1
|
Muñoz-Correa MOF, Bravo-Alfaro DA, Mendoza-Sánchez LG, Luna-Barcenas G, Garcia HS, Garcia-Varela R. Evaluation of a mucoadhesive auto-nanoemulsifying drug delivery system (SNEDDS) for oral insulin administration. Eur J Pharm Biopharm 2024:114567. [PMID: 39461570 DOI: 10.1016/j.ejpb.2024.114567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/03/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
This study investigated the potential of self-nanoemulsifying drug delivery systems (SNEDDS) to optimize the oral bioavailability of insulin. Insulin complexes with phospholipids and enzymatically-modified phospholipids were developed and incorporated into the SNEDDS using Lauroglycol FCC as the oily phase and Cremophor EL and Labrafil M1944CS as the surfactant and co-surfactant, respectively. Additionally, mucoadhesive polysaccharides (sodium alginate and guar gum) were added further to enhance the bioavailability of insulin in these systems. The objective was to increase the bioavailability and bioactivity of an insulin-modified phosphatidylcholine complex by incorporating mucoadhesives into the SNEDDS. After polymer inclusion, the resulting nanoemulsions exhibited droplet diameters ranging from 57 to 83 nm. Cytotoxicity and apparent permeability tests were conducted on Caco-2 and NIH 3 T3 cell lines, revealing that toxicity was related to the concentrations of insulin and surfactant in the nanosystems-formulations containing guar gum as a mucoadhesive showed better tolerance to cell death in the Caco-2 line. In a murine diabetes model, the SNEDDS were observed to reduce glucose levels by up to 61.63 %, with a relative bioavailability of 2.25 % compared to subcutaneously administered insulin. These results suggest that SNEDDS incorporating mucoadhesives could represent a promising strategy for improving oral insulin delivery.
Collapse
Affiliation(s)
- M O F Muñoz-Correa
- UNIDA, Tecnológico Nacional de México Campus Veracruz. Miguel Ángel de Quevedo 2779, Veracruz, Ver. 91897, México
| | - Diego A Bravo-Alfaro
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Epigmenio González 500 Fracc. San Pablo, Querétaro, Qro. 76130, México
| | - L G Mendoza-Sánchez
- UNIDA, Tecnológico Nacional de México Campus Veracruz. Miguel Ángel de Quevedo 2779, Veracruz, Ver. 91897, México
| | - Gabriel Luna-Barcenas
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Epigmenio González 500 Fracc. San Pablo, Querétaro, Qro. 76130, México
| | - Hugo S Garcia
- UNIDA, Tecnológico Nacional de México Campus Veracruz. Miguel Ángel de Quevedo 2779, Veracruz, Ver. 91897, México.
| | - Rebeca Garcia-Varela
- Department of Medicine, Hematology/Oncology, UW Carbone Cancer Center, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
2
|
Cao L, Jeong SJ, Shin JH. Effect of gelation technique on lipid digestibility of emulsion-loaded alginate microparticles: a systematic review and meta-analysis. Food Sci Biotechnol 2023; 32:135-144. [PMID: 36647522 PMCID: PMC9839912 DOI: 10.1007/s10068-022-01227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Alginate microparticles fabricated via calcium gelation or layer-by-layer assembly are commonly used for encapsulating emulsions. In this study, the impact of these two gelation methods on the lipid digestibility of emulsions was reviewed through a systematic screening of relevant studies. From the literature search (Scopus, PubMed, and Web of Science databases), 604 records were screened and 25 articles were included in the analysis. The fold change of free fatty acid release rate at the end of in vitro digestion process between alginate-encapsulated emulsion and emulsions not encapsulated by alginate was calculated for calcium gelation (weighted mean of response ratio 0.64, 95% CI 0.54-0.75) and layer-by-layer assembly (weighted mean of response ratio 0.89, 95% CI 0.81-0.98). Alginate-calcium hydrogels showed stronger inhibition of the extent of lipid digestion than alginate-coated multilayer emulsions. The structural and particle size differences between alginate microparticles acquired using different techniques may contribute to this phenomenon.
Collapse
Affiliation(s)
- Lei Cao
- Department of Biomedical Engineering, Pukyong National University, Busan, Korea
| | - Seung Jin Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Joong Ho Shin
- Department of Biomedical Engineering, Pukyong National University, Busan, Korea
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Korea
| |
Collapse
|
3
|
Teixé-Roig J, Oms-Oliu G, Odriozola-Serrano I, Martín-Belloso O. Enhancing the Gastrointestinal Stability of Curcumin by Using Sodium Alginate-Based Nanoemulsions Containing Natural Emulsifiers. Int J Mol Sci 2022; 24:ijms24010498. [PMID: 36613938 PMCID: PMC9820608 DOI: 10.3390/ijms24010498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Curcumin presents interesting biological activities but low chemical stability, so it has been incorporated into different emulsion-based systems in order to increase its bioaccessibility. Many strategies are being investigated to increase the stability of these systems. Among them, the use of polysaccharides has been seen to highly improve the emulsion stability but also to modulate their digestibility and the release of the encapsulated compounds. However, the effect of these polysaccharides on nanoemulsions depends on the presence of other components. Then, this work aimed to study the effect of alginate addition at different concentrations (0-1.5%) on the gastrointestinal fate and stability of curcumin-loaded nanoemulsions formulated using soybean lecithin or whey protein as emulsifiers. Results showed that, in the absence of polysaccharides, whey protein was more effective than lecithin in preventing curcumin degradation during digestion and its use also provided greater lipid digestibility and higher curcumin bioaccessibility. The addition of alginate, especially at ≥1%, greatly prevented curcumin degradation during digestion up to 23% and improved the stability of nanoemulsions over time. However, it reduced lipid digestibility and curcumin bioaccessibility. Our results provide relevant information on the use of alginate on different emulsifier-based nanoemulsions to act as carriers of curcumin.
Collapse
|
4
|
Zhang X, Liu Z, Wang A, Zhang S, Nakamura Y, Lin S, Tang Y. Influence of fish skin gelatin-sodium alginate complex stabilized emulsion on benzyl isothiocyanate stability and digestibility in vitro and in vivo. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5680-5689. [PMID: 35388504 DOI: 10.1002/jsfa.11915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/09/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND An emulsion delivery system for benzyl isothiocyanate (BITC) was prepared using fish skin gelatin (FSG) and sodium alginate (Alg). The effects of the FSG-Alg complex on the emulsion stability and BITC release pattern from the emulsion were investigated in vitro and in vivo. RESULTS The storage stability and embedding rate of the 10 g kg-1 FSG and 2.5 g kg-1 Alg (FSG-Alg) emulsion were the highest among all samples. The FSG-Alg complex provided BITC a better protection during in vitro digestion. The microstructure of the FSG-Alg emulsions was more stable during in vitro digestion, and the bioaccessibility and retention rate of BITC were much higher compared to those of the FSG emulsion. The results of the ex vivo everted gut sac of rat intestine study showed that the FSG-Alg emulsion significantly increased the BITC absorption rate in the duodenum. CONCLUSION The FSG-Alg emulsion delivery system is a highly stable system for the delivery of BITC that improves the bioaccessibility of BITC and promotes its absorption in the duodenum. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangyu Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Zhiyu Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Ailin Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Simin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Yoshimasa Nakamura
- Environmental and Life Science, Institute of Academic and Research, Okayama University, Okayama, Japan
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Yue Tang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
5
|
Gutiérrez-Luna K, Ansorena D, Cruz R, Astiasarán I, Casal S. Olive and echium oil gelled emulsions: simulated effect of processing temperature, gelling agent and in vitro gastrointestinal digestion on oxidation and bioactive compounds. Food Chem 2022; 402:134416. [DOI: 10.1016/j.foodchem.2022.134416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/29/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
|
6
|
Hu Y, Zhao G, Wang J, Liu Z, Yin F, Qin L, Zhou D, Shahidi F, Zhu B. Lipid oxidation and aldehyde formation during in vitro gastrointestinal digestion of roasted scallop ( Patinopecten yessoensis) - the role of added antioxidant of bamboo leaves. Food Funct 2021; 12:11046-11057. [PMID: 34665192 DOI: 10.1039/d1fo02717d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study investigated lipid oxidation and aldehyde formation in roasted scallop during in vitro gastrointestinal digestion, and the effects of co-digestion of antioxidant of bamboo leaves (AOB) on this process. The results showed that the contents of lipid hydroperoxides (LOOH), conjugated dienes (CD), and Schiff bases (SB) were increased during gastrointestinal digestion. Besides, malondialdehyde (MDA) levels and total aldehyde formation decreased initially at the gastric stage but increased at the intestinal stage. The results of HPLC-ESI-MS/MS analysis showed that the contents of hexanal (HEX), trans, trans-2,4-octadienal (ODE), trans, trans-2,4-decadienal (DDE), 4-hydroxyhexenal (HHE) and 4-hydroxynonenal (HNE) in the digestive juices were all initially decreased and then increased during gastrointestinal digestion. Meanwhile, the content of acrolein, propanal, and trans-2-pentenal at the end of intestinal digestion was lower than that in the initial stage of gastric digestion. Additionally, the digestion of roasted scallop caused significant oxidation of polyunsaturated fatty acids (PUFAs) and release of free fatty acids (FFA) in the intestinal phase, which were positively related to aldehyde production. However, co-digestion of AOB significantly reduced lipid oxidation and formation of lipid oxidation products (LOOH, CD, SB, and aldehyde) during gastrointestinal digestion, indicating that the addition of AOB was effective in reducing gastrointestinal lipid oxidation.
Collapse
Affiliation(s)
- Yuanyuan Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Guanhua Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Jialiang Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Zhongyuan Liu
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China.,School of Food Science and Engineering, Hainan University, Haikou, 570228, PR China
| | - Fawen Yin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China.,National Engineering Research Center of Seafood, Dalian, 116034, PR China
| | - Lei Qin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China.,National Engineering Research Center of Seafood, Dalian, 116034, PR China
| | - Dayong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China.,National Engineering Research Center of Seafood, Dalian, 116034, PR China
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St John's, NL, A1B3X9, Canada
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China.,National Engineering Research Center of Seafood, Dalian, 116034, PR China
| |
Collapse
|
7
|
Ferrara B, Belbekhouche S, Habert D, Houppe C, Vallée B, Bourgoin-Voillard S, Cohen JL, Cascone I, Courty J. Cell surface nucleolin as active bait for nanomedicine in cancer therapy: a promising option. NANOTECHNOLOGY 2021; 32:322001. [PMID: 33892482 DOI: 10.1088/1361-6528/abfb30] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Conventional chemotherapy used against cancer is mostly limited due to their non-targeted nature, affecting normal tissue and causing undesirable toxic effects to the affected tissue. With the aim of improving these treatments both therapeutically and in terms of their safety, numerous studies are currently being carried out using nanoparticles (NPs) as a vector combining tumor targeting and carrying therapeutic tools. In this context, it appears that nucleolin, a molecule over-expressed on the surface of tumor cells, is an interesting therapeutic target. Several ligands, antagonists of nucleolin of various origins, such as AS1411, the F3 peptide and the multivalent pseudopeptide N6L have been developed and studied as therapeutic tools against cancer. Over the last ten years or so, numerous studies have been published demonstrating that these antagonists can be used as tumor targeting agents with NPs from various origins. Focusing on nucleolin ligands, the aim of this article is to review the literature recently published or under experimentation in our research team to evaluate the efficacy and future development of these tools as anti-tumor agents.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Sabrina Belbekhouche
- Université Paris-Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, F-94320 Thiais, France
| | - Damien Habert
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Claire Houppe
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Benoit Vallée
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Sandrine Bourgoin-Voillard
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
- Université Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics/Prométhée Proteomic Platform, UGA-INSERM U1055-CHUGA, Grenoble, France
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC, PROMETHEE Proteomic Platform, Grenoble, France
| | - José L Cohen
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Ilaria Cascone
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - José Courty
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| |
Collapse
|
8
|
An efficient small intestine-targeted curcumin delivery system based on the positive-negative-negative colloidal interactions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Tan Y, McClements DJ. Improving the bioavailability of oil-soluble vitamins by optimizing food matrix effects: A review. Food Chem 2021; 348:129148. [PMID: 33515946 DOI: 10.1016/j.foodchem.2021.129148] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/21/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
The potency of oil-soluble vitamins (vitamins A, D, E and K) in fortified foods can be improved by understanding how food matrices impact their bioavailability. In this review, the major food matrix effects influencing the bioavailability of oil-soluble vitamins are highlighted: oil content, oil composition, particle size, interfacial properties, and food additives. Droplet size and aggregation state in the human gut impact vitamin bioavailability by modulating lipid digestion, vitamin release, and vitamin solubilization. Vitamins in small isolated oil droplets typically have a higher bioavailability than those in large or aggregated ones. Emulsifiers, stabilizers, or texture modifiers can therefore affect bioavailability by influencing droplet size or aggregation. The dimensions of the hydrophobic domains in mixed micelles depends on lipid type: if the domains are too small, vitamin bioavailability is low. Overall, this review highlights the importance of carefully designing food matrices to improve vitamin bioavailability.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
10
|
Tan Y, Li R, Liu C, Muriel Mundo J, Zhou H, Liu J, McClements DJ. Chitosan reduces vitamin D bioaccessibility in food emulsions by binding to mixed micelles. Food Funct 2020; 11:187-199. [PMID: 31833516 DOI: 10.1039/c9fo02164g] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Consumption of sufficiently high quantities of dietary fibers has been linked to a range of health benefits. Recent research, however, has shown that some dietary fibers interfere with lipid digestion, which may reduce the bioavailability of oil-soluble vitamins and nutraceuticals. For this reason, we examined the impact of a cationic polysaccharide (chitosan) on the bioaccessibility of vitamin D using the standardized INFOGEST in vitro digestion model. The vitamin D was encapsulated within an emulsion-based delivery system that contained whey protein-coated corn oil droplets. Our results showed that chitosan promoted severe droplet flocculation in the small intestine and reduced the amount of free fatty acids detected using a pH-stat method. However, a back-titration of the digested sample showed that the lipids were fully digested at all chitosan levels used (0.1-0.5%), suggesting that chitosan may have bound some of the free fatty acids released during lipid digestion. The presence of the chitosan decreased the bioaccessibility of vitamin D by about 37%, but this effect did not depend strongly on chitosan concentration (0.1-0.5%). It was hypothesized that chitosan bound to the vitamin-loaded mixed micelles and promoted their precipitation. The knowledge gained in this study might provide useful insights in designing emulsion-based delivery systems with high vitamin bioaccessibility.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Fu J, Song L, Liu Y, Bai C, Zhou D, Zhu B, Wang T. Improving oxidative stability and release behavior of docosahexaenoic acid algae oil by microencapsulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2774-2781. [PMID: 32020617 DOI: 10.1002/jsfa.10309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Spray-dried docosahexaenoic acid algae oil (DHA AO) microcapsules were prepared using whey protein isolate and glucose syrup (WPI + GS), or sodium starch octenylsuccinate and glucose syrup (SSOS + GS), or whey protein isolate and lactose (WPI + L). The effect of the formulations on encapsulation properties, oxidative protection and in vitro oil release pattern of the resulting microencapsulates was investigated. RESULTS A high encapsulation efficiency of over 98% of DHA AO was obtained for microcapsules with all three wall materials. Among the wall materials, SSOS + GS exhibited a better micro-particulation ability reflected by more uniform size and smoother surface of the formed microcapsules and no agglomerates. DHA AO microcapsules with all the wall materials showed good protection of the oil from oxidation during storage with an increasing order of WPI + GS, SSOS + GS and WPI + L. Moreover, microencapsulation significantly increased the release of DHA AO in the intestinal phase of the in vitro digestion process with an increasing order of SSOS + GS, WPI + GS and WPI + L, indicating the increased stability of the oil in the highly acidic gastric environment and the enhanced lipid digestibility in the small intestine. CONCLUSIONS The results suggest that it is possible to transform a highly oxidizable liquid functional food ingredient such as DHA AO into a stable and easy-to-handle solid powder through spray drying with properly selected wall materials. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingjing Fu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Liang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Yunhang Liu
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| | - Changjun Bai
- Qingdao Seawit Life Science Co. Ltd, Qingdao, PR China
| | | | - Beiwei Zhu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Tong Wang
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
12
|
Bellesi FA, Pizones Ruiz-Henestrosa VM, Pilosof A. Lipolysis of soy protein and HPMC mixed emulsion as modulated by interfacial competence of emulsifiers. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Luo XA, Zhao P, Zhang H, Feng SY, Chen KX, Chen ZX. Improved hydrolysis of α-tocopherol acetate emulsion and its bioaccessibility in the presence of polysaccharides and PEG2000. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Menchicchi B, Savvaidou E, Thöle C, Hensel A, Goycoolea FM. Low-Molecular-Weight Dextran Sulfate Nanocapsules Inhibit the Adhesion of Helicobacter pylori to Gastric Cells. ACS APPLIED BIO MATERIALS 2019; 2:4777-4789. [DOI: 10.1021/acsabm.9b00523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bianca Menchicchi
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143 Münster, Germany
- Department of Medicine 1, University of Erlangen-Nüremberg, D-91054 Erlangen, Germany
| | - Eleni Savvaidou
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Christian Thöle
- Institute for Pharmaceutical Biology and Phytochemistry (IPBP), University of Münster, Correnstrasse 48, D-48149 Münster, Germany
| | - Andreas Hensel
- Institute for Pharmaceutical Biology and Phytochemistry (IPBP), University of Münster, Correnstrasse 48, D-48149 Münster, Germany
| | - Francisco M. Goycoolea
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143 Münster, Germany
- School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, United Kingdom
| |
Collapse
|
15
|
Araiza-Calahorra A, Sarkar A. Designing biopolymer-coated Pickering emulsions to modulate in vitro gastric digestion: a static model study. Food Funct 2019; 10:5498-5509. [DOI: 10.1039/c9fo01080g] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this study was to restrict the degree of gastric destabilization of Pickering emulsions by using electrostatic deposition of a biopolymeric layer at the proteinaceous particle–laden oil–water interface.
Collapse
Affiliation(s)
- Andrea Araiza-Calahorra
- Food Colloids and Bioprocessing Group
- School of Food Science and Nutrition
- University of Leeds
- Leeds
- UK
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group
- School of Food Science and Nutrition
- University of Leeds
- Leeds
- UK
| |
Collapse
|
16
|
Cai B, Saito A, Ikeda S. Maillard Conjugation of Sodium Alginate to Whey Protein for Enhanced Resistance to Surfactant-Induced Competitive Displacement from Air-Water Interfaces. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:704-710. [PMID: 29323902 DOI: 10.1021/acs.jafc.7b04387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Whey protein adsorbed to an interface forms a viscoelastic interfacial film but is displaced competitively from the interface by a small-molecule surfactant added afterward. The present study evaluated the impact of the covalent conjugation of high- or low-molecular-weight sodium alginate (HA or LA) to whey protein isolate (WPI) via the Maillard reaction on the ability of whey protein to resist surfactant-induced competitive displacement from the air-water interface. Surfactant added after the pre-adsorption of conjugate to the interface increased surface pressure. At a given surface pressure, the WPI-LA conjugate showed a significantly higher interfacial area coverage and lower interfacial film thickness compared to those of the WPI-HA conjugate or unconjugated WPI. The addition of LA to the aqueous phase had little effect on the interfacial area and thickness of pre-adsorbed WPI. These results suggest the importance of the molecular weight of the polysaccharide moiety in determining interfacial properties of whey protein-alginate conjugates.
Collapse
Affiliation(s)
- Bingqing Cai
- Department of Food Science and ‡Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Anna Saito
- Department of Food Science and ‡Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Shinya Ikeda
- Department of Food Science and ‡Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
17
|
Influence of dietary fibers on lipid digestion: Comparison of single-stage and multiple-stage gastrointestinal models. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
18
|
Pilosof AM. Potential impact of interfacial composition of proteins and polysaccharides stabilized emulsions on the modulation of lipolysis. The role of bile salts. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.08.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Cai B, Ikeda S. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface. J Dairy Sci 2016; 99:6026-6035. [DOI: 10.3168/jds.2015-10765] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/01/2016] [Indexed: 11/19/2022]
|
20
|
Qin D, Yang X, Gao S, Yao J, McClements DJ. Influence of Hydrocolloids (Dietary Fibers) on Lipid Digestion of Protein-Stabilized Emulsions: Comparison of Neutral, Anionic, and Cationic Polysaccharides. J Food Sci 2016; 81:C1636-45. [DOI: 10.1111/1750-3841.13361] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/28/2016] [Accepted: 05/13/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Dingkui Qin
- Dept. of Animal Science and Technology; Northwest A&F Univ; Yangling Shaanxi 712100 China
- Biopolymer and Colloids Research Laboratory, Dept. of Food Science; Univ. of Massachusetts; Amherst Mass. 01003 U.S.A
| | - Xiaojun Yang
- Dept. of Animal Science and Technology; Northwest A&F Univ; Yangling Shaanxi 712100 China
| | - Songran Gao
- Biopolymer and Colloids Research Laboratory, Dept. of Food Science; Univ. of Massachusetts; Amherst Mass. 01003 U.S.A
| | - Junhu Yao
- Dept. of Animal Science and Technology; Northwest A&F Univ; Yangling Shaanxi 712100 China
| | - David Julian McClements
- Biopolymer and Colloids Research Laboratory, Dept. of Food Science; Univ. of Massachusetts; Amherst Mass. 01003 U.S.A
- Dept. of Biochemistry, Faculty of Science; King Abdulaziz Univ; P.O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
21
|
Vecchione R, Iaccarino G, Bianchini P, Marotta R, D'autilia F, Quagliariello V, Diaspro A, Netti PA. Ultrastable Liquid-Liquid Interface as Viable Route for Controlled Deposition of Biodegradable Polymer Nanocapsules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3005-3013. [PMID: 27060934 DOI: 10.1002/smll.201600347] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/22/2016] [Indexed: 06/05/2023]
Abstract
Liquid-liquid interfaces are highly dynamic and characterized by an elevated interfacial tension as compared to solid-liquid interfaces. Therefore, they are gaining an increasing interest as viable templates for ordered assembly of molecules and nanoparticles. However, liquid-liquid interfaces are more difficult to handle compared to solid-liquid interfaces; their intrinsic instability may affect the assembly process, especially in the case of multiple deposition. Indeed, some attempts have been made in the deposition of polymer multilayers at liquid-liquid interfaces, but with limited control over size and stability. This study reports on the preparation of an ultrastable liquid-liquid interface based on an O/W secondary miniemulsion and its possible use as a template for the self-assembly of polymeric multilayer nanocapsules. Such polymer nanocapsules are made of entirely biodegradable materials, with highly controlled size-well under 200 nm-and multi-compartment and multifunctional features enriching their field of application in drug delivery, as well as in other bionanotechnology fields.
Collapse
Affiliation(s)
- Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care, IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy Via Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, Naples, Italy
| | - Giulia Iaccarino
- Center for Advanced Biomaterials for Health Care, IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy Via Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, Naples, Italy
| | - Paolo Bianchini
- Department of Nanophysics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Roberto Marotta
- Department of Nanophysics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Francesca D'autilia
- Department of Nanophysics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Vincenzo Quagliariello
- Medical Oncology, Abdominal Department, National Cancer Institute G. Pascale Foundation, Napoli, 80131, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Paolo A Netti
- Center for Advanced Biomaterials for Health Care, IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy Via Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, Naples, Italy
| |
Collapse
|
22
|
Influence of surfactant and oil composition on the stability and antibacterial activity of eugenol nanoemulsions. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.01.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Elviri L, Mangia M, Menabeni R, Della Bella A, Camellini C, Beltrami D, Arduini L, Bettini R. Understanding solid-state properties of triglycerides used in pharmaceutical and food microencapsulation. J Microencapsul 2014; 32:240-6. [PMID: 25537117 DOI: 10.3109/02652048.2014.995732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hydrophobic materials, in particular hydrogenated vegetable oils, HVO, are extensively used as coating materials in food and pharmaceutical systems. Correct application of these coatings requires an evaluation of their behaviour as a function of various parameters such as melting temperature, solubility, concentration and/or pH. The purpose of this study was to assess the physico-chemical properties of an HVO in terms of composition, crystallisation, phase transition and polymorphism using a variety of analytical techniques, such as electrospray mass spectrometry (ESI-MS), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). High-resolution ESI-MS allowed establishment of the HVO main composition of long-chain triglycerides (average molecular weight 1183 Da). DSC results showed that thermal history determines the formation of at least two polymorphs of HVO, namely two different crystal forms, assigned as form α, melting point (m.p.) 48 °C, and form β', m.p. 60 °C. A third polymorph, the more thermodynamically stable β-form, having a melting point at 62 °C, is obtained by solution-mediated re-crystallisation. Phase transformation paths were investigated by isothermal DSC experiments, which evidenced that the α-form is kinetically stable at temperatures lower than 25 °C. These data are of particular interest in practical applications such as spray freezing or pan coating where significant heat transfer phenomena are involved.
Collapse
|
24
|
Li Y, McClements DJ. Influence of cosurfactant on the behavior of structured emulsions under simulated intestinal lipolysis conditions. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2014.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Sun D, Wei X, Xue X, Fang Z, Ren M, Lou H, Zhang X. Enhanced oral absorption and therapeutic effect of acetylpuerarin based on D-α-tocopheryl polyethylene glycol 1000 succinate nanoemulsions. Int J Nanomedicine 2014; 9:3413-23. [PMID: 25071371 PMCID: PMC4111663 DOI: 10.2147/ijn.s63777] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Acetylpuerarin (AP), because of its lower water solubility, shows poor absorption that hinders its therapeutic application. Thus, the aim of this study was to prepare nanoemulsions for AP, enhance its oral bioavailability, and thus improve the therapeutic effect. Methods The nanoemulsions stabilized by D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) were prepared by high-pressure homogenization and characterized in terms of particle size, drug loading, morphology, and in vitro drug release. A lipid digestion model was used to predict in vivo drug solubilization in the gastrointestinal environment. The pharmacokinetics of AP formulations were performed in rats; meanwhile, a chylomicron flow-blocking rat model was used to evaluate the lymphatic drug transport. Moreover, the therapeutic effects of AP nanoemulsions on the model of focal cerebral ischemia-reperfusion for brain injury were also assessed. Results The nanoemulsions with a droplet size of 150 nm were well stabilized by TPGS and showed a high loading capacity for AP. In the digestion model, the distribution of AP in aqueous phase/pellet phase was about 90%/10% for nanoemulsions and 5%/95% for oil solution, indicating that the drug encapsulated in nanoemulsions would present in solubilized form after transportation into the gastrointestinal tract, whereas drug precipitation would occur as the oil solution was orally administered. The area under the curve value of AP nanoemulsions was 5.76±0.56 μg·hour·mL−1, or was about 2.6 and 1.7 times as great as that of suspension and oil solution, respectively, indicating enhanced drug absorption and thus achieving a better neuroprotection effect on cerebral ischemic reperfusion injury. The values of peak plasma concentration and area under the curve from the blocking model were significantly less than those of the control model, suggesting that the lymphatic transport performed a very important role in absorption enhancement. Conclusion Enhanced oral bioavailability in nanoemulsions was achieved via the mechanism of the maintenance of drug solubilization in the gastrointestinal tract and the enhancement of lymphatic transport, which resulted in therapeutic improvement of cerebral ischemic reperfusion injury.
Collapse
Affiliation(s)
- Deqing Sun
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, People's Republic of China ; Department of Pharmacy, Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Xinbing Wei
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xia Xue
- Department of Pharmacy, Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Zengjun Fang
- Department of Clinical Pharmacology, Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Manru Ren
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, People's Republic of China
| | - Haiyan Lou
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xiumei Zhang
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
26
|
Li Y, McClements DJ. Modulating lipid droplet intestinal lipolysis by electrostatic complexation with anionic polysaccharides: Influence of cosurfactants. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2013.06.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Li Y, McClements DJ. Influence of non-ionic surfactant on electrostatic complexation of protein-coated oil droplets and ionic biopolymers (alginate and chitosan). Food Hydrocoll 2013. [DOI: 10.1016/j.foodhyd.2013.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Structural and biochemical factors affecting the digestion of protein-stabilized emulsions. Curr Opin Colloid Interface Sci 2013. [DOI: 10.1016/j.cocis.2013.04.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
McClements DJ. Edible lipid nanoparticles: digestion, absorption, and potential toxicity. Prog Lipid Res 2013; 52:409-23. [PMID: 23664907 DOI: 10.1016/j.plipres.2013.04.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 04/29/2013] [Indexed: 01/11/2023]
Abstract
Food-grade nanoemulsions are being increasingly used in the food and beverage industry to encapsulate, protect, and deliver hydrophobic functional components, such as oil-soluble flavors, colors, preservatives, vitamins, and nutraceuticals. These nanoemulsions contain lipid nanoparticles (radius <100 nm) whose physicochemical characteristics (e.g., composition, dimensions, structure, charge, and physical state) can be controlled by selection of appropriate ingredients and fabrication techniques. Nanoemulsions have a number of potential advantages over conventional emulsions for applications within the food industry: higher stability to particle aggregation and gravitational separation; higher optical transparency; and, increased bioavailability of encapsulated components. On the other hand, there are also some risks associated with consumption of lipid nanoparticles that should be considered before they are widely utilized, such as their ability to alter the fate of bioactive components within the gastrointestinal tract and the potential toxicity of some of the components used in their fabrication (e.g., surfactants and organic solvents). This article provides an overview of the current status of the biological fate and potential toxicity of food-grade lipid nanoparticles suitable for utilization within the food and beverage industry.
Collapse
|
30
|
McClements DJ. Advances in fabrication of emulsions with enhanced functionality using structural design principles. Curr Opin Colloid Interface Sci 2012. [DOI: 10.1016/j.cocis.2012.06.002] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Tokle T, Lesmes U, Decker EA, McClements DJ. Impact of dietary fiber coatings on behavior of protein-stabilized lipid droplets under simulated gastrointestinal conditions. Food Funct 2012; 3:58-66. [DOI: 10.1039/c1fo10129c] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
McClements DJ, Xiao H. Potential biological fate of ingested nanoemulsions: influence of particle characteristics. Food Funct 2012; 3:202-20. [DOI: 10.1039/c1fo10193e] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|