1
|
Ferrari B, Da Silva AC, Liu KH, Saidakova EV, Korolevskaya LB, Shmagel KV, Shive C, Pacheco Sanchez G, Retuerto M, Sharma AA, Ghneim K, Noel-Romas L, Rodriguez B, Ghannoum MA, Hunt PP, Deeks SG, Burgener AD, Jones DP, Dobre MA, Marconi VC, Sekaly RP, Younes SA. Gut-derived bacterial toxins impair memory CD4+ T cell mitochondrial function in HIV-1 infection. J Clin Invest 2022; 132:e149571. [PMID: 35316209 PMCID: PMC9057623 DOI: 10.1172/jci149571] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
People living with HIV (PLWH) who are immune nonresponders (INRs) are at greater risk of comorbidity and mortality than are immune responders (IRs) who restore their CD4+ T cell count after antiretroviral therapy (ART). INRs have low CD4+ T cell counts (<350 c/μL), heightened systemic inflammation, and increased CD4+ T cell cycling (Ki67+). Here, we report the findings that memory CD4+ T cells and plasma samples of INRs from several cohorts are enriched in gut-derived bacterial solutes p-cresol sulfate (PCS) and indoxyl sulfate (IS) that both negatively correlated with CD4+ T cell counts. In vitro PCS or IS blocked CD4+ T cell proliferation, induced apoptosis, and diminished the expression of mitochondrial proteins. Electron microscopy imaging revealed perturbations of mitochondrial networks similar to those found in INRs following incubation of healthy memory CD4+ T cells with PCS. Using bacterial 16S rDNA, INR stool samples were found enriched in proteolytic bacterial genera that metabolize tyrosine and phenylalanine to produce PCS. We propose that toxic solutes from the gut bacterial flora may impair CD4+ T cell recovery during ART and may contribute to CD4+ T cell lymphopenia characteristic of INRs.
Collapse
Affiliation(s)
- Brian Ferrari
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Center for AIDS Research, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Amanda Cabral Da Silva
- Department of Pathology, Pathology Advanced Translational Research (PATRU), School of Medicine and
| | - Ken H. Liu
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Evgeniya V. Saidakova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center Ural Branch Russian Academy of Sciences, Perm, Russia
- Department of Microbiology and Immunology, Perm State University, Perm, Russia
| | - Larisa B. Korolevskaya
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center Ural Branch Russian Academy of Sciences, Perm, Russia
| | - Konstantin V. Shmagel
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center Ural Branch Russian Academy of Sciences, Perm, Russia
| | - Carey Shive
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Center for AIDS Research, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Gabriela Pacheco Sanchez
- Department of Pathology, Pathology Advanced Translational Research (PATRU), School of Medicine and
| | - Mauricio Retuerto
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center Ural Branch Russian Academy of Sciences, Perm, Russia
| | | | - Khader Ghneim
- Department of Microbiology and Immunology, Perm State University, Perm, Russia
| | - Laura Noel-Romas
- Integrated Microbiome Core, Department of Dermatology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, USA
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
| | - Benigno Rodriguez
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Center for AIDS Research, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Mahmoud A. Ghannoum
- Integrated Microbiome Core, Department of Dermatology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Peter P. Hunt
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Adam D. Burgener
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Mirela A. Dobre
- Department of Medicine (Nephrology), Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Vincent C. Marconi
- Division of Infectious Diseases, Department of Global Health, and Department of Global Health, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Rafick-Pierre Sekaly
- Department of Pathology, Pathology Advanced Translational Research (PATRU), School of Medicine and
| | - Souheil-Antoine Younes
- Department of Pathology, Pathology Advanced Translational Research (PATRU), School of Medicine and
| |
Collapse
|
2
|
King WT, Axelrod CL, Zunica ER, Noland RC, Davuluri G, Fujioka H, Tandler B, Pergola K, Hermann GE, Rogers RC, López-Domènech S, Dantas WS, Stadler K, Hoppel CL, Kirwan JP. Dynamin-related protein 1 regulates substrate oxidation in skeletal muscle by stabilizing cellular and mitochondrial calcium dynamics. J Biol Chem 2021; 297:101196. [PMID: 34529976 PMCID: PMC8498465 DOI: 10.1016/j.jbc.2021.101196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/16/2023] Open
Abstract
Mitochondria undergo continuous cycles of fission and fusion to promote inheritance, regulate quality control, and mitigate organelle stress. More recently, this process of mitochondrial dynamics has been demonstrated to be highly sensitive to nutrient supply, ultimately conferring bioenergetic plasticity to the organelle. However, whether regulators of mitochondrial dynamics play a causative role in nutrient regulation remains unclear. In this study, we generated a cellular loss-of-function model for dynamin-related protein 1 (DRP1), the primary regulator of outer membrane mitochondrial fission. Loss of DRP1 (shDRP1) resulted in extensive ultrastructural and functional remodeling of mitochondria, characterized by pleomorphic enlargement, increased electron density of the matrix, and defective NADH and succinate oxidation. Despite increased mitochondrial size and volume, shDRP1 cells exhibited reduced cellular glucose uptake and mitochondrial fatty acid oxidation. Untargeted transcriptomic profiling revealed severe downregulation of genes required for cellular and mitochondrial calcium homeostasis, which was coupled to loss of ATP-stimulated calcium flux and impaired substrate oxidation stimulated by exogenous calcium. The insights obtained herein suggest that DRP1 regulates substrate oxidation by altering whole-cell and mitochondrial calcium dynamics. These findings are relevant to the targetability of mitochondrial fission and have clinical relevance in the identification of treatments for fission-related pathologies such as hereditary neuropathies, inborn errors in metabolism, cancer, and chronic diseases.
Collapse
Affiliation(s)
- William T. King
- Department of Translational Services, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA,Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Christopher L. Axelrod
- Department of Translational Services, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA,Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Elizabeth R.M. Zunica
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA,Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert C. Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Gangarao Davuluri
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Hisashi Fujioka
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Electron Microscope Facility, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Bernard Tandler
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio, USA
| | - Kathryn Pergola
- Department of Translational Services, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA,Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Gerlinda E. Hermann
- Department of Autonomic Neuroscience, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Richard C. Rogers
- Department of Autonomic Neuroscience, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Sandra López-Domènech
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA,University Hospital Dr. Peset, Fisabio, Valencia, Spain
| | - Wagner S. Dantas
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Krisztian Stadler
- Department of Oxidative Stress and Disease, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Charles L. Hoppel
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA,Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - John P. Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA,Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA,For correspondence: John P. Kirwan
| |
Collapse
|
3
|
Nemes-Baran AD, White DR, DeSilva TM. Fractalkine-Dependent Microglial Pruning of Viable Oligodendrocyte Progenitor Cells Regulates Myelination. Cell Rep 2021; 32:108047. [PMID: 32814050 PMCID: PMC7478853 DOI: 10.1016/j.celrep.2020.108047] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/22/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Oligodendrogenesis occurs during early postnatal development, coincident with neurogenesis and synaptogenesis, raising the possibility that microglia-dependent pruning mechanisms that modulate neurons regulate myelin sheath formation. Here we show a population of ameboid microglia migrating from the ventricular zone into the corpus callosum during early postnatal development, termed “the fountain of microglia,” phagocytosing viable oligodendrocyte progenitor cells (OPCs) before onset of myelination. Fractalkine receptor-deficient mice exhibit a reduction in microglial engulfment of viable OPCs, increased numbers of oligodendrocytes, and reduced myelin thickness but no change in axon number. These data provide evidence that microglia phagocytose OPCs as a homeostatic mechanism for proper myelination. A hallmark of hypomyelinating developmental disorders such as periventricular leukomalacia and of adult demyelinating diseases such as multiple sclerosis is increased numbers of oligodendrocytes but failure to myelinate, suggesting that microglial pruning of OPCs may be impaired in pathological states and hinder myelination. Nemes-Baran et al. show that ameboid microglia engulf living oligodendrocyte progenitor cells (OPCs) during brain development. Fractalkine receptor-deficient microglia exhibit a reduction in engulfment of OPCs, resulting in a surplus of oligodendrocytes and impaired myelination. These data provide evidence that microglia phagocytose OPCs as a homeostatic mechanism required for normal myelination.
Collapse
Affiliation(s)
- Ashley D Nemes-Baran
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Donovan R White
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Tara M DeSilva
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
4
|
Axelrod CL, King WT, Davuluri G, Noland RC, Hall J, Hull M, Dantas WS, Zunica ERM, Alexopoulos SJ, Hoehn KL, Langohr I, Stadler K, Doyle H, Schmidt E, Nieuwoudt S, Fitzgerald K, Pergola K, Fujioka H, Mey JT, Fealy C, Mulya A, Beyl R, Hoppel CL, Kirwan JP. BAM15-mediated mitochondrial uncoupling protects against obesity and improves glycemic control. EMBO Mol Med 2020; 12:e12088. [PMID: 32519812 PMCID: PMC7338798 DOI: 10.15252/emmm.202012088] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 11/09/2022] Open
Abstract
Obesity is a leading cause of preventable death worldwide. Despite this, current strategies for the treatment of obesity remain ineffective at achieving long-term weight control. This is due, in part, to difficulties in identifying tolerable and efficacious small molecules or biologics capable of regulating systemic nutrient homeostasis. Here, we demonstrate that BAM15, a mitochondrially targeted small molecule protonophore, stimulates energy expenditure and glucose and lipid metabolism to protect against diet-induced obesity. Exposure to BAM15 in vitro enhanced mitochondrial respiratory kinetics, improved insulin action, and stimulated nutrient uptake by sustained activation of AMPK. C57BL/6J mice treated with BAM15 were resistant to weight gain. Furthermore, BAM15-treated mice exhibited improved body composition and glycemic control independent of weight loss, effects attributable to drug targeting of lipid-rich tissues. We provide the first phenotypic characterization and demonstration of pre-clinical efficacy for BAM15 as a pharmacological approach for the treatment of obesity and related diseases.
Collapse
Affiliation(s)
- Christopher L Axelrod
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of Translational ServicesPennington Biomedical Research CenterBaton RougeLAUSA
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - William T King
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of Translational ServicesPennington Biomedical Research CenterBaton RougeLAUSA
| | - Gangarao Davuluri
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Sarcopenia and Malnutrition LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
| | - Robert C Noland
- Skeletal Muscle Metabolism LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
| | - Jacob Hall
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of Translational ServicesPennington Biomedical Research CenterBaton RougeLAUSA
| | - Michaela Hull
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Wagner S Dantas
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
| | - Elizabeth RM Zunica
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of NutritionCase Western Reserve UniversityClevelandOHUSA
| | - Stephanie J Alexopoulos
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Ingeborg Langohr
- Department of Pathobiological SciencesLouisiana State UniversityBaton RougeLAUSA
| | - Krisztian Stadler
- Oxidative Stress and Disease LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
| | - Haylee Doyle
- Oxidative Stress and Disease LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
| | - Eva Schmidt
- Oxidative Stress and Disease LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
| | - Stephan Nieuwoudt
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Kelly Fitzgerald
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Kathryn Pergola
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of Translational ServicesPennington Biomedical Research CenterBaton RougeLAUSA
| | - Hisashi Fujioka
- Cryo‐Electron Microscopy CoreCase Western Reserve UniversityClevelandOHUSA
| | - Jacob T Mey
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Ciaran Fealy
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Anny Mulya
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Robbie Beyl
- Department of BiostatisticsPennington Biomedical Research CenterBaton RougeLAUSA
| | - Charles L Hoppel
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of PharmacologyCase Western Reserve UniversityClevelandOHUSA
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine LaboratoryPennington Biomedical Research CenterBaton RougeLAUSA
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
- Department of NutritionCase Western Reserve UniversityClevelandOHUSA
| |
Collapse
|
5
|
Das LM, Binko AM, Traylor ZP, Peng H, Lu KQ. Vitamin D improves sunburns by increasing autophagy in M2 macrophages. Autophagy 2019; 15:813-826. [PMID: 30661440 PMCID: PMC6526871 DOI: 10.1080/15548627.2019.1569298] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cutaneous inflammation from UV radiation exposure causes epidermal damage, cellular infiltration, and secretion of pro-inflammatory mediators that exacerbate tissue destruction. Recovery is mediated chiefly by anti-inflammatory M2 macrophages that suppress inflammation and augment epidermal regeneration. Vitamin D enables anti-inflammation to promote tissue repair in response to injury. Since vitamin D enhances cellular macroautophagy/autophagy, we investigated the role of autophagy in vitamin D protection of UV-mediated sunburn and inflammation. Using a UV-mediated acute skin injury mouse model, we demonstrate that a single dose of vitamin D resolves injury with sustained inhibition of inflammatory cytokines associated with enhanced autophagy in myeloid anti-inflammatory M2 macs. Increased MAP1LC3B/LC3 expression corroborated with complete autolysosome formation detected by electron microscopy and correlated with degradation of SQSTM1/p62 in the skin following vitamin D treatment. Specifically, pharmacological inhibition of autophagy increased UV-induced apoptosis, suppressed M2 macs recruitment, and prevented vitamin D downregulation of Tnf and Mmp9 in the skin. Furthermore, selective deletion of autophagy in myeloid cells of atg7 cKO mice abrogated vitamin D-mediated protection and recapitulated UV-induced inflammation. Mechanistically, vitamin D signaling activated M2-autophagy regulators Klf4, Pparg, and Arg1. Lastly, analysis of UV-exposed human skin biopsies detected a similar increase in macrophage autophagy following vitamin D intervention, identifying an essential role for autophagy in vitamin D-mediated protection of skin from UV damage. Abbreviations: ARG1: arginase 1; ATG7 cKO: autophagy related 7 conditional knockout; HPF: high powered field; KLF4: Kruppel like factor 4; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; macs: macrophage; 3-MA: 3-methyladenine; MMP9: matrix metallopeptidase 9; NOS2: nitric oxide synthase 2, inducible; PPARG: peroxisome proliferator activated receptor gamma; SQSTM1/p62: sequestosome 1; TNF: tumor necrosis factor; UV: ultraviolet; VD: vitamin D, 25-hydroxy vitamin D3; 1,25-VD: 1, 25-dihydroxy vitamin D3
Collapse
Affiliation(s)
- Lopa M Das
- a Department of Dermatology , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Amy M Binko
- a Department of Dermatology , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Zachary P Traylor
- a Department of Dermatology , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Han Peng
- b Department of Dermatology , Northwestern University , Chicago , IL , USA
| | - Kurt Q Lu
- a Department of Dermatology , Case Western Reserve University School of Medicine , Cleveland , OH , USA.,b Department of Dermatology , Northwestern University , Chicago , IL , USA.,c Department of Dermatology , University Hospitals Cleveland Medical Center , Cleveland , OH , USA
| |
Collapse
|
6
|
Abstract
BACKGROUND Given the etiologic heterogeneity of disease classification using clinical phenomenology, we employed contemporary criteria to classify variants associated with myoclonic epilepsy with ragged-red fibers (MERRF) syndrome and to assess the strength of evidence of gene-disease associations. Standardized approaches are used to clarify the definition of MERRF, which is essential for patient diagnosis, patient classification, and clinical trial design. METHODS Systematic literature and database search with application of standardized assessment of gene-disease relationships using modified Smith criteria and of variants reported to be associated with MERRF using modified Yarham criteria. RESULTS Review of available evidence supports a gene-disease association for two MT-tRNAs and for POLG. Using modified Smith criteria, definitive evidence of a MERRF gene-disease association is identified for MT-TK. Strong gene-disease evidence is present for MT-TL1 and POLG. Functional assays that directly associate variants with oxidative phosphorylation impairment were critical to mtDNA variant classification. In silico analysis was of limited utility to the assessment of individual MT-tRNA variants. With the use of contemporary classification criteria, several mtDNA variants previously reported as pathogenic or possibly pathogenic are reclassified as neutral variants. CONCLUSIONS MERRF is primarily an MT-TK disease, with pathogenic variants in this gene accounting for ~90% of MERRF patients. Although MERRF is phenotypically and genotypically heterogeneous, myoclonic epilepsy is the clinical feature that distinguishes MERRF from other categories of mitochondrial disorders. Given its low frequency in mitochondrial disorders, myoclonic epilepsy is not explained simply by an impairment of cellular energetics. Although MERRF phenocopies can occur in other genes, additional data are needed to establish a MERRF disease-gene association. This approach to MERRF emphasizes standardized classification rather than clinical phenomenology, thus improving patient diagnosis and clinical trial design.
Collapse
|