1
|
Datta D, Priyanka Bandi S, Colaco V, Dhas N, Siva Reddy DV, Vora LK. Fostering the unleashing potential of nanocarriers-mediated delivery of ocular therapeutics. Int J Pharm 2024; 658:124192. [PMID: 38703931 DOI: 10.1016/j.ijpharm.2024.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Ocular delivery is the most challenging aspect in the field of pharmaceutical research. The major hurdle for the controlled delivery of drugs to the eye includes the physiological static barriers such as the complex layers of the cornea, sclera and retina which restrict the drug from permeating into the anterior and posterior segments of the eye. Recent years have witnessed inventions in the field of conventional and nanocarrier drug delivery which have shown considerable enhancement in delivering small to large molecules across the eye. The dynamic challenges associated with conventional systems include limited drug contact time and inadequate ocular bioavailability resulting from solution drainage, tear turnover, and dilution or lacrimation. To this end, various bioactive-based nanosized carriers including liposomes, ethosomes, niosomes, dendrimer, nanogel, nanofibers, contact lenses, nanoprobes, selenium nanobells, nanosponge, polymeric micelles, silver nanoparticles, and gold nanoparticles among others have been developed to circumvent the limitations associated with the conventional dosage forms. These nanocarriers have been shown to achieve enhanced drug permeation or retention and prolong drug release in the ocular tissue due to their better tissue adherence. The surface charge and the size of nanocarriers (10-1000 nm) are the important key factors to overcome ocular barriers. Various nanocarriers have been shown to deliver active therapeutic molecules including timolol maleate, ampicillin, natamycin, voriconazole, cyclosporine A, dexamethasone, moxifloxacin, and fluconazole among others for the treatment of anterior and posterior eye diseases. Taken together, in a nutshell, this extensive review provides a comprehensive perspective on the numerous facets of ocular drug delivery with a special focus on bioactive nanocarrier-based approaches, including the difficulties and constraints involved in the fabrication of nanocarriers. This also provides the detailed invention, applications, biodistribution and safety-toxicity of nanocarriers-based therapeutcis for the ophthalmic delivery.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Viola Colaco
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - D V Siva Reddy
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio TX78227, USA
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
2
|
Wang C, Pang Y. Nano-based eye drop: Topical and noninvasive therapy for ocular diseases. Adv Drug Deliv Rev 2023; 194:114721. [PMID: 36773886 DOI: 10.1016/j.addr.2023.114721] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
Eye drops are the most accessible therapy for ocular diseases, while inevitably suffering from their lower bioavailability which highly restricts the treatment efficacy. The introduction of nanotechnology has attracted considerable interest as it has advantages over conventional ones such as prolonged ocular surface retention time and enhanced ocular barrier penetrating properties, and achieving higher bioavailability and improved treatment efficacy. This review describes various ocular diseases treated with eye drops as well as the physiological and anatomical ocular barriers faced with through drug administration. It also summarizes the recent advances regarding the utilization of nanotechnology in developing eye drops, and how to optimize the nanocarrier-based ocular drug delivery systems. The prospective future research directions for nano-based eye drops are also discussed here.
Collapse
Affiliation(s)
- Chuhan Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yan Pang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
3
|
Ahmed S, Amin MM, Sayed S. Ocular Drug Delivery: a Comprehensive Review. AAPS PharmSciTech 2023; 24:66. [PMID: 36788150 DOI: 10.1208/s12249-023-02516-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/14/2023] [Indexed: 02/16/2023] Open
Abstract
The human eye is a sophisticated organ with distinctive anatomy and physiology that hinders the passage of drugs into targeted ophthalmic sites. Effective topical administration is an interest of scientists for many decades. Their difficult mission is to prolong drug residence time and guarantee an appropriate ocular permeation. Several ocular obstacles oppose effective drug delivery such as precorneal, corneal, and blood-corneal barriers. Routes for ocular delivery include topical, intravitreal, intraocular, juxtascleral, subconjunctival, intracameral, and retrobulbar. More than 95% of marketed products exists in liquid state. However, other products could be in semi-solid (ointments and gels), solid state (powder, insert and lens), or mixed (in situ gel). Nowadays, attractiveness to nanotechnology-based carries is resulted from their capabilities to entrap both hydrophilic and lipophilic drugs, enhance ocular permeability, sustain residence time, improve drug stability, and augment bioavailability. Different in vitro, ex vivo, and in vivo characterization approaches help to predict the outcomes of the constructed nanocarriers. This review aims to clarify anatomy of the eye, various ocular diseases, and obstacles to ocular delivery. Moreover, it studies the advantages and drawbacks of different ocular routes of administration and dosage forms. This review also discusses different nanostructured platforms and their characterization approaches. Strategies to enhance ocular bioavailability are also explained. Finally, recent advances in ocular delivery are described.
Collapse
Affiliation(s)
- Sadek Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Maha M Amin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| | - Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| |
Collapse
|
4
|
Vaneev A, Tikhomirova V, Chesnokova N, Popova E, Beznos O, Kost O, Klyachko N. Nanotechnology for Topical Drug Delivery to the Anterior Segment of the Eye. Int J Mol Sci 2021; 22:12368. [PMID: 34830247 PMCID: PMC8621153 DOI: 10.3390/ijms222212368] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
Topical drug delivery is one of the most challenging aspects of eye therapy. Eye drops are the most prevalent drug form, especially for widely distributed anterior segment eye diseases (cataracts, glaucoma, dry eye syndrome, inflammatory diseases, etc.), because they are convenient and easy to apply by patients. However, conventional drug formulations are usually characterized by short retention time in the tear film, insufficient contact with epithelium, fast elimination, and difficulties in overcoming ocular tissue barriers. Not more than 5% of the total drug dose administered in eye drops reaches the interior ocular tissues. To overcome the ocular drug delivery barriers and improve drug bioavailability, various conventional and novel drug delivery systems have been developed. Among these, nanosize carriers are the most attractive. The review is focused on the different drug carriers, such as synthetic and natural polymers, as well as inorganic carriers, with special attention to nanoparticles and nanomicelles. Studies in vitro and in vivo have demonstrated that new formulations could help to improve the bioavailability of the drugs, provide sustained drug release, enhance and prolong their therapeutic action. Promising results were obtained with drug-loaded nanoparticles included in in situ gel.
Collapse
Affiliation(s)
- Alexander Vaneev
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119991 Moscow, Russia
| | - Victoria Tikhomirova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
| | - Natalia Chesnokova
- Department of Pathophysiology and Biochemistry, Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia; (N.C.); (O.B.)
| | - Ekaterina Popova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
| | - Olga Beznos
- Department of Pathophysiology and Biochemistry, Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia; (N.C.); (O.B.)
| | - Olga Kost
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
| | - Natalia Klyachko
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Research Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia
| |
Collapse
|
5
|
Ponnusamy C, Sugumaran A, Krishnaswami V, Palanichamy R, Velayutham R, Natesan S. Development and Evaluation of Polyvinylpyrrolidone K90 and Poloxamer 407 Self-Assembled Nanomicelles: Enhanced Topical Ocular Delivery of Artemisinin. Polymers (Basel) 2021; 13:3038. [PMID: 34577939 PMCID: PMC8470191 DOI: 10.3390/polym13183038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
Age-related macular degeneration is a multifactorial disease affecting the posterior segment of the eye and is characterized by aberrant nascent blood vessels that leak blood and fluid. It ends with vision loss. In the present study, artemisinin which is poorly water-soluble and has potent anti-angiogenic and anti-inflammatory properties was formulated into nanomicelles and characterized for its ocular application and anti-angiogenic activity using a CAM assay. Artemisinin-loaded nanomicelles were prepared by varying the concentrations of PVP k90 and poloxamer 407 at different ratios and showed spherical shape particles in the size range of 41-51 nm. The transparency and cloud point of the developed artemisinin-loaded nanomicelles was found to be 99-94% and 68-70 °C, respectively. The in vitro release of artemisinin from the nanomicelles was found to be 96.0-99.0% within 8 h. The trans-corneal permeation studies exhibited a 1.717-2.169 µg permeation of the artemisinin from nanomicelles through the excised rabbit eye cornea for 2 h. Drug-free nanomicelles did not exhibit noticeable DNA damage and showed an acceptable level of hemolytic potential. Artemisinin-loaded nanomicelles exhibited remarkable anti-angiogenic activity compared to artemisinin suspension. Hence, the formulated artemisinin-loaded nanomicelles might have the potential for the treatment of AMD.
Collapse
Affiliation(s)
- Chandrasekar Ponnusamy
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli 620024, Tamil Nadu, India; (C.P.); (V.K.)
| | - Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India;
| | - Venkateshwaran Krishnaswami
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli 620024, Tamil Nadu, India; (C.P.); (V.K.)
| | - Rajaguru Palanichamy
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur 627007, Tamil Nadu, India;
| | - Ravichandiran Velayutham
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India;
| | - Subramanian Natesan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India;
| |
Collapse
|
6
|
Silva B, São Braz B, Delgado E, Gonçalves L. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery. Int J Pharm 2021; 606:120873. [PMID: 34246741 DOI: 10.1016/j.ijpharm.2021.120873] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
Over the last years, the scientific interest about topical ocular delivery targeting the posterior segment of the eye has been increasing. This is probably due to the fact that this is a non-invasive administration route, well tolerated by patients and with fewer local and systemic side effects. However, it is a challenging task due to the external ocular barriers, tear film clearance, blood flow in the conjunctiva and choriocapillaris and due to the blood-retinal barriers, amongst other features. An enhanced intraocular bioavailability of drugs can be achieved by either improving corneal permeability or by improving precorneal retention time. Regarding this last option, increasing residence time in the precorneal area can be achieved using mucoadhesive polymers such as xyloglucan, poly(acrylate), hyaluronic acid, chitosan, and carbomers. On the other hand, colloidal particles can interact with the ocular mucosa and enhance corneal and conjunctival permeability. These nanosystems are able to deliver a wide range of drugs, including macromolecules, providing stability and improving ocular bioavailability. New pharmaceutical approaches based on nanotechnology associated to bioadhesive compounds have emerged as strategies for a more efficient treatment of ocular diseases. Bearing this in mind, this review provides an overview of the current mucoadhesive colloidal nanosystems developed for ocular topical administration, focusing on their advantages and limitations.
Collapse
Affiliation(s)
- Beatriz Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Berta São Braz
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Esmeralda Delgado
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
7
|
Jain SK, Jain AK, Rajpoot K. Expedition of Eudragit® Polymers in the Development of Novel Drug Delivery Systems. Curr Drug Deliv 2020; 17:448-469. [PMID: 32394836 DOI: 10.2174/1567201817666200512093639] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/10/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Eudragit® polymer has been widely used in film-coating for enhancing the quality of products over other materials (e.g., shellac or sugar). Eudragit® polymers are obtained synthetically from the esters of acrylic and methacrylic acid. For the last few years, they have shown immense potential in the formulations of conventional, pH-triggered, and novel drug delivery systems for incorporating a vast range of therapeutics including proteins, vitamins, hormones, vaccines, and genes. Different grades of Eudragit® have been used for designing and delivery of therapeutics at a specific site via the oral route, for instance, in stomach-specific delivery, intestinal delivery, colon-specific delivery, mucosal delivery. Further, these polymers have also shown their great aptitude in topical and ophthalmic delivery. Moreover, available literature evidences the promises of distinct Eudragit® polymers for efficient targeting of incorporated drugs to the site of interest. This review summarizes some potential researches that are being conducted by eminent scientists utilizing the distinct grades of Eudragit® polymers for efficient delivery of therapeutics at various sites of interest.
Collapse
Affiliation(s)
- Sunil Kumar Jain
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| | - Akhlesh K Jain
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| | - Kuldeep Rajpoot
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| |
Collapse
|
8
|
Jumelle C, Gholizadeh S, Annabi N, Dana R. Advances and limitations of drug delivery systems formulated as eye drops. J Control Release 2020; 321:1-22. [PMID: 32027938 DOI: 10.1016/j.jconrel.2020.01.057] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
Topical instillation of eye drops remains the most common and easiest route of ocular drug administration, representing the treatment of choice for many ocular diseases. Nevertheless, low ocular bioavailability of topically applied drug molecules can considerably limit their efficacy. Over the last several decades, numerous drug delivery systems (DDS) have been developed in order to improve drug bioavailability on the ocular surfaces. This review systematically covers the most recent advances of DDS applicable by topical instillation, that have shown better performance in in vivo models compared to standard eye drop formulations. These delivery systems are based on in situ forming gels, nanoparticles and combinations of both. Most of the DDS have been developed using natural or synthetic polymers. Polymers offer many advantageous properties for designing advanced DDS including biocompatibility, gelation properties and/or mucoadhesiveness. However, despite the high number of studies published over the last decade, there are several limitations for clinical translation of DDS. This review article focuses on the recent advances for the development of ocular drug delivery systems. In addtion, the potential challenges for commercialization of new DDS are presented.
Collapse
Affiliation(s)
- Clotilde Jumelle
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shima Gholizadeh
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, USA
| | - Nasim Annabi
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA, USA.
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Tak D, Rimpy, Kumar T, Ahuja M. Optimization of the Interaction between Diclofenac and Ibuprofen with Benzalkonium Chloride to Prepare Ocular Nanosuspension. ACTA ACUST UNITED AC 2019; 13:301-309. [PMID: 31849291 DOI: 10.2174/1872211314666191218105826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs are most commonly used in the management of ocular inflammations. These drugs have poorly aqueous solubility and weakly acidic nature. They interact with cationic quaternary ammonium compound benzalkonium chloride, used as a preservative in ophthalmic formulations, to form insoluble complexes. To overcome this incompatibility solubilizers like polysorbate 80, lysine salts, tocopheryl polyethylene glycol succinate etc. are used which are quite irritating and affect the corneal integrity. OBJECTIVE The objective of the present study is to formulate nonirritating, compatible, microbiologically stable ophthalmic formulation with good corneal permeation characteristics. The interaction between diclofenac sodium or ibuprofen with benzalkonium chloride was optimized using a central composite experimental design to prepare nanosuspensions by nanoprecipitation. METHODS The optimized batches of nanosuspensions were evaluated for ex vivo corneal permeation study, preservative challenge test and physical stability. The optimal concentrations of benzalkonium chloride for diclofenac sodium (0.1%, w/v) and ibuprofen (0.1% w/v) nanosuspensions were determined to be 0.002%(w/v), which had a respective average particle size of 440 nm and 331 nm, respectively. The nanosuspensions of diclofenac sodium and ibuprofen provided 1.6 and 2.1- fold higher ex vivo corneal permeation than their respective conventional aqueous solution dosage forms. Further, the concentration of benzalkonium chloride used in the formulations showed adequate preservative efficacy. RESULTS The optimized nanosuspension formulations of diclofenac and ibuprofen were found to be physically stable and microbiologically safe with greater corneal penetration than the conventional solution dosage forms.
Collapse
Affiliation(s)
- Deepika Tak
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Rimpy
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Tarun Kumar
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Munish Ahuja
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| |
Collapse
|
10
|
Sunoqrot S, Abujamous L. pH-sensitive polymeric nanoparticles of quercetin as a potential colon cancer-targeted nanomedicine. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Qindeel M, Ahmed N, Sabir F, Khan S, Ur-Rehman A. Development of novel pH-sensitive nanoparticles loaded hydrogel for transdermal drug delivery. Drug Dev Ind Pharm 2019; 45:629-641. [PMID: 30633578 DOI: 10.1080/03639045.2019.1569031] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Difference of pH that exists between the skin surface and blood circulation can be exploited for transdermal delivery of drug molecules by loading drug into pH-sensitive polymer. Eudragit S100 (ES100), a pH-sensitive polymer having dissolution profile above pH 7.4, is used in oral, ocular, vaginal and topical delivery of drug molecules. However, pH-sensitive potential of this polymer has not been explored for transdermal delivery. The aim of this research work was to exploit the pH-sensitive potential of ES100 as a nanocarrier for transdermal delivery of model drug, that is, Piroxicam. METHODS Simple nanoprecipitation technique was employed to prepare the nanoparticles and response surface quadratic model was applied to get an optimized formulation. The prepared nanoparticles were characterized and loaded into Carbopol 934 based hydrogel. In vitro release, ex vivo permeation and accelerated stability studies were carried out on the prepared formulation. RESULTS Particles with an average size of 25-40 nm were obtained with an encapsulation efficiency of 88%. Release studies revealed that nanoparticles remained stable at acidic pH while sustained release with no initial burst effect was observed at pH 7.4 from the hydrogel. Permeation of these nanocarriers from hydrogel matrix showed significant permeation of Piroxicam through mice skin. CONCLUSION It can be concluded that ES100 based pH-sensitive nanoparticles have potential to be delivered through transdermal route.
Collapse
Affiliation(s)
- Maimoona Qindeel
- a Department of Pharmacy , Quaid.i.Azam University , Islamabad , Pakistan
| | - Naveed Ahmed
- a Department of Pharmacy , Quaid.i.Azam University , Islamabad , Pakistan
| | - Fakhara Sabir
- a Department of Pharmacy , Quaid.i.Azam University , Islamabad , Pakistan
| | - Samiullah Khan
- b Department of Microbiology , Quaid.i.Azam University , Islamabad , Pakistan
| | - Asim Ur-Rehman
- a Department of Pharmacy , Quaid.i.Azam University , Islamabad , Pakistan
| |
Collapse
|
12
|
Cuppini M, Zatta KC, Mestieri LB, Grecca FS, Leitune VCB, Guterres SS, Collares FM. Antimicrobial and anti-inflammatory drug-delivery systems at endodontic reparative material: Synthesis and characterization. Dent Mater 2019; 35:457-467. [PMID: 30642636 DOI: 10.1016/j.dental.2019.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/05/2018] [Accepted: 01/03/2019] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The aim of this study was to synthesize and characterize an experimental endodontic paste. METHODS An experimental endodontic paste (EX) was characterized by its particle size, zeta potential, drug content and morphology. The powder of EX is composed of amoxicillin microspheres, calcium tungstate and α-tricalcium phosphate, mixed with an indomethacin nanocapsules suspension. Ultracal® (Ultradent), an iodoform-based paste (GP) and the EX were evaluated by its physical properties (flow, film thickness and radiopacity). The cytocompatibility was performed by MTT and SRB-colorimetric assays; the cell-migration was tested with scratch assay and cell-ability to remineralization with ALP and Alizarin Red S, with fibroblastic cell line. The antibacterial activity was assessed by the formation of inhibition zones and against planktonic bacteria. RESULTS The EX and UL flow achieved ISO6876 standard, and GP was lower than 17mm. All pastes achieved the film thickness required. Radiopacity was equivalent to 1.81±0.25mmAl for EX, which did not differ from GP group 1.39±0.33mmAl (p>0.05). The UL presented 3.04±0.33mmAl. The values for SRB showed better citocompatibility in comparison with MTT for all materials. The ALP activity and formation of mineralized nodules demonstrated the remineralization potential for UL and EX. Cell migration showed continuous wound closure until complete cell healing, however, the EX accelerated the process (p<0.05). The EX showed the greatest inhibition zone (p<0.05) and was the only group with antibacterial activity against planktonic bacteria. SIGNIFICANCE The synthesized endodontic paste demonstrated reliable physical and biological properties and could be a promising material for periapical tissue repair.
Collapse
Affiliation(s)
- Marla Cuppini
- Department of Conservative Dentistry, Dental Materials Laboratory, School of Dentistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2492, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Kelly Cristine Zatta
- Cosmetology Laboratory, School of Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - Letícia Boldrin Mestieri
- Department of Conservative Dentistry, Endodontics, School of Dentistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2492, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Fabiana Soares Grecca
- Department of Conservative Dentistry, Endodontics, School of Dentistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2492, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Vicente Castelo Branco Leitune
- Department of Conservative Dentistry, Dental Materials Laboratory, School of Dentistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2492, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Sílvia Stanisçuaski Guterres
- Cosmetology Laboratory, School of Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - Fabrício Mezzomo Collares
- Department of Conservative Dentistry, Dental Materials Laboratory, School of Dentistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2492, Porto Alegre, Rio Grande do Sul 90035-003, Brazil.
| |
Collapse
|
13
|
Qamar Z, Qizilbash FF, Iqubal MK, Ali A, Narang JK, Ali J, Baboota S. Nano-Based Drug Delivery System: Recent Strategies for the Treatment of Ocular Disease and Future Perspective. RECENT PATENTS ON DRUG DELIVERY & FORMULATION 2019; 13:246-254. [PMID: 31884933 PMCID: PMC7499345 DOI: 10.2174/1872211314666191224115211] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 01/09/2023]
Abstract
The structure of the eye is very complex in nature which makes it a challenging task for pharmaceutical researchers to deliver the drug at the desired sites via different routes of administration. The development of the nano-based system helped in delivering the drug in the desired concentration. Improvement in penetration property, bioavailability, and residence time has all been achieved by encapsulating drugs into liposomes, dendrimers, solid lipid nanoparticle, nanostructured lipid carrier, nanoemulsion, and nanosuspension. This review puts emphasis on the need for nanomedicine for ocular drug delivery and recent developments in the field of nanomedicine along with recent patents published in the past few years.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sanjula Baboota
- Address correspondence to this author at the Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi -110062, India; Tel: +919818529286; E-mail:
| |
Collapse
|
14
|
Polymer-based carriers for ophthalmic drug delivery. J Control Release 2018; 285:106-141. [DOI: 10.1016/j.jconrel.2018.06.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
|
15
|
Katara R, Sachdeva S, Majumdar DK. Design, characterization, and evaluation of aceclofenac-loaded Eudragit RS 100 nanoparticulate system for ocular delivery. Pharm Dev Technol 2018; 24:368-379. [DOI: 10.1080/10837450.2018.1486424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rajesh Katara
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, (Formerly College of Pharmacy), University of Delhi, New Delhi, India
| | - Sameer Sachdeva
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, (Formerly College of Pharmacy), University of Delhi, New Delhi, India
| | - Dipak K. Majumdar
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, (Formerly College of Pharmacy), University of Delhi, New Delhi, India
| |
Collapse
|
16
|
Zhu Q, Liu C, Sun Z, Zhang X, Liang N, Mao S. Inner layer-embedded contact lenses for pH-triggered controlled ocular drug delivery. Eur J Pharm Biopharm 2018; 128:220-229. [PMID: 29730260 DOI: 10.1016/j.ejpb.2018.04.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/28/2018] [Accepted: 04/16/2018] [Indexed: 01/18/2023]
Abstract
Contact lenses (CLs) are ideally suited for controlled ocular drug delivery, but are limited by short release duration, poor storage stability and low drug loading. In this study, we present a novel inner layer-embedded contact lens capable of pH-triggered extended ocular drug delivery with good storage stability. Blend film of ethyl cellulose and Eudragit S100 was used as the inner layer, while pHEMA hydrogel was used as outer layer to fabricate inner layer-embedded contact lens. Using diclofenac sodium(DS) as a drug model, influence of polymer ratio in the blend film, EC viscosity, drug/polymer ratio, inner layer thickness and outlayer thickness of pHEMA hydrogel on drug release behavior was studied and optimized for daily use. The pH-triggered drug eluting pattern enables the inner layer-embedded contact lens being stored in phosphate buffer solution pH 6.8 with ignorable drug loss and negligible changes in drug release pattern. In vivo pharmacokinetic study in rabbits showed sustained drug release for over 24 h in tear fluid, indicating significant improvement in drug corneal residence time. A level A IVIVC was established between in vitro drug release and in vivo drug concentration in tear fluid. In conclusion, this inner layer embedded contact lens design could be used as a platform for extended ocular drug delivery with translational potential for both anterior and posterior ocular diseases therapy.
Collapse
Affiliation(s)
- Qiang Zhu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chang Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zheng Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaofei Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ning Liang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
17
|
Duxfield L, Sultana R, Wang R, Englebretsen V, Deo S, Swift S, Rupenthal I, Al-Kassas R. Development of gatifloxacin-loaded cationic polymeric nanoparticles for ocular drug delivery. Pharm Dev Technol 2015; 21:172-9. [PMID: 26794936 DOI: 10.3109/10837450.2015.1091839] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present investigation aimed at improving the ocular bioavailability of gatifloxacin by prolonging its residence time in the eye and reducing problems associated with the drug re-crystallization after application through incorporation into cationic polymeric nanoparticles. Gatifloxacin-loaded nanoparticles were prepared via the nanoprecipitation and double emulsion techniques. A 50:50 Eudragit® RL and RS mixture was used as cationic polymer with other formulation parameters varied. Prepared nanoparticles were evaluated for size, zeta potential, and drug loading. An optimized formulation was selected and further characterized for in vitro drug release, cytotoxicity, and antimicrobial activity. The double emulsion method produced larger nanoparticles than the nanoprecipitation method (410 nm and 68 nm, respectively). Surfactant choice also affected particle size and zeta potential with Tween 80 producing smaller-sized particles with higher zeta potential than PVA. However, the zeta potential was positive at all experimental conditions investigated. The optimal formulation produced by double emulsion technique and has achieved 46% drug loading. This formulation had optimal physicochemical properties with acceptable cytotoxicity results, and very prolonged release rate. The particles antimicrobial activities of the selected formulation have been tested against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus and showed prolonged antimicrobial effect for gatifloxacin.
Collapse
Affiliation(s)
- Linda Duxfield
- a Faculty of Medical and Health Sciences , School of Pharmacy, The University of Auckland , Auckland , New Zealand
| | - Rubab Sultana
- a Faculty of Medical and Health Sciences , School of Pharmacy, The University of Auckland , Auckland , New Zealand
| | - Ruokai Wang
- a Faculty of Medical and Health Sciences , School of Pharmacy, The University of Auckland , Auckland , New Zealand
| | - Vanessa Englebretsen
- a Faculty of Medical and Health Sciences , School of Pharmacy, The University of Auckland , Auckland , New Zealand
| | - Samantha Deo
- a Faculty of Medical and Health Sciences , School of Pharmacy, The University of Auckland , Auckland , New Zealand
| | - Simon Swift
- c Department of Molecular Medicine and Pathology , Faculty of Medical and Health Sciences, University of Auckland , Auckland , New Zealand
| | - Ilva Rupenthal
- b Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland , Auckland , New Zealand , and
| | - Raida Al-Kassas
- a Faculty of Medical and Health Sciences , School of Pharmacy, The University of Auckland , Auckland , New Zealand
| |
Collapse
|
18
|
Leone F, Cavalli R. Drug nanosuspensions: a ZIP tool between traditional and innovative pharmaceutical formulations. Expert Opin Drug Deliv 2015; 12:1607-25. [PMID: 25960000 DOI: 10.1517/17425247.2015.1043886] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION A nanosuspension or nanocrystal suspension is a versatile formulation combining conventional and innovative features. It comprises 100% pure drug nanoparticles with sizes in the nano-scale range, generally stabilized by surfactants or polymers. Nanosuspensions are usually obtained in liquid media with bottom-up and top-down methods or by their combination. They have been designed to enhance the solubility, the dissolution rate and the bioavailability of drugs via various administration routes. Due to their small sizes, nanosuspensions can be also considered a drug delivery nanotechnology for the preparation of nanomedicine products. AREAS COVERED This review focuses on the state of the art of the nanocrystal-based formulation. It describes theory characteristics, design parameters, preparation methods, stability issues, as well as specific in vivo applications. Innovative strategies proposed to obtain nanomedicine formulation using nanocrystals are also reported. EXPERT OPINION Many drug nanodelivery systems have been developed to increase the bioavailability of drugs and to decrease adverse side effects, but few can be industrially manufactured. Nanocrystals can close this gap by combining traditional and innovative drug formulations. Indeed, they can be used in many pharmaceutical dosage forms as such, or developed as new nano-scaled products. Engineered surface nanocrystals have recently been proposed as a dual strategy for stability enhancement and targeting delivery of nanocrystals.
Collapse
Affiliation(s)
- Federica Leone
- a 1 University of Torino, Department of Drug Science and Technology , Via Pietro Giuria 9, 10125, Torino, Italy.,b 2 Department of Applied Science and Technology, Politecnico di Torino , Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Roberta Cavalli
- c 3 University of Torino, Department of Drug Science and Technology , Via Pietro Giuria 9, 10125, Torino, Italy +011 6707686 ;
| |
Collapse
|
19
|
Reimondez-Troitiño S, Csaba N, Alonso MJ, de la Fuente M. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm 2015; 95:279-93. [PMID: 25725262 DOI: 10.1016/j.ejpb.2015.02.019] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/09/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
The topical route is the most frequent and preferred way to deliver drugs to the eye. Unfortunately, the very low ocular drug bioavailability (less than 5%) associated with this modality of administration, makes the efficient treatment of several ocular diseases a significant challenge. In the last decades, it has been shown that specific nanocarriers can interact with the ocular mucosa, thereby increasing the retention time of the associated drug onto the eye, as well as its permeability across the corneal and conjunctival epithelium. In this review, we comparatively analyze the mechanism of action and specific potential of the most studied nano-drug delivery carriers. In addition, we present the success achieved until now using a number of nanotherapies for the treatment of the most prevalent ocular pathologies, such as infections, inflammation, dry eye, glaucoma, and retinopathies.
Collapse
Affiliation(s)
- S Reimondez-Troitiño
- Nano-oncologicals Lab, Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain; Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, Santiago de Compostela, Spain
| | - N Csaba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, Santiago de Compostela, Spain
| | - M J Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, Santiago de Compostela, Spain
| | - M de la Fuente
- Nano-oncologicals Lab, Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain.
| |
Collapse
|
20
|
Minkal, Ahuja M, Bhatt DC. Carboxymethyl gum katira: synthesis, characterization and evaluation for nanoparticulate drug delivery. RSC Adv 2015. [DOI: 10.1039/c5ra11702j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study a carboxymethyl derivative of gum katira was synthesized and explored for drug delivery applications.
Collapse
Affiliation(s)
- Minkal
- Drug Delivery Research Laboratory
- Department of Pharmaceutical Sciences
- Guru Jambheshwar University of Science and Technology
- Hisar-125 001
- India
| | - Munish Ahuja
- Drug Delivery Research Laboratory
- Department of Pharmaceutical Sciences
- Guru Jambheshwar University of Science and Technology
- Hisar-125 001
- India
| | - D. C. Bhatt
- Drug Delivery Research Laboratory
- Department of Pharmaceutical Sciences
- Guru Jambheshwar University of Science and Technology
- Hisar-125 001
- India
| |
Collapse
|
21
|
Cooper DL, Harirforoosh S. Design and optimization of PLGA-based diclofenac loaded nanoparticles. PLoS One 2014; 9:e87326. [PMID: 24489896 PMCID: PMC3905017 DOI: 10.1371/journal.pone.0087326] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/20/2013] [Indexed: 11/18/2022] Open
Abstract
Drug based nanoparticle (NP) formulations have gained considerable attention over the past decade for their use in various drug formulations. NPs have been shown to increase bioavailability, decrease side effects of highly toxic drugs, and prolong drug release. Nonsteroidal anti-inflammatory drugs such as diclofenac block cyclooxygenase expression and reduce prostaglandin synthesis, which can lead to several side effects such as gastrointestinal bleeding and renal insufficiency. The aim of this study was to formulate and characterize diclofenac entrapped poly(lactide-co-glycolide) (PLGA) based nanoparticles. Nanoparticles were formulated using an emulsion-diffusion-evaporation technique with varying concentrations of poly vinyl alcohol (PVA) (0.1, 0.25, 0.5, or 1%) or didodecyldimethylammonium bromide (DMAB) (0.1, 0.25, 0.5, 0.75, or 1%) stabilizers centrifuged at 8,800 rpm or 12,000 rpm. The resultant nanoparticles were evaluated based on particle size, zeta potential, and entrapment efficacy. DMAB formulated NPs showed the lowest particle size (108±2.1 nm) and highest zeta potential (−27.71±0.6 mV) at 0.1 and 0.25% respectively, after centrifugation at 12,000 rpm. Results of the PVA based NP formulation showed the smallest particle size (92.4±7.6 nm) and highest zeta potential (−11.14±0.5 mV) at 0.25% and 1% w/v, respectively, after centrifugation at 12,000 rpm. Drug entrapment reached 77.3±3.5% and 80.2±1.2% efficiency with DMAB and PVA formulations, respectively. The results of our study indicate the use of DMAB for increased nanoparticle stability during formulation. Our study supports the effective utilization of PLGA based nanoparticle formulation for diclofenac.
Collapse
Affiliation(s)
- Dustin L. Cooper
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Sam Harirforoosh
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
22
|
Stability of nanosuspensions in drug delivery. J Control Release 2013; 172:1126-41. [PMID: 23954372 DOI: 10.1016/j.jconrel.2013.08.006] [Citation(s) in RCA: 295] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/31/2013] [Accepted: 08/06/2013] [Indexed: 01/28/2023]
Abstract
Nanosuspensions are nanosized colloidal dispersion systems that are stabilized by surfactants and/or polymers. Because nanosizing results in the creation of new interfaces and in a positive Gibbs free energy change, nanosuspensions are thermodynamically unstable systems with a tendency toward agglomeration or crystal growth. Despite extensive research on nanosuspension technology, stability remains a limitation for pharmaceutical or industrial applications of nanosuspensions. Furthermore, the empirical relationship between stabilizer efficacy and nanosuspension stability has not been well characterized. This review focuses on the issue of nanosuspension stability in drug delivery to present the state of the art of nanosuspensions. Therefore, this review will discuss unstable suspensions, methods and guidelines for selecting and optimizing stabilizers, approaches for enhancing stability, and other factors that influence nanosuspension stability. This review could serve as a reference for the educated selection of a stabilizer for a specific drug candidate and the optimization of the operational parameters for nanosuspension formulation, rather than the currently practiced trial-and-error approach.
Collapse
|
23
|
Katara R, Majumdar DK. Eudragit RL 100-based nanoparticulate system of aceclofenac for ocular delivery. Colloids Surf B Biointerfaces 2013; 103:455-62. [DOI: 10.1016/j.colsurfb.2012.10.056] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 10/19/2012] [Accepted: 10/21/2012] [Indexed: 10/27/2022]
|
24
|
Mudgil M, Pawar PK. Preparation and In Vitro/Ex Vivo Evaluation of Moxifloxacin-Loaded PLGA Nanosuspensions for Ophthalmic Application. Sci Pharm 2013; 81:591-606. [PMID: 23833723 PMCID: PMC3700085 DOI: 10.3797/scipharm.1204-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 02/04/2013] [Indexed: 11/22/2022] Open
Abstract
The aim of the present investigation was to prepare a colloidal ophthalmic formulation to improve the residence time of moxifloxacin. Moxifloxacin-loaded poly(dl-lactide-co-glycolide) (PLGA) nanosuspensions were prepared by using the solvent evaporation technique. The nanosuspensions were characterised physically by using different techniques like particle size, zeta potential, FTIR, DSC, and XRD analysis. In vitro and ex vivo studies of nanosuspensions were carried out using a modified USP dissolution apparatus and all-glass Franz diffusion cells, respectively. The antibacterial activities of the nanosuspension and marketed formulations were performed against S. aureus and P. aeroginosa. The moxifloxacin-loaded PLGA nanosuspensions showed uniform particle size, ranging between 164–490 nm with negative zeta potential for all batches. The percentage entrapment efficiency of the drug-loaded nano-suspension was found to be between 84.09 to 92.05%. In vitro drug release studies suggest that all of the formulations showed extended drug release profiles and follow Korsemeyer-Peppas release kinetics. In vitro corneal permeability was found to be comparable with that of the marketed formulation across isolated goat cornea, indicating the suitability of the nanosuspension formulation in the ophthalmic delivery of moxifloxacin. The optimised nano-suspension was found to be more active against S. aureus and P. aeruginosa compared to the marketed eye drops.
Collapse
Affiliation(s)
- Meetali Mudgil
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala Highway, Rajpura, Patiala, Punjab, 140401, India
| | | |
Collapse
|