm; P < 0.05), whereas samples pretreated with 1%, 3%, and 10% H2O2 showed increases of 53% (274 vs. 420 cpm; P < 0.05), 71% (381 vs. 653 cpm; P < 0.01), and 38% (322 vs. 443 cpm; P < 0.01), respectively. Exposure to various concentrations of H2O2 alone (0.1% to 10%) produced only minimal elastolysis (<20 cpm). However, 1% H2O2 was capable of degrading peptide-free desmosine and isodesmosine, suggesting that exposure to this oxidant may reduce the stability of the elastic fiber matrix. With regard to lung diseases such as emphysema, H2O2 and other oxidants derived from inflammatory cells or the environment could possibly act as priming agents for elastase-mediated breakdown of elastic fibers, resulting in amplification of lung injury.
Collapse
Affiliation(s)
- Jerome O Cantor
- St. John's University School of Pharmacy and Allied Health Sciences, Jamaica, New York 11439, USA.
| | | | | | | | | |
Collapse
|
11
|
The Rise and Fall of Hyaluronan in Respiratory Diseases. Int J Cell Biol 2015; 2015:712507. [PMID: 26448757 PMCID: PMC4581576 DOI: 10.1155/2015/712507] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/11/2015] [Accepted: 05/03/2015] [Indexed: 12/24/2022] Open
Abstract
In normal airways, hyaluronan (HA) matrices are primarily located within the airway submucosa, pulmonary vasculature walls, and, to a lesser extent, the alveoli. Following pulmonary injury, elevated levels of HA matrices accumulate in these regions, and in respiratory secretions, correlating with the extent of injury. Animal models have provided important insight into the role of HA in the onset of pulmonary injury and repair, generally indicating that the induction of HA synthesis is an early event typically preceding fibrosis. The HA that accumulates in inflamed airways is of a high molecular weight (>1600 kDa) but can be broken down into smaller fragments (<150 kDa) by inflammatory and disease-related mechanisms that have profound effects on HA pathobiology. During inflammation in the airways, HA is often covalently modified with heavy chains from inter-alpha-inhibitor via the enzyme tumor-necrosis-factor-stimulated-gene-6 (TSG-6) and this modification promotes the interaction of leukocytes with HA matrices at sites of inflammation. The clearance of HA and its return to normal levels is essential for the proper resolution of inflammation. These data portray HA matrices as an important component of normal airway physiology and illustrate its integral roles during tissue injury and repair among a variety of respiratory diseases.
Collapse
|
12
|
Cantor J, Armand G, Turino G. Lung hyaluronan levels are decreased in alpha-1 antiprotease deficiency COPD. Respir Med 2015; 109:656-9. [PMID: 25862598 DOI: 10.1016/j.rmed.2015.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Hyaluronan (HA), a long-chain polysaccharide, is currently being evaluated as a potential therapeutic agent for pulmonary emphysema, based on previous studies from this laboratory indicating its protective effect against elastic fiber breakdown. To determine whether exogenously administered HA might replace a loss of this extracellular matrix component in this disease, we measured the content of HA in lung biopsies from both healthy individuals and alpha-1 antiprotease-deficient (AAPD) COPD patients with pulmonary emphysema. METHODS Tissue samples (9 from COPD patients, 5 from controls) were digested with papain to isolate glycosaminoglycans, and lung HA was quantified with an enzyme-linked immunoabsorbent assay. RESULTS HA was significantly decreased in the AAPDCOPD population compared to normal individuals (13.5 vs 21.7 ng/mg wet lung; p < 0.01). Furthermore, there was a positive correlation between HA levels and the following parameters: 1) percent predicted FEV1 (r = 0.78; p < 0.001), 2) percent predicted DLCO (r = 0.74; p < 0.05), and 3) serum levels of AAP (r = 0.61; p < 0.05). CONCLUSIONS These findings support the hypothesis that depletion of lung HA plays a role in the pathogenesis of pulmonary emphysema, and that replacement of this matrix component could slow the progression of the disease.
Collapse
Affiliation(s)
- Jerome Cantor
- St John's University College of Pharmacy and Health Sciences and St Luke's - Roosevelt Hospital Center, New York City, NY, United States.
| | - Gerard Armand
- St John's University College of Pharmacy and Health Sciences and St Luke's - Roosevelt Hospital Center, New York City, NY, United States
| | - Gerard Turino
- St John's University College of Pharmacy and Health Sciences and St Luke's - Roosevelt Hospital Center, New York City, NY, United States
| |
Collapse
|
13
|
Cantor J, Shteyngart B. Does lysozyme play a role in the pathogenesis of COPD? Med Hypotheses 2015; 84:551-4. [PMID: 25769706 DOI: 10.1016/j.mehy.2015.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/24/2015] [Accepted: 02/25/2015] [Indexed: 11/29/2022]
Abstract
Elastic fiber injury is an important process in the pathogenesis of chronic obstructive pulmonary disease (COPD), particularly with regard to the development of pulmonary emphysema. Damage to these fibers results in uneven distribution of mechanical forces in the lung, leading to dilatation and rupture of alveolar walls. While the role of various enzymes and oxidants in this process has been well-documented, we propose that a previously unsuspected agent, lysozyme, may contribute significantly to the changes in elastic fibers observed in this disease. Studies from our laboratory have previously shown that lysozyme preferentially binds to elastic fibers in human emphysematous lungs. On the basis of this finding, it is hypothesized that the attachment of lysozyme to these fibers enhances their susceptibility to injury, and further impairs the transfer of mechanical forces in the lung, leading to increased alveolar wall damage and enhanced progression of COPD. The hypothesized effects of lysozyme are predicated on its interaction with hyaluronan (HA), a long-chain polysaccharide that is found in close proximity to elastic fibers. By preventing the binding of HA to elastic fibers in COPD, lysozyme may interfere with the protective effect of this polysaccharide against enzymes and oxidants that degrade these fibers. Furthermore, the loss of the hydrating effect of HA on these fibers may impair their elastic properties, greatly increasing the probability of their fragmentation in response to mechanical forces. The proposed hypothesis may explain why the content of HA is significantly lower in the lungs of COPD patients. It may also contribute to the design of clinical trials involving the use of exogenously administered HA as a potential treatment for COPD.
Collapse
Affiliation(s)
- Jerome Cantor
- St John's University College of Pharmacy and Health Sciences, Queens, NY 11439, United States.
| | - Bronislava Shteyngart
- St John's University College of Pharmacy and Health Sciences, Queens, NY 11439, United States
| |
Collapse
|
14
|
Pandey MS, Baggenstoss BA, Washburn J, Harris EN, Weigel PH. The hyaluronan receptor for endocytosis (HARE) activates NF-κB-mediated gene expression in response to 40-400-kDa, but not smaller or larger, hyaluronans. J Biol Chem 2013; 288:14068-14079. [PMID: 23530033 PMCID: PMC3656264 DOI: 10.1074/jbc.m112.442889] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/13/2013] [Indexed: 01/12/2023] Open
Abstract
The hyaluronan (HA) receptor for endocytosis (HARE; Stabilin-2) binds and clears 14 different ligands, including HA and heparin, via clathrin-mediated endocytosis. HA binding to HARE stimulates ERK1/2 activation (Kyosseva, S. V., Harris, E. N., and Weigel, P. H. (2008) J. Biol. Chem. 283, 15047-15055). To assess a possible HA size dependence for signaling, we tested purified HA fractions of different weight-average molar mass and with narrow size distributions and Select-HA(TM) for stimulation of HARE-mediated gene expression using an NF-κB promoter-driven luciferase reporter system. Human HARE-mediated gene expression was stimulated in a dose-dependent manner with small HA (sHA) >40 kDa and intermediate HA (iHA) <400 kDa. The hyperbolic dose response saturated at 20-50 nM with an apparent K(m) ~10 nM, identical to the Kd for HA-HARE binding. Activation was not detected with oligomeric HA (oHA), sHA <40 kDa, iHA >400 kDa, or large HA (lHA). Similar responses occurred with rat HARE. Activation by sHA-iHA was blocked by excess nonsignaling sHA, iHA, or lHA, deletion of the HA-binding LINK domain, or HA-blocking antibody. Endogenous NF-κB activation also occurred in the absence of luciferase plasmids, as assessed by degradation of IκB-α. ERK1/2 activation was also HA size-dependent. The results show that HA-HARE interactions stimulate NF-κB-activated gene expression and that HARE senses a narrow size range of HA degradation products. We propose a model in which optimal length HA binds multiple HARE proteins to allow cytoplasmic domain interactions that stimulate intracellular signaling. This HARE signaling system during continuous HA clearance could monitor the homeostasis of tissue biomatrix turnover throughout the body.
Collapse
Affiliation(s)
- Madhu S Pandey
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Bruce A Baggenstoss
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jennifer Washburn
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Paul H Weigel
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
15
|
Abstract
Hyaluronic acid (HA) is a non-sulphated glycosaminoglycan. It is a natural polymer characterised by a coiled linear chain in particularly well-hydrated configuration composed of repeating disaccaride units. In mammals, its molecular weight can be extremely wide, ranging from 20 to 4,000 kDa. High molecular mass forms are provided with anti-inflammatory properties. A unique characteristic of HA is hydration (up to 6,000 molecules water/molecule of HA) with a major role in the regulation of fluid balance in the interstitium, a fundamental activity on the amorphous colloidal matrix gluing connective cell and fibers, and many other biological functions including lubrication, solute transport and microcirculatory exchange. HA has been widely used in the treatment of eye, ear, joint and skin disorders; in the last 15 years HA has been also proposed successfully in the treatment of a number of lung diseases in vitro, experimental animals and humans. In particular, inhaled HA at relatively high molecular weight has been proven to prevent bronchoconstiction induced in asthmatics by direct and indirect challenges such as inhalation of methacholine, inhalation of ultrasonically nebulised distilled water, muscular exercise. More recently, in patients affected by chronic obstructive pulmonary diseases, we have demonstrated that repeated administrations of inhaled HA (daily, for 8 weeks) induce significant increase in bronchial patency as well as progressive lung deflation with decrease of residual volume. In conclusion there are elements that can let us state that is perhaps time to change the focus to connective tissue and extracellular matrix substances such as HA, in order to prevent and treat chronic lung diseases.
Collapse
Affiliation(s)
- Luigi Allegra
- Università degli Studi, IRCCS Fondazione Ca' Granda, Ospedale Policlinico, Milano, Italy.
| | | | | |
Collapse
|
16
|
Rho BH, Kwon KY, Choi WI. The Effect of Hyaluronan Treatment in Endotoxemic Rats. Tuberc Respir Dis (Seoul) 2011. [DOI: 10.4046/trd.2011.70.5.390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Byung Hak Rho
- Department of Diagnostic Radiology, Keimyung University School of Medicine, Daegu, Korea
| | - Kun Young Kwon
- Department of Pathology, Keimyung University School of Medicine, Daegu, Korea
| | - Won-Il Choi
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
17
|
Cantor JO, Cerreta JM, Ochoa M, Ma S, Liu M, Turino GM. Therapeutic effects of hyaluronan on smoke-induced elastic fiber injury: does delayed treatment affect efficacy? Lung 2010; 189:51-6. [PMID: 21153833 DOI: 10.1007/s00408-010-9271-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/07/2010] [Indexed: 01/29/2023]
Abstract
Aerosolized hyaluronan (HA) has been previously shown to prevent cigarette smoke-induced airspace enlargement and elastic fiber injury in mice when given concurrently with smoke. In the present study, a more stringent test of the therapeutic potential of HA was performed by delaying treatment with this agent for 1 month. After treatment with cigarette smoke for 3 h per day for 5 days per week for 1 month, mice (DBA/2J) began receiving aerosolized HA (0.1%) for 1 h prior to smoke exposure (controls were given aerosolized water). The results indicate that much of the damage to the lung elastic fibers occurred within the first several months of smoke exposure, as measured by levels of desmosine and isodesmosine (DID) in bronchoalveolar lavage fluid (BALF). In contrast to previously published studies, where concurrent administration of aerosolized HA significantly reduced BALF DID levels within 3 months of smoke exposure, the same effect was not seen until 6 months when HA treatment was delayed. However, despite the prolonged breakdown of elastic fibers in the current study, a significant reduction in airspace enlargement was observed after only 2 months of HA treatment. These findings provide further support for testing this agent in patients with pre-existing chronic obstructive pulmonary disease.
Collapse
|
18
|
Nadkarni PP, Kulkarni GS, Cerreta JM, Ma S, Cantor JO. DICHOTOMOUS EFFECT OF AEROSOLIZED HYALURONAN IN A HAMSTER MODEL OF ENDOTOXIN-INDUCED LUNG INJURY. Exp Lung Res 2009; 31:807-18. [PMID: 16684714 DOI: 10.1080/01902140600574942] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inhalation of aerosolized low-molecular-weight (150-kDa) hyaluronan (HA) was previously shown by this laboratory to prevent experimentally induced pulmonary emphysema without associated toxicity. Nevertheless, other investigators have found that low-molecular-weight HA may be proinflammatory, prompting the authors to determine if aerosolized HA could possibly enhance pulmonary inflammation in a different model of lung injury involving intratracheal instillation of endotoxin to hamsters. Results indicate that exposure to HA following endotoxin administration significantly increased lung inflammation, whereas pretreatment with HA had the opposite effect.
Collapse
Affiliation(s)
- Priya P Nadkarni
- School of Pharmacy and Allied Health Sciences, St. John's University, New York, NY 11439, USA
| | | | | | | | | |
Collapse
|
19
|
Greene CM, Miller SDW, Carroll T, McLean C, O'Mahony M, Lawless MW, O'Neill SJ, Taggart CC, McElvaney NG. Alpha-1 antitrypsin deficiency: a conformational disease associated with lung and liver manifestations. J Inherit Metab Dis 2008; 31:21-34. [PMID: 18193338 DOI: 10.1007/s10545-007-0748-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 11/30/2007] [Accepted: 12/07/2007] [Indexed: 12/20/2022]
Abstract
Alpha-1 antitrypsin (A1AT) is a serine anti-protease produced chiefly by the liver. A1AT deficiency is a genetic disorder characterized by serum levels of less than 11 mumol/L and is associated with liver and lung manifestations. The liver disease, which occurs in up to 15% of A1AT-deficient individuals, is a result of toxic gain-of-function mutations in the A1AT gene, which cause the A1AT protein to fold aberrantly and accumulate in the endoplasmic reticulum of hepatocytes. The lung disease is associated with loss-of-function, specifically decreased anti-protease protection on the airway epithelial surface. The so-called 'Z' mutation in A1AT deficiency encodes a glutamic acid-to-lysine substitution at position 342 in A1AT and is the most common A1AT allele associated with disease. Here we review the current understanding of the molecular pathogenesis of A1AT deficiency and the best clinical management protocols.
Collapse
Affiliation(s)
- C M Greene
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Souza-Fernandes AB, Pelosi P, Rocco PRM. Bench-to-bedside review: the role of glycosaminoglycans in respiratory disease. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2007; 10:237. [PMID: 17118216 PMCID: PMC1794443 DOI: 10.1186/cc5069] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The extracellular matrix (ECM) plays a significant role in the mechanical behaviour of the lung parenchyma. The ECM is composed of a three-dimensional fibre mesh that is filled with various macromolecules, among which are the glycosaminoglycans (GAGs). GAGs are long, linear and highly charged heterogeneous polysaccharides that are composed of a variable number of repeating disaccharide units. There are two main types of GAGs: nonsulphated GAG (hyaluronic acid) and sulphated GAGs (heparan sulphate and heparin, chondroitin sulphate, dermatan sulphate, and keratan sulphate). With the exception of hyaluronic acid, GAGs are usually covalently attached to a protein core, forming an overall structure that is referred to as proteoglycan. In the lungs, GAGs are distributed in the interstitium, in the sub-epithelial tissue and bronchial walls, and in airway secretions. GAGs have important functions in lung ECM: they regulate hydration and water homeostasis; they maintain structure and function; they modulate the inflammatory response; and they influence tissue repair and remodelling. Given the great diversity of GAG structures and the evidence that GAGs may have a protective effect against injury in various respiratory diseases, an understanding of changes in GAG expression that occur in disease may lead to opportunities to develop innovative and selective therapies in the future.
Collapse
Affiliation(s)
- Alba B Souza-Fernandes
- Laboratory of Pulmonary Investigation, Carolos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Ilha do Fundão, 21949-900, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Department of Ambient, Health and Safety, University of Insubria, Viale Borri 57, 21100 Varese, Italy
| | - Patricia RM Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Ilha do Fundão, 21949-900, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Abstract
Formed in response to a World Health Organization recommendation, the Alpha One International Registry (AIR) is a multinational research program focused on alphal-antitrypsin (AAT) deficiency. Each of the nearly 20 participating countries maintains a National Registry of patients with AAT deficiency and contributes to an international database in Malmö, Sweden, that is designed to increase understanding of AAT deficiency as well as safeguard patient confidentiality. AIR members are engaged in active and wide-ranging investigations to improve the diagnosis, monitoring and therapy of the disease. The AIR membership meets biennially to exchange views and research findings. The third biennial meeting was held in Barcelona, Spain, June 11 -13, 2003. A wide range of AAT deficiency-related topics were addressed, encompassing molecular and cellular pathophysiologic mechanisms, clinical epidemiology, diagnostic advances, current and investigational therapeutic approaches, and progress in registry development. Valuable cross-fertilization of concepts and scientific observations was apparent between AAT deficiency research and other fields of biomedicine. The proceedings of the meeting are summarized in this report.
Collapse
|
22
|
Scheibner KA, Lutz MA, Boodoo S, Fenton MJ, Powell JD, Horton MR. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. THE JOURNAL OF IMMUNOLOGY 2006; 177:1272-81. [PMID: 16818787 DOI: 10.4049/jimmunol.177.2.1272] [Citation(s) in RCA: 523] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Upon tissue injury, high m.w. hyaluronan (HA), a ubiquitously distributed extracellular matrix component, is broken down into lower m.w. (LMW) fragments, which in turn activate an innate immune response. In doing so, LMW HA acts as an endogenous danger signal alerting the immune system of a breach in tissue integrity. In this report, we demonstrate that LMW HA activates the innate immune response via TLR-2 in a MyD88-, IL-1R-associated kinase-, TNFR-associated factor-6-, protein kinase Czeta-, and NF-kappaB-dependent pathway. Furthermore, we show that intact high m.w. HA can inhibit TLR-2 signaling. Finally, we demonstrate that LMW HA can act as an adjuvant promoting Ag-specific T cell responses in vivo in wild-type but not TLR-2(null) mice.
Collapse
Affiliation(s)
- Kara A Scheibner
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 1830 East Monument Street, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
23
|
Boodoo S, Spannhake EW, Powell JD, Horton MR. Differential regulation of hyaluronan-induced IL-8 and IP-10 in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2006; 291:L479-86. [PMID: 16581825 DOI: 10.1152/ajplung.00518.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Airway epithelium is emerging as a regulator of local inflammation and immune responses. However, the cellular and molecular mechanisms responsible for the immune modulation by these cells have yet to be fully elucidated. At the cellular level, the hallmarks of airway inflammation are mucus gland hypertrophy with excess mucus production, accumulation of inflammatory mediators, inflammation in the airway walls and lumen, and breakdown and turnover of the extracellular matrix. We demonstrate that fragments of the extracellular matrix component hyaluronan induce inflammatory chemokine production in primary airway epithelial cells grown at an air-liquid interface. Furthermore, hyaluronan fragments use two distinct molecular pathways to induce IL-8 and IFN-gamma-inducible protein 10 (IP-10) chemokine expression in airway epithelial cells. Hyaluronan-induced IL-8 requires the MAP kinase pathway, whereas hyaluronan-induced IP-10 utilizes the NF-kappaB pathway. The induction is specific to low-molecular-weight hyaluronan fragments as other glycosaminoglycans do not induce IL-8 and IP-10 in airway epithelial cells. We hypothesize that not only is the extracellular matrix a target of destruction in airway inflammation but it plays a critical role in perpetuating inflammation through the induction of cytokines, chemokines, and modulatory enzymes in epithelial cells. Furthermore, hyaluronan, by inducing IL-8 and IP-10 by distinct pathways, provides a unique target for differential regulation of key inflammatory chemokines.
Collapse
Affiliation(s)
- Sada Boodoo
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
24
|
Petrigni G, Allegra L. Aerosolised hyaluronic acid prevents exercise-induced bronchoconstriction, suggesting novel hypotheses on the correction of matrix defects in asthma. Pulm Pharmacol Ther 2006; 19:166-71. [PMID: 16406721 DOI: 10.1016/j.pupt.2005.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 03/01/2005] [Accepted: 03/09/2005] [Indexed: 11/15/2022]
Abstract
Hyaluronic acid (HA), a biopolymer, member of the family of the glycosaminoglicanes (GAGs) is one of the major natural components of the connective amorphous matrix. The lungs, together with skin and intestine, contain >50% of HA of the body: it provides to several biologic functions and presents the unique capacity to link and retain a particularly relevant number of water molecules. Since other GAGs have been proven to be provided with anti-asthmatic properties and HA has been employed with positive results by intra-tracheal instillation in experimental models of lung emphysema and COPD, we have explored the efficacy of the pre-administered aerosol of HA (compared to placebo) in preventing in asthmatic patients the bronchoconstriction induced by a challenge test such as that obtained with muscular exercise. In a randomised, cross-over, single-blind study design, saline as placebo (P) or HA have been administered by aerosol, in two non-consecutive days, 30 min prior to the beginning of the challenge (10 min free running), to 14 patients (13-36 years old; 7 teenagers, 7 young adults; 11 males, 3 females; 12 allergic, 2 non-allergic), all suffering from mild bronchial asthma. The bronchoconstrictive effect induced by the muscular exercise has been relevant and statistically significant. With the P pre-treatment, the average FEV1 measured 5 min after the end of exercise was reduced by 36.14% from the baseline FEV1. Pre-treatment with HA determined a partial but clear-cut protection of the FEV1 impairment due to the challenge: the average post-challenge FEV1 resulted to be 12.43% less than the pre-challenge baseline value. No significant difference was observed in the level of HA protection in the subgroup of teenagers when compared to that of young adults. The protection induced by HA, when compared with P, resulted particularly significant by the statistical point of view (p < 0.0001). We conclude that aerosol HA administration significantly reduces the bronchial hyper-reactivity to muscular exercise in asthmatics. Such effect could be attributed to the correction of the pathological remodelling, one of the main features of asthma: a correction which could be attributed to the unique physicochemical properties of this major component of the loose connective amorphous matrix of the airways, which is undoubtedly involved in the remodelling process.
Collapse
Affiliation(s)
- G Petrigni
- Institute of Respiratory Disease of the University, IRCSS Policlinico Hospital, Milano, Italy
| | | |
Collapse
|
25
|
Cantor JO, Cerreta JM, Ochoa M, Ma S, Chow T, Grunig G, Turino GM. Aerosolized hyaluronan limits airspace enlargement in a mouse model of cigarette smoke-induced pulmonary emphysema. Exp Lung Res 2005; 31:417-30. [PMID: 16025922 DOI: 10.1080/01902140590918669] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study was designed to determine if aerosolized hyaluronan (HA) could prevent airspace enlargement and elastic fiber injury in a mouse model of cigarette smoke-induced pulmonary emphysema. Compared to untreated/smoked controls, HA-treated animals showed statistically significant reductions in mean linear intercept (54 versus 65 microm; P < .001) and elastic fiber breakdown products (desmosine and isodesmosine) in bronchoalveolar lavage fluid (0.3 versus 7.0 ng/mL; P < .05). As in previous studies, the aerosolized HA showed preferential binding to elastic fibers, suggesting that it may protect them from injury. These findings support further investigation of the potential use of HA as a treatment for pulmonary emphysema.
Collapse
Affiliation(s)
- Jerome O Cantor
- St. John's University School of Pharmacy and Allied Health Sciences, Jamaica, New York 11439, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Sandhaus RA. alpha1-Antitrypsin deficiency . 6: new and emerging treatments for alpha1-antitrypsin deficiency. Thorax 2004; 59:904-9. [PMID: 15454659 PMCID: PMC1746849 DOI: 10.1136/thx.2003.006551] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Alpha-1-antitrypsin (AAT) deficiency is a genetic condition that increases the risk of developing lung and liver disease, as well as other associated conditions. Most treatment of affected individuals is not specifically directed at AAT deficiency but focuses on the resultant disease state. The only currently available specific therapeutic agent-namely, intravenous augmentation with plasma derived AAT protein-is marketed in a limited number of countries. Treatments aimed at correcting the underlying genetic abnormality, supplementing or modifying the gene product, and halting or reversing organ injury are now beginning to emerge. These innovative approaches may prove effective at modifying or eliminating diseases association with AAT deficiency.
Collapse
Affiliation(s)
- R A Sandhaus
- Alpha-1 Program, National Jewish Medical and Research Center, Southside Building G106, 1400 Jackson Street, Denver, CO 80206, USA.
| |
Collapse
|
27
|
Cantor JO, Turino GM. Can Exogenously Administered Hyaluronan Improve Respiratory Function in Patients With Pulmonary Emphysema? Chest 2004; 125:288-92. [PMID: 14718453 DOI: 10.1378/chest.125.1.288] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
While most attempts at developing a treatment for pulmonary emphysema have focused on the use of elastase inhibitors to reduce elastic fiber damage and the loss of alveoli, this laboratory has developed a method of preventing such injury by the intratracheal administration of hyaluronan (HA). Animals treated with HA prior to the induction of experimental emphysema develop significantly less disease than untreated controls. The protective effect of HA may be related to its ability to bind to lung elastic fibers, thereby preventing their breakdown by elastases. Although clinical trials involving nebulized HA are not expected to yield a measurable treatment effect for at least several years, it is proposed that the special ability of this polysaccharide to retain water may increase the elasticity of lung elastic fibers, producing a relatively rapid improvement in pulmonary mechanics. Such an outcome might speed the development of this potential treatment for pulmonary emphysema.
Collapse
|
28
|
Affiliation(s)
- Gerard M Turino
- St. Luke's-Roosevelt Hospital, 1000 Tenth Avenue, New York, NY 10019, USA
| | | |
Collapse
|
29
|
Mahadeva R, Shapiro SD. Chronic obstructive pulmonary disease * 3: Experimental animal models of pulmonary emphysema. Thorax 2002; 57:908-14. [PMID: 12324680 PMCID: PMC1746206 DOI: 10.1136/thorax.57.10.908] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The use of genetically manipulated mice together with traditional animal studies are steadily increasing our knowledge of the factors important in determining alveolar formation and destruction in emphysema. A review of the animal models used to study emphysema is presented.
Collapse
Affiliation(s)
- R Mahadeva
- Respiratory Medicine Unit, Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, UK.
| | | |
Collapse
|
30
|
Cantor JO, Shteyngart B, Cerreta JM, Turino GM. The effect of lysozyme on elastase-mediated injury. Exp Biol Med (Maywood) 2002; 227:108-13. [PMID: 11815674 DOI: 10.1177/153537020222700205] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Previous studies by this laboratory demonstrated that lysozyme is increased in human pulmonary emphysema, and that it preferentially binds to elastic fibers, which undergo degradation in this disease. In the current investigation, the relationship between lysozyme and elastic fiber injury was further examined, both in vitro and in vivo. The effect of exogenously administered egg-white lysozyme on pancreatic elastase-induced injury was determined using a biosynthetically radiolabeled extracellular matrix preparation mainly composed of elastic fibers. Although matrix treated with lysozyme showed attachment of the protein to elastic fibers, there was no significant increase in elastolysis compared with untreated controls following exposure to either 1 microg/ml or 100 ng/ml of pancreatic elastase. However, lysozyme did impair the ability of hyaluronan (HA) to prevent elastase injury to elastic fibers. Matrix samples sequentially treated with lysozyme and HA, then incubated with 1 microg/ml or 100 ng/ml of pancreatic elastase, showed significantly increased elastolysis compared with those treated with HA alone. Since HA is closely associated with elastic fibers in vivo, the ability of lysozyme to enhance elastolysis was further tested in an animal model of emphysema induced by intratracheal administration of porcine pancreatic elastase. Animals exposed to aerosolized lysozyme prior to elastase administration showed significantly increased airspace enlargement. The mean linear intercept of the lysozyme-treated animals was 123 microm compared with 75 microm for controls receiving aerosolized water (P < 0.0001). These findings suggest that lysozyme may not be an innocuous component of the inflammatory response associated with pulmonary emphysema, but may actually play a role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Jerome O Cantor
- St. Luke's-Roosevelt Hospital Center, New York, New York, USA.
| | | | | | | |
Collapse
|
31
|
Cantor JO, Shteyngart B, Cerreta JM, Liu M, Armand G, Turino GM. The effect of hyaluronan on elastic fiber injury in vitro and elastase-induced airspace enlargement in vivo. PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE. SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE (NEW YORK, N.Y.) 2000; 225:65-71. [PMID: 10998200 DOI: 10.1046/j.1525-1373.2000.22508.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This laboratory has previously described a method of preventing air-space enlargement in experimental pulmonary emphysema using aerosolized hyaluronan (HA). Although it was found that HA preferentially binds to elastic fibers (which undergo breakdown by elastases in emphysema), it remains to be shown that such attachment actually prevents damage to the fibers. In the current study, cell-free radiolabeled extracellular matrices, derived from rat pleural mesothelial cells, were used to test the ability of low molecular weight ( approximately 100 kDa) streptococcal HA to prevent elastolysis. Coating the matrices with HA significantly decreased elastolysis (P<0.05) induced by porcine pancreatic elastase (43%), human neutrophil elastase (53%), and human macrophage metalloelastase (80%). Concomitant in vivo studies examined the ability of an aerosol preparation of the streptococcal HA to prevent experimental emphysema induced by intratracheal administration of porcine pancreatic elastase. As seen with earlier studies involving bovine tracheal HA, a single aerosol exposure significantly decreased elastase-induced airspace enlargement, as measured by the mean linear intercept (107.5 vs 89.6 microm; P < 0. 05). Furthermore, repeated exposure to the HA aerosol for 1 month did not reveal any morphological changes in the lung. The results provide further evidence that aerosolized HA may be an effective means of preventing pulmonary emphysema and perhaps other lung diseases that involve elastic fiber injury.
Collapse
Affiliation(s)
- J O Cantor
- St. Luke's-Roosevelt Institute for Health Sciences, New York, New York 10019, USA. JOCANTOR2pol.net
| | | | | | | | | | | |
Collapse
|
32
|
Cantor JO, Cerreta JM, Armand G, Osman M, Turino GM. The pulmonary matrix, glycosaminoglycans and pulmonary emphysema. Connect Tissue Res 2000; 40:97-104. [PMID: 10761634 DOI: 10.3109/03008209909029105] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This paper reviews recent evidence of the effect of intratracheal hyaluronan (HA) to limit the induction of experimental emphysema in hamsters. Experimental emphysema was induced by both neutrophil and pancreatic elastase instilled intratracheally. Emphysema was quantified anatomically by measurement of alveolar mean linear intercept. Hyaluronidase, instilled intratracheally, enhanced the induction of experimental emphysema. Air-space size measured one week after intratracheal instillation of elastase showed that administration of 1 mg HA immediately following elastase administration resulted in a marked reduction in air-space enlargement (82 microM vs 122 microM, p < 0.01). Similarly, animals given either 1 or 2 mg HA 2 h before elastase or 2mg HA 1 h after elastase showed a significant decrease in air-space enlargement compared to controls (96 microM, 88 microM vs 120 microM and 66 microM vs 104 microM, respectively; p < 0.05. Experimental emphysema induced by neutrophil elastase was also limited by the administration of 1 or 4 mg of HA, administered 2 h prior to elastase (57 and 59 microM, respectively vs 64 for controls, p < 0.05). Characterization of administered HA showed a mean molecular weight of 104,800 Da, less than 5% protein and a uronic acid/hexosamine ratio of 1, which is characteristic of HA. Studies using fluorescein-labeled hyaluronan (HA) showed fluorescence associated with interstitial, pleural and vascular elastic fibers. The mechanism of attachment of the administered HA to elastin remains unknown. Fluorescein labeling of elastin was visible for at least 4 h post-instillation. These studies indicate a protective effect of hyaluronan against elastase degradation of pulmonary elastin in vivo by both pancreatic and neutrophil elastases. The anatomical studies further suggest a mechanism of protective coating of hyaluronan which may limit access to pulmonary elastin from neutrophils and alveolar macrophages. Results also suggest that a reduction in pulmonary hyaluronan content increases the susceptibility of elastin to degradation by elastases. These studies provide evidence for an antielastase effect of hyaluronan which is not dependent upon enzyme inhibition but on anatomical protection of pulmonary elastin by other mechanisms.
Collapse
Affiliation(s)
- J O Cantor
- Department of Medicine, Columbia University College of Physicians and Surgeons, St. Luke's-Roosevelt Hospital Center and St. John's University School of Pharmacy New York, NY, USA
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Emphysema, lung disease and retinoic acid. Nat Med 1997. [DOI: 10.1038/nm0897-817b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Cantor JO, Cerreta JM, Armand G, Turino GM. Further investigation of the use of intratracheally administered hyaluronic acid to ameliorate elastase-induced emphysema. Exp Lung Res 1997; 23:229-44. [PMID: 9184790 DOI: 10.3109/01902149709087369] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previously, this laboratory has shown that intratracheally administered hyaluronic acid (HA) significantly reduces air-space enlargement in a hamster model of emphysema induced with pancreatic elastase. Whereas HA was given immediately following elastase in those initial studies, the current investigation determined the effect of instilling HA up to 2 h before or after intratracheal administration of elastase to hamsters. Both 1 and 2 mg HA, given 2 h before pancreatic elastase, significantly decreased (p < .05) air-space enlargement compared to controls (as measured by the mean linear intercept). Instillment of 2 mg HA, 1 h after pancreatic elastase, had a similar effect (p < .05). In contrast, 1 mg HA, given 1 or 2 h after pancreatic elastase, did not significantly affect the mean linear intercept. Against human neutrophil elastase, HA exhibited the same protective effect. While neutrophil elastase induced less air-space enlargement than pancreatic elastase, both 1 and 4 mg of HA, given 2 h prior to the enzyme, still produced a significant reduction (p < .05) in the mean linear intercept. HA exerted this effect despite the fact that it initiates a transient influx of neutrophils into the lung. Since HA does not slow the clearance of intratracheally instilled [14C] albumin from the lung, its mechanism of action may not involve physical interference with the movement of elastase through the lung, but may instead depend on interaction with elastic fibers. Evidence for an association between these two matrix constituents was provided by studies using fluorescein-labeled HA. Overall, these results further suggest that HA may be useful in preventing lung injury by elastases.
Collapse
Affiliation(s)
- J O Cantor
- Columbia University College of Physicians and Surgeons, New York, New York, USA
| | | | | | | |
Collapse
|