1
|
Zhao Z, Szewczyk B, Tarasek M, Bales C, Wang Y, Liu M, Jiang Y, Bhushan C, Fiveland E, Campwala Z, Trowbridge R, Johansen PM, Olmsted Z, Ghoshal G, Heffter T, Gandomi K, Tavakkolmoghaddam F, Nycz C, Jeannotte E, Mane S, Nalwalk J, Burdette EC, Qian J, Yeo D, Pilitsis J, Fischer GS. Deep Brain Ultrasound Ablation Thermal Dose Modeling with in Vivo Experimental Validation. ARXIV 2024:arXiv:2409.02395v2. [PMID: 39279835 PMCID: PMC11398545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Intracorporeal needle-based therapeutic ultrasound (NBTU) is a minimally invasive option for intervening in malignant brain tumors, commonly used in thermal ablation procedures. This technique is suitable for both primary and metastatic cancers, utilizing a high-frequency alternating electric field (up to 10 MHz) to excite a piezoelectric transducer. The resulting rapid deformation of the transducer produces an acoustic wave that propagates through tissue, leading to localized high-temperature heating at the target tumor site and inducing rapid cell death. To optimize the design of NBTU transducers for thermal dose delivery during treatment, numerical modeling of the acoustic pressure field generated by the deforming piezoelectric transducer is frequently employed. The bioheat transfer process generated by the input pressure field is used to track the thermal propagation of the applicator over time. Magnetic resonance thermal imaging (MRTI) can be used to experimentally validate these models. Validation results using MRTI demonstrated the feasibility of this model, showing a consistent thermal propagation pattern. However, a thermal damage isodose map is more advantageous for evaluating therapeutic efficacy. To achieve a more accurate simulation based on the actual brain tissue environment, a new finite element method (FEM) simulation with enhanced damage evaluation capabilities was conducted. The results showed that the highest temperature and ablated volume differed between experimental and simulation results by 2.1884°C (3.71%) and 0.0631 cm3 (5.74%), respectively. The lowest Pearson correlation coefficient (PCC) for peak temperature was 0.7117, and the lowest Dice coefficient for the ablated area was 0.7021, indicating a good agreement in accuracy between simulation and experiment.
Collapse
Affiliation(s)
| | - Benjamin Szewczyk
- Worcester Polytechnic Institute, Worcester, MA
- Department of Neurosurgery, Albany Medical Center, Albany, NY
| | | | | | - Yang Wang
- Worcester Polytechnic Institute, Worcester, MA
| | - Ming Liu
- Worcester Polytechnic Institute, Worcester, MA
| | - Yiwei Jiang
- Worcester Polytechnic Institute, Worcester, MA
| | | | | | - Zahabiya Campwala
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY
| | - Rachel Trowbridge
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY
| | - Phillip M Johansen
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
| | - Zachary Olmsted
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY
| | | | | | | | | | | | - Erin Jeannotte
- Animal Resources Facility, Albany Medical Center, Albany, NY
| | - Shweta Mane
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY
| | - Julia Nalwalk
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY
| | | | - Jiang Qian
- Department of Neurosurgery, Albany Medical Center, Albany, NY
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY
| | | | - Julie Pilitsis
- Department of Neurosurgery, Albany Medical Center, Albany, NY
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
| | | |
Collapse
|
2
|
Heshmat A, O’Connor CS, Albuquerque Marques Silva J, Paolucci I, Jones AK, Odisio BC, Brock KK. Using Patient-Specific 3D Modeling and Simulations to Optimize Microwave Ablation Therapy for Liver Cancer. Cancers (Basel) 2024; 16:2095. [PMID: 38893214 PMCID: PMC11171243 DOI: 10.3390/cancers16112095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Microwave ablation (MWA) of liver tumors presents challenges like under- and over-ablation, potentially leading to inadequate tumor destruction and damage to healthy tissue. This study aims to develop personalized three-dimensional (3D) models to simulate MWA for liver tumors, incorporating patient-specific characteristics. The primary objective is to validate the predicted ablation zones compared to clinical outcomes, offering insights into MWA before therapy to facilitate accurate treatment planning. Contrast-enhanced CT images from three patients were used to create 3D models. The simulations used coupled electromagnetic wave propagation and bioheat transfer to estimate the temperature distribution, predicting tumor destruction and ablation margins. The findings indicate that prolonged ablation does not significantly improve tumor destruction once an adequate margin is achieved, although it increases tissue damage. There was a substantial overlap between the clinical ablation zones and the predicted ablation zones. For patient 1, the Dice score was 0.73, indicating high accuracy, with a sensitivity of 0.72 and a specificity of 0.76. For patient 2, the Dice score was 0.86, with a sensitivity of 0.79 and a specificity of 0.96. For patient 3, the Dice score was 0.8, with a sensitivity of 0.85 and a specificity of 0.74. Patient-specific 3D models demonstrate potential in accurately predicting ablation zones and optimizing MWA treatment strategies.
Collapse
Affiliation(s)
- Amirreza Heshmat
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (C.S.O.); (A.K.J.); (K.K.B.)
| | - Caleb S. O’Connor
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (C.S.O.); (A.K.J.); (K.K.B.)
| | - Jessica Albuquerque Marques Silva
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (J.A.M.S.); (I.P.); (B.C.O.)
| | - Iwan Paolucci
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (J.A.M.S.); (I.P.); (B.C.O.)
| | - Aaron Kyle Jones
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (C.S.O.); (A.K.J.); (K.K.B.)
| | - Bruno C. Odisio
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (J.A.M.S.); (I.P.); (B.C.O.)
| | - Kristy K. Brock
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (C.S.O.); (A.K.J.); (K.K.B.)
| |
Collapse
|
3
|
Gupta P, Heffter T, Zubair M, Hsu IC, Burdette EC, Diederich CJ. Treatment Planning Strategies for Interstitial Ultrasound Ablation of Prostate Cancer. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:362-375. [PMID: 38899026 PMCID: PMC11186654 DOI: 10.1109/ojemb.2024.3397965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/28/2024] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
PURPOSE To develop patient-specific 3D models using Finite-Difference Time-Domain (FDTD) simulations and pre-treatment planning tools for the selective thermal ablation of prostate cancer with interstitial ultrasound. This involves the integration with a FDA 510(k) cleared catheter-based ultrasound interstitial applicators and delivery system. METHODS A 3D generalized "prostate" model was developed to generate temperature and thermal dose profiles for different applicator operating parameters and anticipated perfusion ranges. A priori planning, based upon these pre-calculated lethal thermal dose and iso-temperature clouds, was devised for iterative device selection and positioning. Full 3D patient-specific anatomic modeling of actual placement of single or multiple applicators to conformally ablate target regions can be applied, with optional integrated pilot-point temperature-based feedback control and urethral/rectum cooling. These numerical models were verified against previously reported ex-vivo experimental results obtained in soft tissues. RESULTS For generic prostate tissue, 360 treatment schemes were simulated based on the number of transducers (1-4), applied power (8-20 W/cm2), heating time (5, 7.5, 10 min), and blood perfusion (0, 2.5, 5 kg/m3/s) using forward treatment modelling. Selectable ablation zones ranged from 0.8-3.0 cm and 0.8-5.3 cm in radial and axial directions, respectively. 3D patient-specific thermal treatment modeling for 12 Cases of T2/T3 prostate disease demonstrate applicability of workflow and technique for focal, quadrant and hemi-gland ablation. A temperature threshold (e.g., Tthres = 52 °C) at the treatment margin, emulating placement of invasive temperature sensing, can be applied for pilot-point feedback control to improve conformality of thermal ablation. Also, binary power control (e.g., Treg = 45 °C) can be applied which will regulate the applied power level to maintain the surrounding temperature to a safe limit or maximum threshold until the set heating time. CONCLUSIONS Prostate-specific simulations of interstitial ultrasound applicators were used to generate a library of thermal-dose distributions to visually optimize and set applicator positioning and directivity during a priori treatment planning pre-procedure. Anatomic 3D forward treatment planning in patient-specific models, along with optional temperature-based feedback control, demonstrated single and multi-applicator implant strategies to effectively ablate focal disease while affording protection of normal tissues.
Collapse
Affiliation(s)
- Pragya Gupta
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCA94115USA
| | | | - Muhammad Zubair
- Department of Neurology and Neurological SciencesStanford UniversityStanfordCA94305USA
| | - I-Chow Hsu
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCA94115USA
| | | | - Chris J. Diederich
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCA94115USA
| |
Collapse
|
4
|
Del Campo Fonseca A, Ahmed D. Ultrasound robotics for precision therapy. Adv Drug Deliv Rev 2024; 205:115164. [PMID: 38145721 DOI: 10.1016/j.addr.2023.115164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
In recent years, the application of microrobots in precision therapy has gained significant attention. The small size and maneuverability of these micromachines enable them to potentially access regions that are difficult to reach using traditional methods; thus, reducing off-target toxicities and maximizing treatment effectiveness. Specifically, acoustic actuation has emerged as a promising method to exert control. By harnessing the power of acoustic energy, these small machines potentially navigate the body, assemble at the desired sites, and deliver therapies with enhanced precision and effectiveness. Amidst the enthusiasm surrounding these miniature agents, their translation to clinical environments has proven difficult. The primary objectives of this review are threefold: firstly, to offer an overview of the fundamental acoustic principles employed in the field of microrobots; secondly, to assess their current applications in medical therapies, encompassing tissue targeting, drug delivery or even cell infiltration; and lastly, to delve into the continuous efforts aimed at integrating acoustic microrobots into in vivo applications.
Collapse
Affiliation(s)
- Alexia Del Campo Fonseca
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
| | - Daniel Ahmed
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
| |
Collapse
|
5
|
Richards N, Christensen D, Hillyard J, Kline M, Johnson S, Odéen H, Payne A. Evaluation of acoustic-thermal simulations of in vivo magnetic resonance guided focused ultrasound ablative therapy. Int J Hyperthermia 2024; 41:2301489. [PMID: 38234019 PMCID: PMC10903184 DOI: 10.1080/02656736.2023.2301489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024] Open
Abstract
PURPOSE To evaluate numerical simulations of focused ultrasound (FUS) with a rabbit model, comparing simulated heating characteristics with magnetic resonance temperature imaging (MRTI) data collected during in vivo treatment. METHODS A rabbit model was treated with FUS sonications in the biceps femoris with 3D MRTI collected. Acoustic and thermal properties of the rabbit muscle were determined experimentally. Numerical models of the rabbits were created, and tissue-type-specific properties were assigned. FUS simulations were performed using both the hybrid angular spectrum (HAS) method and k-Wave. Simulated power deposition patterns were converted to temperature maps using a Pennes' bioheat equation-based thermal solver. Agreement of pressure between the simulation techniques and temperature between the simulation and experimental heating was evaluated. Contributions of scattering and absorption attenuation were considered. RESULTS Simulated peak pressures derived using the HAS method exceeded the simulated peak pressures from k-Wave by 1.6 ± 2.7%. The location and FWHM of the peak pressure calculated from HAS and k-Wave showed good agreement. When muscle acoustic absorption value in the simulations was adjusted to approximately 54% of the measured attenuation, the average root-mean-squared error between simulated and experimental spatial-average temperature profiles was 0.046 ± 0.019 °C/W. Mean distance between simulated and experimental COTMs was 3.25 ± 1.37 mm. Transverse FWHMs of simulated sonications were smaller than in in vivo sonications. Longitudinal FWHMs were similar. CONCLUSIONS Presented results demonstrate agreement between HAS and k-Wave simulations and that FUS simulations can accurately predict focal position and heating for in vivo applications in soft tissue.
Collapse
Affiliation(s)
- Nicholas Richards
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84112, USA. USA
| | - Douglas Christensen
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84112, USA. USA
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah, 84132, USA
| | - Joshua Hillyard
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84112, USA. USA
| | - Michelle Kline
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, 84132
| | - Sara Johnson
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, 84132
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, 84132
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, 84132
| |
Collapse
|
6
|
Servin F, Collins JA, Heiselman JS, Frederick-Dyer KC, Planz VB, Geevarghese SK, Brown DB, Jarnagin WR, Miga MI. Simulation of Image-Guided Microwave Ablation Therapy Using a Digital Twin Computational Model. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 5:107-124. [PMID: 38445239 PMCID: PMC10914207 DOI: 10.1109/ojemb.2023.3345733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/14/2023] [Accepted: 12/04/2023] [Indexed: 03/07/2024] Open
Abstract
Emerging computational tools such as healthcare digital twin modeling are enabling the creation of patient-specific surgical planning, including microwave ablation to treat primary and secondary liver cancers. Healthcare digital twins (DTs) are anatomically one-to-one biophysical models constructed from structural, functional, and biomarker-based imaging data to simulate patient-specific therapies and guide clinical decision-making. In microwave ablation (MWA), tissue-specific factors including tissue perfusion, hepatic steatosis, and fibrosis affect therapeutic extent, but current thermal dosing guidelines do not account for these parameters. This study establishes an MR imaging framework to construct three-dimensional biophysical digital twins to predict ablation delivery in livers with 5 levels of fat content in the presence of a tumor. Four microwave antenna placement strategies were considered, and simulated microwave ablations were then performed using 915 MHz and 2450 MHz antennae in Tumor Naïve DTs (control), and Tumor Informed DTs at five grades of steatosis. Across the range of fatty liver steatosis grades, fat content was found to significantly increase ablation volumes by approximately 29-l42% in the Tumor Naïve and 55-60% in the Tumor Informed DTs in 915 MHz and 2450 MHz antenna simulations. The presence of tumor did not significantly affect ablation volumes within the same steatosis grade in 915 MHz simulations, but did significantly increase ablation volumes within mild-, moderate-, and high-fat steatosis grades in 2450 MHz simulations. An analysis of signed distance to agreement for placement strategies suggests that accounting for patient-specific tumor tissue properties significantly impacts ablation forecasting for the preoperative evaluation of ablation zone coverage.
Collapse
Affiliation(s)
- Frankangel Servin
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
- Vanderbilt Institute for Surgery and EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Jarrod A. Collins
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Jon S. Heiselman
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
- Vanderbilt Institute for Surgery and EngineeringVanderbilt UniversityNashvilleTN37235USA
- Department of Surgery, Hepatopancreatobiliary ServiceMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
| | | | - Virginia B. Planz
- Department of RadiologyVanderbilt University Medical CenterNashvilleTN37235USA
| | | | - Daniel B. Brown
- Department of RadiologyVanderbilt University Medical CenterNashvilleTN37235USA
| | - William R. Jarnagin
- Department of Surgery, Hepatopancreatobiliary ServiceMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
| | - Michael I. Miga
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
- Vanderbilt Institute for Surgery and EngineeringVanderbilt UniversityNashvilleTN37235USA
- Department of RadiologyVanderbilt University Medical CenterNashvilleTN37235USA
- Department of Neurological SurgeryVanderbilt University Medical CenterNashvilleTN37235USA
- Department of OtolaryngologyVanderbilt University Medical CenterNashvilleTN37235USA
| |
Collapse
|
7
|
Etemadi M, Golmohammadi S, Akbarzadeh A, Rasta SH. Plasmonic photothermal therapy in the near-IR region using gold nanostars. APPLIED OPTICS 2023; 62:764-773. [PMID: 36821282 DOI: 10.1364/ao.475090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/07/2022] [Indexed: 06/18/2023]
Abstract
Photothermal therapy using nanoparticles is a prominent technique for cancer treatment. The principle is to maximize the heat conversion efficiency using plasmonic nanoparticle-light interaction. Due to their unique optical characteristics derived from their anisotropic structure, gold nanostars (GNSs) have gotten significant attention in photothermal therapy. To design a proper cancer treatment, it is vital to study the thermal effect induced close to the gold nanoparticles, in the vicinity, and the cancerous tissue. A temperature-dependent 2D model based on finite element method models is commonly used to simulate near-IR tumor ablation. The bioheat equation describes the photothermal effect within the GNSs and the environment. Surface cooling and heating strategies, such as the periodical heating method and a reduced laser irradiation area, were investigated to address surface overheating problems. We also determined that the optimal laser radius depends on tumor aspect ratio and laser intensity. Our results provide guidelines to evaluate a safe and feasible temperature range, treatment time, optimal laser intensity, and laser radius to annihilate a tumor volume.
Collapse
|
8
|
Zubair M, Adams MS, Diederich CJ. An endoluminal cylindrical sectored-ring ultrasound phased-array applicator for minimally-invasive therapeutic ultrasound. Med Phys 2023; 50:1-19. [PMID: 36413363 PMCID: PMC9870260 DOI: 10.1002/mp.16113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The size of catheter-based ultrasound devices for delivering ultrasound energy to deep-seated tumors is constrained by the access pathway which limits their therapeutic capabilities. PURPOSE To devise and investigate a deployable applicator suitable for minimally-invasive delivery of therapeutic ultrasound, consisting of a 2D cylindrical sectored-ring ultrasound phased array, integrated within an expandable paraboloid-shaped balloon-based reflector. The balloon can be collapsed for compact delivery and expanded close to the target position to mimic a larger-diameter concentric-ring sector-vortex array for enhanced dynamic control of focal depth and volume. METHODS Acoustic and biothermal simulations were employed in 3D generalized homogeneous and patient-specific heterogeneous models, for three-phased array transducers with 32, 64, and 128 elements, composed of sectored 4, 8, and 16 tubular ring transducers, respectively. The applicator performance was characterized as a function of array configuration, focal depth, phasing modes, and balloon reflector geometry. A 16-element proof-of-concept phased array applicator assembly, consisting of four tubular transducers each divided into four sectors, was fabricated, and characterized with hydrophone measurements along and across the axis, and ablations in ex vivo tissue. RESULTS Simulation results indicated that transducer arrays (1.5 MHz, 9 mm OD × 20 mm long), balloon sizes (41-50 mm expanded diameter, 20-60 mm focal depth), phasing mode (0-4) and sonication duration (30 s) can produce spatially localized acoustic intensity focal patterns (focal length: 3-22 mm, focal width: 0.7-8.7 mm) and ablative thermal lesions (width: 2.7-16 mm, length: 6-46 mm) in pancreatic tissue across a 10-90 mm focal depth range. Patient-specific studies indicated that 0.1, 0.46, and 1.2 cm3 volume of tumor can be ablated in the body of the pancreas for 120 s sonications using a single axial focus (Mode 0), or four, and eight simultaneous foci in a toroidal pattern (Mode 2 and 4, respectively). Hydrophone measurements demonstrated good agreement with simulation. Experiments in which chicken meat was thermally ablated indicated that volumetric ablation can be produced using single or multiple foci. CONCLUSIONS The results of this study demonstrated the feasibility of a novel compact ultrasound applicator design capable of focusing, deep penetration, electronic steering, and volumetric thermal ablation. The proposed applicator can be used for compact endoluminal or laparoscopic delivery of localized ultrasound energy to deep-seated targets.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Radiation Oncology University of California San Francisco USA
| | - Matthew S. Adams
- Department of Radiation Oncology University of California San Francisco USA
| | - Chris J. Diederich
- Department of Radiation Oncology University of California San Francisco USA
| |
Collapse
|
9
|
Lafond M, Lambin T, Drainville RA, Dupré A, Pioche M, Melodelima D, Lafon C. Pancreatic Ductal Adenocarcinoma: Current and Emerging Therapeutic Uses of Focused Ultrasound. Cancers (Basel) 2022; 14:2577. [PMID: 35681557 PMCID: PMC9179649 DOI: 10.3390/cancers14112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) diagnosis accompanies a somber prognosis for the patient, with dismal survival odds: 5% at 5 years. Despite extensive research, PDAC is expected to become the second leading cause of mortality by cancer by 2030. Ultrasound (US) has been used successfully in treating other types of cancer and evidence is flourishing that it could benefit PDAC patients. High-intensity focused US (HIFU) is currently used for pain management in palliative care. In addition, clinical work is being performed to use US to downstage borderline resectable tumors and increase the proportion of patients eligible for surgical ablation. Focused US (FUS) can also induce mechanical effects, which may elicit an anti-tumor response through disruption of the stroma and can be used for targeted drug delivery. More recently, sonodynamic therapy (akin to photodynamic therapy) and immunomodulation have brought new perspectives in treating PDAC. The aim of this review is to summarize the current state of those techniques and share our opinion on their future and challenges.
Collapse
Affiliation(s)
- Maxime Lafond
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Thomas Lambin
- Endoscopy Division, Édouard Herriot Hospital, 69003 Lyon, France; (T.L.); (M.P.)
| | - Robert Andrew Drainville
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Aurélien Dupré
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Mathieu Pioche
- Endoscopy Division, Édouard Herriot Hospital, 69003 Lyon, France; (T.L.); (M.P.)
| | - David Melodelima
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Cyril Lafon
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| |
Collapse
|
10
|
Servin F, Collins JA, Heiselman JS, Frederick-Dyer KC, Planz VB, Geevarghese SK, Brown DB, Miga MI. Fat Quantification Imaging and Biophysical Modeling for Patient-Specific Forecasting of Microwave Ablation Therapy. Front Physiol 2022; 12:820251. [PMID: 35185606 PMCID: PMC8850958 DOI: 10.3389/fphys.2021.820251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Computational tools are beginning to enable patient-specific surgical planning to localize and prescribe thermal dosing for liver cancer ablation therapy. Tissue-specific factors (e.g., tissue perfusion, material properties, disease state, etc.) have been found to affect ablative therapies, but current thermal dosing guidance practices do not account for these differences. Computational modeling of ablation procedures can integrate these sources of patient specificity to guide therapy planning and delivery. This paper establishes an imaging-data-driven framework for patient-specific biophysical modeling to predict ablation extents in livers with varying fat content in the context of microwave ablation (MWA) therapy. Patient anatomic scans were segmented to develop customized three-dimensional computational biophysical models and mDIXON fat-quantification images were acquired and analyzed to establish fat content and determine biophysical properties. Simulated patient-specific microwave ablations of tumor and healthy tissue were performed at four levels of fatty liver disease. Ablation models with greater fat content demonstrated significantly larger treatment volumes compared to livers with less severe disease states. More specifically, the results indicated an eightfold larger difference in necrotic volumes with fatty livers vs. the effects from the presence of more conductive tumor tissue. Additionally, the evolution of necrotic volume formation as a function of the thermal dose was influenced by the presence of a tumor. Fat quantification imaging showed multi-valued spatially heterogeneous distributions of fat deposition, even within their respective disease classifications (e.g., low, mild, moderate, high-fat). Altogether, the results suggest that clinical fatty liver disease levels can affect MWA, and that fat-quantitative imaging data may improve patient specificity for this treatment modality.
Collapse
Affiliation(s)
- Frankangel Servin
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, United States
| | - Jarrod A. Collins
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Jon S. Heiselman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, United States
| | - Katherine C. Frederick-Dyer
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Virginia B. Planz
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sunil K. Geevarghese
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Daniel B. Brown
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Michael I. Miga
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Michael I. Miga,
| |
Collapse
|
11
|
Karunakaran CP, Burgess MT, Rao MB, Holland CK, Mast TD. Effect of Overpressure on Acoustic Emissions and Treated Tissue Histology in ex Vivo Bulk Ultrasound Ablation. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2360-2376. [PMID: 34023187 PMCID: PMC8243850 DOI: 10.1016/j.ultrasmedbio.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Bulk ultrasound ablation is a thermal therapy approach in which tissue is heated by unfocused or weakly focused sonication (average intensities on the order of 100 W/cm2) to achieve coagulative necrosis within a few minutes exposure time. Assessing the role of bubble activity, including acoustic cavitation and tissue vaporization, in bulk ultrasound ablation may help in making bulk ultrasound ablation safer and more effective for clinical applications. Here, two series of ex vivo ablation trials were conducted to investigate the role of bubble activity and tissue vaporization in bulk ultrasound ablation. Fresh bovine liver tissue was ablated with unfocused, continuous-wave ultrasound using ultrasound image-ablate arrays sonicating at 31 W/cm2 (0.9 MPa amplitude) for either 20 min at a frequency of 3.1 MHz or 10 min at 4.8 MHz. Tissue specimens were maintained at a static overpressure of either 0.52 or 1.2 MPa to suppress bubble activity and tissue vaporization or at atmospheric pressure for control groups. A passive cavitation detector was used to record subharmonic (1.55 or 2.4 MHz), broadband (1.2-1.5 MHz) and low-frequency (5-20 kHz) acoustic emissions. Treated tissue was stained with 2% triphenyl tetrazolium chloride to evaluate thermal lesion dimensions. Subharmonic emissions were significantly reduced in overpressure groups compared with control groups. Correlations observed between acoustic emissions and lesion dimensions were significant and positive for the 3.1-MHz series, but significant and negative for the 4.8-MHz series. The results indicate that for bulk ultrasound ablation, where both acoustic cavitation and tissue vaporization are possible, bubble activity can enhance ablation in the absence of tissue vaporization, but can reduce thermal lesion dimensions in the presence of vaporization.
Collapse
Affiliation(s)
| | - Mark T Burgess
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Marepalli B Rao
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA; Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christy K Holland
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | - T Douglas Mast
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
12
|
Kok HP, Cressman ENK, Ceelen W, Brace CL, Ivkov R, Grüll H, Ter Haar G, Wust P, Crezee J. Heating technology for malignant tumors: a review. Int J Hyperthermia 2021; 37:711-741. [PMID: 32579419 DOI: 10.1080/02656736.2020.1779357] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 °C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 °C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors.
Collapse
Affiliation(s)
- H Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik N K Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
| | - Christopher L Brace
- Department of Radiology and Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Holger Grüll
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Gail Ter Haar
- Department of Physics, The Institute of Cancer Research, London, UK
| | - Peter Wust
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Huang H, Zhang L, Moser MAJ, Zhang W, Zhang B. A review of antenna designs for percutaneous microwave ablation. Phys Med 2021; 84:254-264. [PMID: 33773908 DOI: 10.1016/j.ejmp.2021.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 12/15/2022] Open
Abstract
Microwave (MW) antenna is a key element in microwave ablation (MWA) treatments as the means that energy is delivered in a focused manner to the tumor and its surrounding area. The energy delivered results in a rise in temperature to a lethal level, resulting in cell death in the ablation zone. The delivery of energy and hence the success of MWA is closely dependent on the structure of the antennas. Therefore, three design criteria, such as expected ablation zone pattern, efficiency of energy delivery, and minimization of the diameter of the antennas have been the focus along the evolution of the MW antenna. To further improve the performance of MWA in the treatment of various tumors through inventing novel antennas, this article reviews the state-of-the-art and summarizes the development of MW antenna designs regarding the three design criteria.
Collapse
Affiliation(s)
- Hangming Huang
- Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Lifeng Zhang
- Department of General Surgery, the First Affiliated Hospital of Soochow University,Soochow University, Jiangsu, China
| | - Michael A J Moser
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Wenjun Zhang
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Bing Zhang
- Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China.
| |
Collapse
|
14
|
Wang D, Adams MS, Jones PD, Liu D, Burdette EC, Diederich CJ. High contrast ultrasonic method with multi-spatiotemporal compounding for monitoring catheter-based ultrasound thermal therapy: Development and Ex Vivo Evaluations. IEEE Trans Biomed Eng 2021; 68:3131-3141. [PMID: 33755552 DOI: 10.1109/tbme.2021.3067910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Changes in ultrasound backscatter energy (CBE) imaging can monitor thermal therapy. Catheter-based ultrasound (CBUS) can treat deep tumors with precise spatial control of energy deposition and ablation zones, of which CBE estimation can be limited by low contrast and robustness due to small or inconsistent changes in ultrasound data. This study develops a multi-spatiotemporal compounding CBE (MST-CBE) imaging approach for monitoring specific to CBUS thermal therapy. METHODS Ex vivo thermal ablations were performed with stereotactic positioning of a 180 directional CBUS applicator, temperature monitoring probes, endorectal US probe, and subsequent lesion sectioning and measurement. Five frames of raw radiofrequency data were acquired throughout in 15s intervals. Using window-by-window estimation methods, absolute and positive components of MST-CBE images at each point were obtained by the compounding ratio of squared envelope data within an increasing spatial size in each short-time window. RESULTS Compared with conventional US, Nakagami, and CBE imaging, the detection contrast and robustness quantified by tissue-modification-ratio improved by 37.24.7 (p<0.001), 37.55.2 (p<0.001), and 6.44.0 dB (p<0.05) in the MST-CBE imaging, respectively. Correlation coefficient and bias between cross-sectional dimensions of the ablation zones measured in tissue sections and estimated from MST-CBE were up to 0.91 (p<0.001) and -0.02 mm2, respectively. CONCLUSION The MST-CBE approach can monitor the detailed changes within target tissues and effectively characterize the dimensions of the ablation zone during CBUS energy deposition. SIGNIFICANCE The MST-CBE approach could be practical for improved accuracy and contrast of monitoring and evaluation for CBUS thermal therapy.
Collapse
|
15
|
Hansen M, Christensen D, Payne A. Experimental validation of acoustic and thermal modeling in heterogeneous phantoms using the hybrid angular spectrum method. Int J Hyperthermia 2021; 38:1617-1626. [PMID: 34763581 PMCID: PMC8672870 DOI: 10.1080/02656736.2021.2000046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 11/14/2022] Open
Abstract
PURPOSE The aim was to quantitatively validate the hybrid angular spectrum (HAS) algorithm, a rapid wave propagation technique for heterogeneous media, with both pressure and temperature measurements. METHODS Heterogeneous tissue-mimicking phantoms were used to evaluate the accuracy of the HAS acoustic modeling algorithm in predicting pressure and thermal patterns. Acoustic properties of the phantom components were measured by a through-transmission technique while thermal properties were measured with a commercial probe. Numerical models of each heterogeneous phantom were segmented from 3D MR images. Cylindrical phantoms 30-mm thick were placed in the pre-focal field of a focused ultrasound beam and 2D pressure measurements obtained with a scanning hydrophone. Peak pressure, full width at half maximum, and normalized root mean squared difference (RMSDn) between the measured and simulated patterns were compared. MR-guided sonications were performed on 150-mm phantoms to obtain MR temperature measurements. Using HAS-predicted power density patterns, temperature simulations were performed. Experimental and simulated temperature patterns were directly compared using peak and mean temperature plots, RMSDn metrics, and accuracy of heating localization. RESULTS The average difference between simulated and hydrophone-measured peak pressures was 9.0% with an RMSDn of 11.4%. Comparison of the experimental MRI-derived and simulated temperature patterns showed RMSDn values of 10.2% and 11.1% and distance differences between the centers of thermal mass of 2.0 and 2.2 mm. CONCLUSIONS These results show that the computationally rapid hybrid angular spectrum method can predict pressure and temperature patterns in heterogeneous models, including uncertainties in property values and other parameters, to within approximately 10%.
Collapse
Affiliation(s)
- Megan Hansen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Douglas Christensen
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Singh M, Singh T, Soni S. Pre-operative Assessment of Ablation Margins for Variable Blood Perfusion Metrics in a Magnetic Resonance Imaging Based Complex Breast Tumour Anatomy: Simulation Paradigms in Thermal Therapies. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 198:105781. [PMID: 33065492 DOI: 10.1016/j.cmpb.2020.105781] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVES Image-guided medical interventions facilitates precise visualization at treatment site. The conformal prediction for sparing healthy tissue fringes precisely in the vicinity of irregular tumour anatomy remains clinically challenging. Pre-clinical image-based computational modelling is imperative as it helps in enhancement of treatment quality, augmenting clinical-decision making, while planning, targeting, controlling, monitoring and assessing treatment response with an effective risk assessment before the onset of treatment in clinical settings. In this study, the influence of heat deposition rate (SAR), exposure duration, and variable blood perfusion metrics for a patient-specific breast tumour is quantified considering the tumour margins thereby suggesting need of geometrically accurate models. METHODS A three-dimensional realistic model mimicking dimensions of a female breast, comprising ~1.7 cm irregular tumour, was generated from patient specific two-dimensional DICOM format MRI images through image segmentation tools MIMICS 19.0® and 3-Matic 11.0® which is finally exported to COMSOL Multiphysics 5.2® as a volumetric mesh for finite element analysis. The Pennes bioheat transfer model and Arrhenius thermal damage model of cell-death are integrated to simulate a coupled biophysics problem. A comparative blood perfusion analysis is done to evaluate the response of tumour during heating considering thermal damage extent, including the tumour margins while sparing critical adjoining healthy tissues. RESULTS The evaluated thermal damage zones for 1 mm, 2 mm and 3 mm fringe heating region (beyond tumour boundary) reveals 0.09%, 0.21% and 0.34% thermal damage to the healthy tissue (which is <1%) and thus successful necrosis of the tumour. The iterative computational experiments suggests treatment margins < 5 mm are sufficient enough as heating beyond 3 mm fringe layer leads to higher damage surrounding the tumour approximately 1.5 times the tumour volume. Further, the heat-dosage requirements are 22% more for highly perfused tumour as compared to moderately perfused tumour with an approximate double time to ablate the whole tumour volume. CONCLUSIONS Depending on the blood perfusion characteristics of a tumour, it is a trade-off between heat-dosage (SAR) and exposure/treatment duration to get desired thermal damage including the irregular tumour boundaries while taking into account, the margin of healthy tissue. The suggested patient-specific integrated multiphysics-model based on MRI-Images may be implemented for pre-treatment planning based on the tumour blood perfusion to evaluate the thermal ablation zone dimensions clinically and thereby avoiding the damage of off-target tissues. Thus, risks involving underestimation or overestimation of thermal coagulation zones may be minimised while preserving the surrounding normal breast parenchyma.
Collapse
Affiliation(s)
- Manpreet Singh
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA; Biomedical Instrumentation Division, CSIR-Central Scientific Instruments Organisation, Chandigarh, India; Department of Mechanical Engineering, Thapar Institute of Engineering and Technology University, Patiala, Punjab, India.
| | - Tulika Singh
- Department of Radio-diagnosis and Imaging, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjeev Soni
- Biomedical Instrumentation Division, CSIR-Central Scientific Instruments Organisation, Chandigarh, India
| |
Collapse
|
17
|
Liu D, Adams M, Burdette EC, Diederich CJ. Dual-sectored transurethral ultrasound for thermal treatment of stress urinary incontinence: in silico studies in 3D anatomical models. Med Biol Eng Comput 2020; 58:1325-1340. [PMID: 32277340 DOI: 10.1007/s11517-020-02152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/25/2020] [Indexed: 11/24/2022]
Abstract
The purpose of this study is to investigate the feasibility and performance of a stationary, non-focused dual-sectored tubular transurethral ultrasound applicator for thermal exposure of tissue regions adjacent to the urethra for treatment of stress urinary incontinence (SUI) through acoustic and biothermal simulations on 3D anatomical models. Parametric studies in a generalized tissue model over dual-sectored ultrasound applicator configurations (acoustic surface intensities, lateral active acoustic output sector angles, and durations) were performed. Selected configurations and delivery strategies were applied on 3D pelvic anatomical models. Temperature and thermal dose distributions on the target region and surrounding tissues were calculated. Endovaginal cooling was explored as a strategy to mitigate vaginal heating. The 75-90° dual-sectored transurethral tubular transducer (3.5 mm outer diameter (OD), 14 mm length, 6.5 MHz, 8.8-10.2 W/cm2) and 2-3-min sonication duration were selected from the parametric study for acoustic and biothermal simulations on anatomical models. The transurethral applicator with two opposing 75-90° active lateral tubular sectors can create two heated volumes for a total of up to 1.8 cm3 over 60 EM43 °C, with at least 10 mm radial penetration depth, 1.2 mm urethral sparing, and no lethal damage to the vagina and adjacent bone (< 60 EM43 °C). Endovaginal cooling can be applied to further reduce the vaginal wall exposure (< 15 EM43 °C). Simulations on 3D anatomical models indicate that dual-sectored transurethral ultrasound applicators can selectively heat pelvic floor tissue lateral to the mid-urethra in short treatment durations, without damaging adjacent vaginal and bone tissues, as a potential alternative treatment option for stress urinary incontinence. Graphical abstract Schema for in silico investigation of transurethral ultrasound thermal therapy applicator for minimally invasive treatment of SUI.
Collapse
Affiliation(s)
- Dong Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew Adams
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | | | - Chris J Diederich
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Singh S, Melnik R. Thermal ablation of biological tissues in disease treatment: A review of computational models and future directions. Electromagn Biol Med 2020; 39:49-88. [PMID: 32233691 DOI: 10.1080/15368378.2020.1741383] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Percutaneous thermal ablation has proven to be an effective modality for treating both benign and malignant tumours in various tissues. Among these modalities, radiofrequency ablation (RFA) is the most promising and widely adopted approach that has been extensively studied in the past decades. Microwave ablation (MWA) is a newly emerging modality that is gaining rapid momentum due to its capability of inducing rapid heating and attaining larger ablation volumes, and its lesser susceptibility to the heat sink effects as compared to RFA. Although the goal of both these therapies is to attain cell death in the target tissue by virtue of heating above 50°C, their underlying mechanism of action and principles greatly differs. Computational modelling is a powerful tool for studying the effect of electromagnetic interactions within the biological tissues and predicting the treatment outcomes during thermal ablative therapies. Such a priori estimation can assist the clinical practitioners during treatment planning with the goal of attaining successful tumour destruction and preservation of the surrounding healthy tissue and critical structures. This review provides current state-of-the-art developments and associated challenges in the computational modelling of thermal ablative techniques, viz., RFA and MWA, as well as touch upon several promising avenues in the modelling of laser ablation, nanoparticles assisted magnetic hyperthermia and non-invasive RFA. The application of RFA in pain relief has been extensively reviewed from modelling point of view. Additionally, future directions have also been provided to improve these models for their successful translation and integration into the hospital work flow.
Collapse
Affiliation(s)
- Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada.,BCAM - Basque Center for Applied Mathematics, Bilbao, Spain
| |
Collapse
|
19
|
Yang CH, Li W, Chen RK. Determination of Tissue Thermal Conductivity as a Function of Thermal Dose and Its Application in Finite Element Modeling of Electrosurgical Vessel Sealing. IEEE Trans Biomed Eng 2020; 67:2862-2869. [PMID: 32054566 DOI: 10.1109/tbme.2020.2972465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Electrosurgical vessel sealing is a process commonly used to control bleeding during surgical procedures. Finite element (FE) modeling is often performed to obtain a better understanding of thermal spread during this process. The accuracy of the FE model depends on the implemented material properties. Thermal conductivity is one of the most important properties that affect temperature distribution. The goal of this study is to determine the tissue thermal conductivity as a function of thermal dose. Methods: We developed an iterative approach to correlating tissue thermal conductivity to more accurately calculated thermal dose, which cannot be experimentally measured. The resulting regression model was then implemented into an electrosurgical vessel sealing FE model to examine the accuracy of this FE model. Results: The results show that with the regression model, more reasonable temperature and thermal dose prediction can be achieved at the center of the sealed vessel tissue. The resulting electrical current and impedance from the FE model match with the experimental results. Conclusion: The developed approach can be used to determine the correlation between thermal dose and thermal conductivity. Describing the thermal conductivity as a function of thermal dose allows modeling of irreversible changes in tissue properties. Significance: By having a more accurate temperature estimation at the center of the sealed vessel, more insight is provided into how the tissue reacts during the vessel sealing process.
Collapse
|
20
|
Liu D, Adams MS, Diederich CJ. Endobronchial high-intensity ultrasound for thermal therapy of pulmonary malignancies: simulations with patient-specific lung models. Int J Hyperthermia 2019; 36:1108-1121. [PMID: 31726895 DOI: 10.1080/02656736.2019.1683234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Objective: This study investigates the feasibility of endobronchial ultrasound applicators for thermal ablation of lung tumors using acoustic and biothermal simulations.Methods: Endobronchial ultrasound applicators with planar (10 mm width) or tubular transducers (6 mm outer diameter (OD)) encapsulated by expandable coupling balloons (10 mm OD) are considered for treating tumors from within major airways; smaller catheter-based applicators with tubular transducers (1.7-4 mm OD) and coupling balloons (2.5-5 mm OD) are considered within deep lung airways. Parametric studies were applied to evaluate transducer configurations, tumor size and location, effects of acoustic reflection and absorption at tumor-lung parenchyma interfaces, and the utility of lung flooding for enhancing accessibility. Patient-specific anatomical lung models, with various geometries and locations of tumors, were developed for further evaluation of device performance and treatment strategies. Temperature and thermal dose distributions were calculated and reported.Results: Large endobronchial applicators with planar or tubular transducers (3-7 MHz, 5 min) can thermally ablate tumors attached to major bronchi at up to 3 cm depth, where reflection and attenuation of normal lung localize tumor heating; with lung flooding, endobronchial applicators can ablate ∼2 cm diameter tumors with up to ∼2 cm separation from the bronchial wall, without significant heating of intervening tissue. Smaller catheter-based tubular applicators can ablate tumors up to 2-3 cm in diameter from deep lung airways (5-9 MHz, 5 min).Conclusion: Simulations demonstrate the feasibility of endobronchial ultrasound applicators to deliver thermal coagulation of 2-3 cm diameter tumors adjacent to or accessible from major and deep lung airways.
Collapse
Affiliation(s)
- Dong Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew S Adams
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Chris J Diederich
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
21
|
Neural network methodology for real-time modelling of bio-heat transfer during thermo-therapeutic applications. Artif Intell Med 2019; 101:101728. [DOI: 10.1016/j.artmed.2019.101728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/30/2019] [Accepted: 09/26/2019] [Indexed: 12/26/2022]
|
22
|
Zhang J, Hills J, Zhong Y, Shirinzadeh B, Smith J, Gu C. Modeling of soft tissue thermal damage based on GPU acceleration. Comput Assist Surg (Abingdon) 2019; 24:5-12. [DOI: 10.1080/24699322.2018.1557891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Jinao Zhang
- School of Engineering, RMIT University, Bundoora, Australia
| | - Jeremy Hills
- School of Engineering, RMIT University, Bundoora, Australia
| | - Yongmin Zhong
- School of Engineering, RMIT University, Bundoora, Australia
| | - Bijan Shirinzadeh
- Robotics and Mechatronics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia
| | - Julian Smith
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | | |
Collapse
|
23
|
Adams MS, Diederich CJ. Deployable cylindrical phased-array applicator mimicking a concentric-ring configuration for minimally-invasive delivery of therapeutic ultrasound. Phys Med Biol 2019; 64:125001. [PMID: 31108478 DOI: 10.1088/1361-6560/ab2318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A novel design for a deployable catheter-based ultrasound applicator for endoluminal and laparoscopic intervention is introduced. By combining a 1D cylindrical ring phased array with an expandable paraboloid or conical-shaped balloon-based reflector, the applicator can be controllably collapsed for compact delivery and deployed to mimic a forward-firing larger diameter concentric ring array with tight focusing and electronic steering capabilities in depth. Comprehensive acoustic and biothermal parametric studies were employed to characterize the capabilities of the applicator design as a function of transducer dimensions, phased array configuration, and balloon reflector geometry. Modeling results indicate that practical balloon sizes (43-57 mm expanded diameter), transducer array configurations (e.g. 1.5 MHz, 10 mm OD × 20 mm length, 8 or 16 array elements), and sonication durations (30 s) are capable of producing spatially-localized acoustic intensity focal patterns and ablative thermal lesions (width: 2.8-4.8 mm; length: 5.3-40.1 mm) in generalized soft tissue across a 5-100 mm depth range. Larger focal intensity gain magnitudes and narrower focal dimensions are attainable using paraboloid-shaped balloon reflectors with natural geometric focal depths of 25-55 mm, whereas conical-shaped reflectors (angled 45-55°) produce broader foci and extend electronic steering range in depth. A proof-of-concept phased array applicator assembly was fabricated and characterized using hydrophone and radiation force balance measurements and demonstrated good agreement with simulation. The results of this study suggest that combining small diameter cylindrical phased arrays with expandable balloon reflectors can enhance minimally invasive ultrasound-based intervention by augmenting achievable focal gains and penetration depths with dynamic adjustment of treatment depth.
Collapse
|
24
|
ZHANG JINAO, HILLS JEREMY, ZHONG YONGMIN, SHIRINZADEH BIJAN, SMITH JULIAN, GU CHENGFAN. TEMPERATURE-DEPENDENT THERMOMECHANICAL MODELING OF SOFT TISSUE DEFORMATION. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519418400213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Modeling of thermomechanical behavior of soft tissues is vitally important for the development of surgical simulation of hyperthermia procedures. Currently, most literature considers only temperature-independent thermal parameters, such as the temperature-independent tissue specific heat capacity, thermal conductivity and stress–strain relationships for soft tissue thermomechanical modeling; however, these thermal parameters vary with temperatures as shown in the literature. This paper investigates the effect of temperature-dependent thermal parameters for soft tissue thermomechanical modeling. It establishes formulations for specific heat capacity, thermal conductivity and stress–strain relationships of soft tissues, all of which are temperature-dependent parameters. Simulations and comparison analyses are conducted, showing a different thermal-induced stress distribution of lower magnitudes when considering temperature-dependent thermal parameters of soft tissues.
Collapse
Affiliation(s)
- JINAO ZHANG
- School of Engineering, RMIT University, Bundoora, VIC 3083, Australia
| | - JEREMY HILLS
- School of Engineering, RMIT University, Bundoora, VIC 3083, Australia
| | - YONGMIN ZHONG
- School of Engineering, RMIT University, Bundoora, VIC 3083, Australia
| | - BIJAN SHIRINZADEH
- Robotics and Mechatronics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - JULIAN SMITH
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - CHENGFAN GU
- Department of Mechanical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
25
|
ZHANG JINAO, HILLS JEREMY, ZHONG YONGMIN, SHIRINZADEH BIJAN, SMITH JULIAN, GU CHENGFAN. GPU-ACCELERATED FINITE ELEMENT MODELING OF BIO-HEAT CONDUCTION FOR SIMULATION OF THERMAL ABLATION. J MECH MED BIOL 2018. [DOI: 10.1142/s0219519418400122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Efficient simulation of heating processes in thermal ablation is of great importance for surgical simulation of thermal ablation procedures. This paper presents a Graphics Processing Unit (GPU) assisted finite element methodology for modeling and analysis of bio-heat transfer processes in the treatment of thermal ablation. The proposed methodology employs finite element method for discretization of the bio-heat equation, and the finite element modeling is implemented using the High-Level Shader Language of the Microsoft Direct3D 11. Simulations and comparison analyses are conducted, demonstrating computational performance improvement of up to 55.3 times using the proposed methodology.
Collapse
Affiliation(s)
- JINAO ZHANG
- School of Engineering, RMIT University, Bundoora, VIC 3083, Australia
| | - JEREMY HILLS
- School of Engineering, RMIT University, Bundoora, VIC 3083, Australia
| | - YONGMIN ZHONG
- School of Engineering, RMIT University, Bundoora, VIC 3083, Australia
| | - BIJAN SHIRINZADEH
- Robotics and Mechatronics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - JULIAN SMITH
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - CHENGFAN GU
- Department of Mechanical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
26
|
Johnson SL, Christensen DA, Dillon CR, Payne A. Validation of hybrid angular spectrum acoustic and thermal modelling in phantoms. Int J Hyperthermia 2018; 35:578-590. [PMID: 30320518 PMCID: PMC6365205 DOI: 10.1080/02656736.2018.1513168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022] Open
Abstract
In focused ultrasound (FUS) thermal ablation of diseased tissue, acoustic beam and thermal simulations enable treatment planning and optimization. In this study, a treatment-planning methodology that uses the hybrid angular spectrum (HAS) method and the Pennes' bioheat equation (PBHE) is experimentally validated in homogeneous tissue-mimicking phantoms. Simulated three-dimensional temperature profiles are compared to volumetric MR thermometry imaging (MRTI) of FUS sonications in the phantoms, whose acoustic and thermal properties are independently measured. Additionally, Monte Carlo (MC) uncertainty analysis is performed to quantify the effect of tissue property uncertainties on simulation results. The mean error between simulated and experimental spatiotemporal peak temperature rise was +0.33°C (+6.9%). Despite this error, the experimental temperature rise fell within the expected uncertainty of the simulation, as determined by the MC analysis. The average errors of the simulated transverse and longitudinal full width half maximum (FWHM) of the profiles were -1.9% and 7.5%, respectively. A linear regression and local sensitivity analysis revealed that simulated temperature amplitude is more sensitive to uncertainties in simulation inputs than in the profile width and shape. Acoustic power, acoustic attenuation and thermal conductivity had the greatest impact on peak temperature rise uncertainty; thermal conductivity and volumetric heat capacity had the greatest impact on FWHM uncertainty. This study validates that using the HAS and PBHE method can adequately predict temperature profiles from single sonications in homogeneous media. Further, it informs the need to accurately measure or predict patient-specific properties for improved treatment planning of ablative FUS surgeries.
Collapse
Affiliation(s)
- Sara L. Johnson
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Douglas A. Christensen
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
- Department of Computer and Electrical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Christopher R. Dillon
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
27
|
Yang CH, Li W, Chen RK. Characterization and Modeling of Tissue Thermal Conductivity During an Electrosurgical Joining Process. IEEE Trans Biomed Eng 2018; 65:365-370. [DOI: 10.1109/tbme.2017.2770095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Saccomandi P, Di Matteo FM, Schena E, Quero G, Massaroni C, Giurazza F, Costamagna G, Silvestri S. Tapered fiber optic applicator for laser ablation: Theoretical and experimental assessment of thermal effects on ex vivo model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:4529-4532. [PMID: 29060904 DOI: 10.1109/embc.2017.8037863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Laser Ablation (LA) is a minimally invasive technique for tumor removal. The laser light is guided into the target tissue by a fiber optic applicator; thus the physical features of the applicator tip strongly influence size and shape of the tissue lesion. This study aims to verify the geometry of the lesion achieved by a tapered-tip applicator, and to investigate the percentage of thermally damaged cells induced by the tapered-tip fiber optic applicator. A theoretical model was implemented to simulate: i) the distribution of laser light fluence rate in the tissue through Monte Carlo method, ii) the induced temperature distribution, by means of the Bio Heat Equation, iii) the tissue injury, by Arrhenius integral. The results obtained by the implementation of the theoretical model were experimentally assessed. Ex vivo porcine liver underwent LA with tapered-tip applicator, at different laser settings (laser power of 1 W and 1.7 W, deposited energy equal to 330 J and 500 J, respectively). Almost spherical volume lesions were produced. The thermal damage was assessed by measuring the diameter of the circular-shaped lesion. The comparison between experimental results and theoretical prediction shows that the thermal damage discriminated by visual inspection always corresponds to a percentage of damaged cells of 96%. A tapered-tip applicator allows obtaining localized and reproducible damage close to spherical shape, whose diameter is related to the laser settings, and the simple theoretical model described is suitable to predict the effects, in terms of thermal damage, on ex vivo liver. Further trials should be addressed to adapt the model also on in vivo tissue, aiming to develop a tool useful to support the physician in clinical application of LA.
Collapse
|
29
|
Adams MS, Salgaonkar VA, Scott SJ, Sommer G, Diederich CJ. Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain. Med Phys 2017; 44:5339-5356. [PMID: 28681404 DOI: 10.1002/mp.12458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/19/2017] [Accepted: 07/02/2017] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Catheter-based ultrasound applicators can generate thermal ablation of tissues adjacent to body lumens, but have limited focusing and penetration capabilities due to the small profile of integrated transducers required for the applicator to traverse anatomical passages. This study investigates a design for an endoluminal or laparoscopic ultrasound applicator with deployable acoustic reflector and fluid lens components, which can be expanded after device delivery to increase the effective acoustic aperture and allow for deeper and dynamically adjustable target depths. Acoustic and biothermal theoretical studies, along with benchtop proof-of-concept measurements, were performed to investigate the proposed design. METHODS The design schema consists of an array of tubular transducer(s) situated at the end of a catheter assembly, surrounded by an expandable water-filled conical balloon with a secondary reflective compartment that redirects acoustic energy distally through a plano-convex fluid lens. By controlling the lens fluid volume, the convex surface can be altered to adjust the focal length or collapsed for device insertion or removal. Acoustic output of the expanded applicator assembly was modeled using the rectangular radiator method and secondary sources, accounting for reflection and refraction at interfaces. Parametric studies of transducer radius (1-5 mm), height (3-25 mm), frequency (1.5-3 MHz), expanded balloon diameter (10-50 mm), lens focal length (10-100 mm), lens fluid (silicone oil, perfluorocarbon), and tissue attenuation (0-10 Np/m/MHz) on beam distributions and focal gain were performed. A proof-of-concept applicator assembly was fabricated and characterized using hydrophone-based intensity profile measurements. Biothermal simulations of endoluminal ablation in liver and pancreatic tissue were performed for target depths between 2 and 10 cm. RESULTS Simulations indicate that focal gain and penetration depth scale with the expanded reflector-lens balloon diameter, with greater achievable performance using perfluorocarbon lens fluid. Simulations of a 50 mm balloon OD, 10 mm transducer outer diameter (OD), 1.5 MHz assembly in water resulted in maximum intensity gain of ~170 (focal dimensions: ~12 mm length × 1.4 mm width) at ~5 cm focal depth and focal gains above 100 between 24 and 84 mm depths. A smaller (10 mm balloon OD, 4 mm transducer OD, 1.5 MHz) configuration produced a maximum gain of 6 at 9 mm depth. Compared to a conventional applicator with a fixed spherically focused transducer of 12 mm diameter, focal gain was enhanced at depths beyond 20 mm for assembly configurations with balloon diameters ≥ 20 mm. Hydrophone characterizations of the experimental assembly (31 mm reflector/lens diameter, 4.75 mm transducer radius, 1.7 MHz) illustrated focusing at variable depths between 10-70 mm with a maximum gain of ~60 and demonstrated agreement with theoretical simulations. Biothermal simulations (30 s sonication, 75 °C maximum) indicate that investigated applicator assembly configurations, at 30 mm and 50 mm balloon diameters, could create localized ellipsoidal thermal lesions increasing in size from 10 to 55 mm length × 3-6 mm width in liver tissue as target depth increased from 2 to 10 cm. CONCLUSIONS Preliminary theoretical and experimental analysis demonstrates that combining endoluminal ultrasound with an expandable acoustic reflector and fluid lens assembly can significantly enhance acoustic focal gain and penetration from inherently smaller diameter catheter-based applicators.
Collapse
Affiliation(s)
- Matthew S Adams
- Thermal Therapy Research Group, University of California San Francisco, 2340 Sutter Street, S341, San Francisco, CA, 94115, USA.,University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, University of California, CA, USA
| | - Vasant A Salgaonkar
- Thermal Therapy Research Group, University of California San Francisco, 2340 Sutter Street, S341, San Francisco, CA, 94115, USA
| | - Serena J Scott
- Thermal Therapy Research Group, University of California San Francisco, 2340 Sutter Street, S341, San Francisco, CA, 94115, USA
| | - Graham Sommer
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Chris J Diederich
- Thermal Therapy Research Group, University of California San Francisco, 2340 Sutter Street, S341, San Francisco, CA, 94115, USA.,University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, University of California, CA, USA
| |
Collapse
|
30
|
Dillon CR, Rieke V, Ghanouni P, Payne A. Thermal diffusivity and perfusion constants from in vivo MR-guided focussed ultrasound treatments: a feasibility study. Int J Hyperthermia 2017; 34:352-362. [DOI: 10.1080/02656736.2017.1340677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Christopher R. Dillon
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Viola Rieke
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
31
|
Scott SJ, Adams MS, Salgaonkar V, Sommer FG, Diederich CJ. Theoretical investigation of transgastric and intraductal approaches for ultrasound-based thermal therapy of the pancreas. J Ther Ultrasound 2017; 5:10. [PMID: 28469915 PMCID: PMC5414307 DOI: 10.1186/s40349-017-0090-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/07/2017] [Indexed: 02/07/2023] Open
Abstract
Background The goal of this study was to theoretically investigate the feasibility of intraductal and transgastric approaches to ultrasound-based thermal therapy of pancreatic tumors, and to evaluate possible treatment strategies. Methods This study considered ultrasound applicators with 1.2 mm outer diameter tubular transducers, which are inserted into the tissue to be treated by an endoscopic approach, either via insertion through the gastric wall (transgastric) or within the pancreatic duct lumen (intraductal). 8 patient-specific, 3D, transient, biothermal and acoustic finite element models were generated to model hyperthermia (n = 2) and ablation (n = 6), using sectored (210°–270°, n = 4) and 360° (n = 4) transducers for treatment of 3.3–17.0 cm3 tumors in the head (n = 5), body (n = 2), and tail (n = 1) of the pancreas. A parametric study was performed to determine appropriate treatment parameters as a function of tissue attenuation, blood perfusion rates, and distance to sensitive anatomy. Results Parametric studies indicated that pancreatic tumors up to 2.5 or 2.7 cm diameter can be ablated within 10 min with the transgastric and intraductal approaches, respectively. Patient-specific simulations demonstrated that 67.1–83.3% of the volumes of four sample 3.3–11.4 cm3 tumors could be ablated within 3–10 min using transgastric or intraductal approaches. 55.3–60.0% of the volume of a large 17.0 cm3 tumor could be ablated using multiple applicator positions within 20–30 min with either transgastric or intraductal approaches. 89.9–94.7% of the volume of two 4.4–11.4 cm3 tumors could be treated with intraductal hyperthermia. Sectored applicators are effective in directing acoustic output away from and preserving sensitive structures. When acoustic energy is directed towards sensitive structures, applicators should be placed at least 13.9–14.8 mm from major vessels like the aorta, 9.4–12.0 mm from other vessels, depending on the vessel size and flow rate, and 14 mm from the duodenum. Conclusions This study demonstrated the feasibility of generating shaped or conformal ablative or hyperthermic temperature distributions within pancreatic tumors using transgastric or intraductal ultrasound.
Collapse
Affiliation(s)
- Serena J Scott
- Department of Radiation Oncology, Thermal Therapy Research Group, University of California, San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94143-1708 USA
| | - Matthew S Adams
- Department of Radiation Oncology, Thermal Therapy Research Group, University of California, San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94143-1708 USA.,UC Berkeley - UC San Francisco Graduate Program in Bioengineering, California, USA
| | - Vasant Salgaonkar
- Department of Radiation Oncology, Thermal Therapy Research Group, University of California, San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94143-1708 USA
| | - F Graham Sommer
- Department of Radiology, Stanford University School of Medicine, Stanford, CA USA
| | - Chris J Diederich
- Department of Radiation Oncology, Thermal Therapy Research Group, University of California, San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94143-1708 USA.,UC Berkeley - UC San Francisco Graduate Program in Bioengineering, California, USA
| |
Collapse
|
32
|
Johnson SL, Dillon C, Odéen H, Parker D, Christensen D, Payne A. Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique. Int J Hyperthermia 2016; 32:723-34. [PMID: 27441427 PMCID: PMC5054420 DOI: 10.1080/02656736.2016.1216184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/16/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022] Open
Abstract
MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment.
Collapse
Affiliation(s)
| | | | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah
| | - Dennis Parker
- Department of Radiology and Imaging Sciences, University of Utah
| | - Douglas Christensen
- Department of Bioengineering, University of Utah
- Department of Electrical and Computer Engineering, University of Utah
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah
| |
Collapse
|
33
|
Lopresto V, Pinto R, Farina L, Cavagnaro M. Treatment planning in microwave thermal ablation: clinical gaps and recent research advances. Int J Hyperthermia 2016; 33:83-100. [PMID: 27431328 DOI: 10.1080/02656736.2016.1214883] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Microwave thermal ablation (MTA) is a minimally invasive therapeutic technique aimed at destroying pathologic tissues through a very high temperature increase induced by the absorption of an electromagnetic field at microwave (MW) frequencies. Open problems, which are delaying MTA applications in clinical practice, are mainly linked to the extremely high temperatures, up to 120 °C, reached by the tissue close to the antenna applicator, as well as to the ability of foreseeing and controlling the shape and dimension of the thermally ablated area. Recent research was devoted to the characterisation of dielectric, thermal and physical properties of tissue looking at their changes with the increasing temperature, looking for possible developments of reliable, automatic and personalised treatment planning. In this paper, a review of the recently obtained results as well as new unpublished data will be presented and discussed.
Collapse
Affiliation(s)
- V Lopresto
- a Division of Health Protection Technologies , Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) , Rome , Italy
| | - R Pinto
- a Division of Health Protection Technologies , Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) , Rome , Italy
| | - L Farina
- b Department of Information Engineering, Electronics and Telecommunications , Sapienza University of Rome , Rome , Italy
| | - M Cavagnaro
- b Department of Information Engineering, Electronics and Telecommunications , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
34
|
A review of radiofrequency ablation: Large target tissue necrosis and mathematical modelling. Phys Med 2016; 32:961-71. [PMID: 27461969 DOI: 10.1016/j.ejmp.2016.07.092] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/06/2016] [Accepted: 07/18/2016] [Indexed: 12/15/2022] Open
Abstract
Radiofrequency ablation (RFA) is an effective clinical method for tumour ablation with minimum intrusiveness. However, the use of RFA is mostly restricted to small tumours, especially those <3cm in diameter. This paper discusses the state-of-the-art of RFA, drawn from experimental and clinical results, for large tumours (i.e. ⩾3cm in diameter). In particular, the paper analyses clinical results related to target tissue necrosis (TTN) and mathematical modelling of the RFA procedure to understand the mechanism whereby the TTN is limited to under 3cm with RFA. This paper also discusses a strategy of controlling of the temperature of target tissue in the RFA procedure with the state-of-art device, which has the potential to increase the size of TTN. This paper ends with a discussion of some future ideas to solve the so-called 3-cm problem with RFA.
Collapse
|
35
|
Deshazer G, Merck D, Hagmann M, Dupuy DE, Prakash P. Physical modeling of microwave ablation zone clinical margin variance. Med Phys 2016; 43:1764. [DOI: 10.1118/1.4942980] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
36
|
Adams MS, Scott SJ, Salgaonkar VA, Sommer G, Diederich CJ. Thermal therapy of pancreatic tumours using endoluminal ultrasound: Parametric and patient-specific modelling. Int J Hyperthermia 2016; 32:97-111. [PMID: 27097663 DOI: 10.3109/02656736.2015.1119892] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The aim of this study is to investigate endoluminal ultrasound applicator configurations for volumetric thermal ablation and hyperthermia of pancreatic tumours using 3D acoustic and biothermal finite element models. MATERIALS AND METHODS Parametric studies compared endoluminal heating performance for varying applicator transducer configurations (planar, curvilinear-focused, or radial-diverging), frequencies (1-5 MHz), and anatomical conditions. Patient-specific pancreatic head and body tumour models were used to evaluate feasibility of generating hyperthermia and thermal ablation using an applicator positioned in the duodenal or stomach lumen. Temperature and thermal dose were calculated to define ablation (> 240 EM(43 °C)) and moderate hyperthermia (40-45 °C) boundaries, and to assess sparing of sensitive tissues. Proportional-integral control was incorporated to regulate maximum temperature to 70-80 °C for ablation and 45 °C for hyperthermia in target regions. RESULTS Parametric studies indicated that 1-3 MHz planar transducers are the most suitable for volumetric ablation, producing 5-8 cm(3) lesion volumes for a stationary 5-min sonication. Curvilinear-focused geometries produce more localised ablation to 20-45 mm depth from the GI tract and enhance thermal sparing (T(max) < 42 °C) of the luminal wall. Patient anatomy simulations show feasibility in ablating 60.1-92.9% of head/body tumour volumes (4.3-37.2 cm(3)) with dose < 15 EM(43 °C) in the luminal wall for 18-48 min treatment durations, using 1-3 applicator placements in GI lumen. For hyperthermia, planar and radial-diverging transducers could maintain up to 8 cm(3) and 15 cm(3) of tissue, respectively, between 40-45 °C for a single applicator placement. CONCLUSIONS Modelling studies indicate the feasibility of endoluminal ultrasound for volumetric thermal ablation or hyperthermia treatment of pancreatic tumour tissue.
Collapse
Affiliation(s)
- Matthew S Adams
- a Thermal Therapy Research Group, University of California , San Francisco , California .,b University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering , California , and
| | - Serena J Scott
- a Thermal Therapy Research Group, University of California , San Francisco , California
| | - Vasant A Salgaonkar
- a Thermal Therapy Research Group, University of California , San Francisco , California
| | - Graham Sommer
- c Stanford Medical Center , Stanford , California , USA
| | - Chris J Diederich
- a Thermal Therapy Research Group, University of California , San Francisco , California .,b University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering , California , and
| |
Collapse
|
37
|
Huang CW, Sun MK, Chen BT, Shieh J, Chen CS, Chen WS. Simulation of thermal ablation by high-intensity focused ultrasound with temperature-dependent properties. ULTRASONICS SONOCHEMISTRY 2015; 27:456-465. [PMID: 26186867 DOI: 10.1016/j.ultsonch.2015.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
An integrated computational framework was developed in this study for modeling high-intensity focused ultrasound (HIFU) thermal ablation. The temperature field was obtained by solving the bioheat transfer equation (BHTE) through the finite element method; while, the thermal lesion was considered as a denatured material experiencing phase transformation and modeled with the latent heat. An equivalent attenuation coefficient, which considers the temperature-dependent properties of the target material and the ultrasound diffraction due to bubbles, was proposed in the nonlinear thermal transient analysis. Finally, a modified thermal dose formulation was proposed to predict the lesion size, shape and location. In-vitro thermal ablation experiments on transparent tissue phantoms at different energy levels were carried out to validate this computational framework. The temperature histories and lesion areas from the proposed model show good correlation with those from the in-vitro experiments.
Collapse
Affiliation(s)
- C W Huang
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, Taiwan.
| | - M K Sun
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & College of Medicine, Taipei, Taiwan; Division of Medical Engineering Research, National Health Research Institutes, Miaoli, Taiwan
| | - B T Chen
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - J Shieh
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - C S Chen
- Department of Civil Engineering, National Taiwan University, Taipei, Taiwan
| | - W S Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & College of Medicine, Taipei, Taiwan; Division of Medical Engineering Research, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
38
|
McWilliams BT, Schnell EE, Curto S, Fahrbach TM, Prakash P. A Directional Interstitial Antenna for Microwave Tissue Ablation: Theoretical and Experimental Investigation. IEEE Trans Biomed Eng 2015; 62:2144-50. [DOI: 10.1109/tbme.2015.2413672] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Soni S, Tyagi H, Taylor RA, Kumar A. The influence of tumour blood perfusion variability on thermal damage during nanoparticle-assisted thermal therapy. Int J Hyperthermia 2015; 31:615-25. [DOI: 10.3109/02656736.2015.1040470] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
40
|
Chao YT, Hsu CJ, Yu YL, Yen JY, Ho MC, Chen YY, Chang HC, Lian FL. A novel sound-blocking structure based on the muffler principle for rib-sparing transcostal high-intensity focused ultrasound treatment. Int J Hyperthermia 2015; 31:507-27. [DOI: 10.3109/02656736.2015.1028483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Yu-Tin Chao
- Department of Mechanical Engineering, National Taiwan University, Taipei,
| | - Che-Jung Hsu
- Department of Mechanical Engineering, National Taiwan University, Taipei,
| | - Ya-Lin Yu
- Department of Mechanical Engineering, National Taiwan University, Taipei,
| | - Jia-Yush Yen
- Department of Mechanical Engineering, National Taiwan University, Taipei,
| | - Ming-Chih Ho
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, and
| | - Yung-Yaw Chen
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Hung-Cheng Chang
- Department of Mechanical Engineering, National Taiwan University, Taipei,
| | - Feng-Li Lian
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| |
Collapse
|
41
|
Scott SJ, Salgaonkar V, Prakash P, Burdette EC, Diederich CJ. Interstitial ultrasound ablation of vertebral and paraspinal tumours: parametric and patient-specific simulations. Int J Hyperthermia 2015; 30:228-44. [PMID: 25017322 DOI: 10.3109/02656736.2014.915992] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Theoretical parametric and patient-specific models are applied to assess the feasibility of interstitial ultrasound ablation of tumours in and near the spine and to identify potential treatment delivery strategies. METHODS 3D patient-specific finite element models (n = 11) of interstitial ultrasound ablation of tumours associated with the spine were generated. Gaseous nerve insulation and various applicator configurations, frequencies (3 and 7 MHz), placement trajectories, and tumour locations were simulated. Parametric studies with multilayered models investigated the impacts of tumour attenuation, tumour dimension, and the thickness of bone insulating critical structures. Temperature and thermal dose were calculated to define ablation (>240 equivalent minutes at 43 °C (EM43 °C)) and safety margins (<45 °C and <6 EM43 °C), and to determine performance and required delivery parameters. RESULTS Osteolytic tumours (≤44 mm) encapsulated by bone could be successfully ablated with 7 MHz interstitial ultrasound (8.1-16.6 W/cm(2), 120-5900 J, 0.4-15 min). Ablation of tumours (94.6-100% volumetric) 0-14.5 mm from the spinal canal was achieved within 3-15 min without damaging critical nerves. 3 MHz devices provided faster ablation (390 versus 930 s) of an 18 mm diameter osteoblastic (high bone content) volume than 7 MHz devices. Critical anatomy in proximity to the tumour could be protected by selection of appropriate applicator configurations, active sectors, and applied power schemas, and through gaseous insulation. Preferential ultrasound absorption at bone surfaces facilitated faster, more effective ablations in osteolytic tumours and provided isolation of ablative energies and temperatures. CONCLUSIONS Parametric and patient-specific studies demonstrated the feasibility and potential advantages of interstitial ultrasound ablation treatment of paraspinal and osteolytic vertebral tumours.
Collapse
Affiliation(s)
- Serena J Scott
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California , San Francisco , California
| | | | | | | | | |
Collapse
|
42
|
Salgaonkar VA, Diederich CJ. Catheter-based ultrasound technology for image-guided thermal therapy: current technology and applications. Int J Hyperthermia 2015; 31:203-15. [PMID: 25799287 DOI: 10.3109/02656736.2015.1006269] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Catheter-based ultrasound (CBUS) is applied to deliver minimally invasive thermal therapy to solid cancer tumours, benign tissue growth, vascular disease, and tissue remodelling. Compared to other energy modalities used in catheter-based surgical interventions, unique features of ultrasound result in conformable and precise energy delivery with high selectivity, fast treatment times, and larger treatment volumes. We present a concise review of CBUS technology being currently utilized in animal and clinical studies or being developed for future applications. CBUS devices have been categorised into interstitial, endoluminal and endovascular/cardiac applications. Basic applicator designs, site-specific evaluations and possible treatment applications have been discussed in brief. Particular emphasis has been given to ablation studies that incorporate image guidance for applicator placement, therapy monitoring, feedback control, and post-procedure assessment. Examples of devices included here span the entire spectrum of the development cycle from preliminary simulation-based design studies to implementation in clinical investigations. The use of CBUS under image guidance has the potential for significantly improving precision and applicability of thermal therapy delivery.
Collapse
Affiliation(s)
- Vasant A Salgaonkar
- Department of Radiation Oncology, University of California , San Francisco, California , USA
| | | |
Collapse
|
43
|
Viglianti BL, Dewhirst MW, Abraham JP, Gorman JM, Sparrow EM. Rationalization of thermal injury quantification methods: application to skin burns. Burns 2014; 40:896-902. [PMID: 24418648 DOI: 10.1016/j.burns.2013.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/06/2013] [Accepted: 12/08/2013] [Indexed: 12/18/2022]
Abstract
Classification of thermal injury is typically accomplished either through the use of an equivalent dosimetry method (equivalent minutes at 43 °C, CEM43 °C) or through a thermal-injury-damage metric (the Arrhenius method). For lower-temperature levels, the equivalent dosimetry approach is typically employed while higher-temperature applications are most often categorized by injury-damage calculations. The two methods derive from common thermodynamic/physical chemistry origins. To facilitate the development of the interrelationships between the two metrics, application is made to the case of skin burns. This thermal insult has been quantified by numerical simulation, and the extracted time-temperature results served for the evaluation of the respective characterizations. The simulations were performed for skin-surface exposure temperatures ranging from 60 to 90 °C, where each surface temperature was held constant for durations extending from 10 to 110 s. It was demonstrated that values of CEM43 at the basal layer of the skin were highly correlated with the depth of injury calculated from a thermal injury integral. Local values of CEM43 were connected to the local cell survival rate, and a correlating equation was developed relating CEM43 with the decrease in cell survival from 90% to 10%. Finally, it was shown that the cell survival/CEM43 relationship for the cases investigated here most closely aligns with isothermal exposure of tissue to temperatures of ~50 °C.
Collapse
Affiliation(s)
- Benjamin L Viglianti
- Department of Radiology, University of Michigan, Ann Arbor, MI 48108, United States.
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, United States
| | - John P Abraham
- School of Engineering, University of St. Thomas, St. Paul, MN 55105, United States.
| | - John M Gorman
- School of Engineering, University of St. Thomas, St. Paul, MN 55105, United States
| | - Eph M Sparrow
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
44
|
Scott SJ, Prakash P, Salgaonkar V, Jones PD, Cam RN, Han M, Rieke V, Burdette EC, Diederich CJ. Approaches for modelling interstitial ultrasound ablation of tumours within or adjacent to bone: theoretical and experimental evaluations. Int J Hyperthermia 2014; 29:629-42. [PMID: 24102393 DOI: 10.3109/02656736.2013.841327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The objectives of this study were to develop numerical models of interstitial ultrasound ablation of tumours within or adjacent to bone, to evaluate model performance through theoretical analysis, and to validate the models and approximations used through comparison to experiments. METHODS 3D transient biothermal and acoustic finite element models were developed, employing four approximations of 7-MHz ultrasound propagation at bone/soft tissue interfaces. The various approximations considered or excluded reflection, refraction, angle-dependence of transmission coefficients, shear mode conversion, and volumetric heat deposition. Simulations were performed for parametric and comparative studies. Experiments within ex vivo tissues and phantoms were performed to validate the models by comparison to simulations. Temperature measurements were conducted using needle thermocouples or magnetic resonance temperature imaging (MRTI). Finite element models representing heterogeneous tissue geometries were created based on segmented MR images. RESULTS High ultrasound absorption at bone/soft tissue interfaces increased the volumes of target tissue that could be ablated. Models using simplified approximations produced temperature profiles closely matching both more comprehensive models and experimental results, with good agreement between 3D calculations and MRTI. The correlation coefficients between simulated and measured temperature profiles in phantoms ranged from 0.852 to 0.967 (p-value < 0.01) for the four models. CONCLUSIONS Models using approximations of interstitial ultrasound energy deposition around bone/soft tissue interfaces produced temperature distributions in close agreement with comprehensive simulations and experimental measurements. These models may be applied to accurately predict temperatures produced by interstitial ultrasound ablation of tumours near and within bone, with applications toward treatment planning.
Collapse
Affiliation(s)
- Serena J Scott
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California , San Francisco , California
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Applicators for magnetic resonance-guided ultrasonic ablation of benign prostatic hyperplasia. Invest Radiol 2014; 48:387-94. [PMID: 23462673 DOI: 10.1097/rli.0b013e31827fe91e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES The aims of this study were to evaluate in a canine model applicators designed for ablation of human benign prostatic hyperplasia (BPH) in vivo under magnetic resonance imaging (MRI) guidance, including magnetic resonance thermal imaging (MRTI), determine the ability of MRI techniques to visualize ablative changes in prostate, and evaluate the acute and longer term histologic appearances of prostate tissue ablated during these studies. MATERIALS AND METHODS An MRI-compatible transurethral device incorporating a tubular transducer array with dual 120° sectors was used to ablate canine prostate tissue in vivo, in zones similar to regions of human BPH (enlarged transition zones). Magnetic resonance thermal imaging was used for monitoring of ablation in a 3-T environment, and postablation MRIs were performed to determine the visibility of ablated regions. Three canine prostates were ablated in acute studies, and 2 animals were rescanned before killing at 31 days postablation. Acute and chronic appearances of ablated prostate tissue were evaluated histologically and were correlated with the MRTI and postablation MRI scans. RESULTS It was possible to ablate regions similar in size to enlarged transition zone in human BPH in 6 to 18 minutes. Regions of acute ablation showed a central "heat-fixed" region surrounded by a region of more obvious necrosis with complete disruption of tissue architecture. After 31 days, ablated regions demonstrated complete apparent resorption of ablated tissue with formation of cystic regions containing fluid. The inherent cooling of the urethra using the technique resulted in complete urethral preservation in all cases. CONCLUSIONS Prostatic ablation of zones of size and shape corresponding to human BPH is possible using appropriate transurethral applicators using MRTI, and ablated tissue may be depicted clearly in contrast-enhanced magnetic resonance images. The ability accurately to monitor prostate tissue heating, the apparent resorption of ablated regions over 1 month, and the inherent urethral preservation suggest that the magnetic resonance-guided techniques described are highly promising for the in vivo ablation of symptomatic human BPH.
Collapse
|
46
|
Rossmann C, Haemmerich D. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures. Crit Rev Biomed Eng 2014; 42:467-92. [PMID: 25955712 PMCID: PMC4859435 DOI: 10.1615/critrevbiomedeng.2015012486] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The application of supraphysiological temperatures (>40°C) to biological tissues causes changes at the molecular, cellular, and structural level, with corresponding changes in tissue function and in thermal, mechanical and dielectric tissue properties. This is particularly relevant for image-guided thermal treatments (e.g. hyperthermia and thermal ablation) delivering heat via focused ultrasound (FUS), radiofrequency (RF), microwave (MW), or laser energy; temperature induced changes in tissue properties are of relevance in relation to predicting tissue temperature profile, monitoring during treatment, and evaluation of treatment results. This paper presents a literature survey of temperature dependence of electrical (electrical conductivity, resistivity, permittivity) and thermal tissue properties (thermal conductivity, specific heat, diffusivity). Data of soft tissues (liver, prostate, muscle, kidney, uterus, collagen, myocardium and spleen) for temperatures between 5 to 90°C, and dielectric properties in the frequency range between 460 kHz and 3 GHz are reported. Furthermore, perfusion changes in tumors including carcinomas, sarcomas, rhabdomyosarcoma, adenocarcinoma and ependymoblastoma in response to hyperthmic temperatures up to 46°C are presented. Where appropriate, mathematical models to describe temperature dependence of properties are presented. The presented data is valuable for mathematical models that predict tissue temperature during thermal therapies (e.g. hyperthermia or thermal ablation), as well as for applications related to prediction and monitoring of temperature induced tissue changes.
Collapse
Affiliation(s)
- Christian Rossmann
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Dieter Haemmerich
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
47
|
Reddy G, Dreher MR, Rossmann C, Wood BJ, Haemmerich D. Cytotoxicity of hepatocellular carcinoma cells to hyperthermic and ablative temperature exposures: in vitro studies and mathematical modelling. Int J Hyperthermia 2013; 29:318-23. [PMID: 23738699 DOI: 10.3109/02656736.2013.792125] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Image-guided ablative therapies use temperatures greater than 45 °C to kill abnormal cells. There is limited published data of cell survival after ablative temperature exposures, which is of importance to predict ablation zone dimensions. The objective of this study was to determine and mathematically model survival of hepatocellular carcinoma cells following ablative temperature exposures (45-60 °C). MATERIALS AND METHODS Hepatocellular carcinoma (HCC) cell lines were plated in 96-well plates, and heated between 45 and 60 °C for 0-32 min. Heating was applied by a rapid media exchange with heated Hank's balanced salt solution (HBSS) in a temperature-controlled water bath. Cell viability was determined by MTS assay. Survival data was modelled by the Arrhenius model, and the thermal isoeffective dose (TID) model where kinetic parameters were determined via non-linear optimisation. RESULTS Results suggest that the thermal dose based on cumulative equivalent minutes and parameters as used for hyperthermia exposures (<43 °C) is not applicable for ablative exposures. We found R = 0.72 for temperatures between 45-60°C for the TID model. The Arrhenius parameters were frequency factor A = 3.25E43 1/s, and activation energy Ea = 281 kJ/mol. These parameters correlate well with a prior study in the same cell line, and with threshold temperatures for necrosis from in vivo studies. CONCLUSIONS Our results suggest that standard TID model kinetic parameters based on hyperthermia studies, often also used at ablation temperatures, are not applicable at these higher temperatures for HCC cells.
Collapse
Affiliation(s)
- Goutham Reddy
- Department of Radiology and Imaging Sciences, Clinical Center, Center for Interventional Oncology, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
48
|
Weiss N, Goldberg SN, Sosna J, Azhari H. Temperature–density hysteresis in X-ray CT during HIFU thermal ablation: Heating and cooling phantom study. Int J Hyperthermia 2013; 30:27-35. [DOI: 10.3109/02656736.2013.860241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
49
|
Prakash P, Salgaonkar VA, Diederich CJ. Modelling of endoluminal and interstitial ultrasound hyperthermia and thermal ablation: applications for device design, feedback control and treatment planning. Int J Hyperthermia 2013; 29:296-307. [PMID: 23738697 PMCID: PMC4087028 DOI: 10.3109/02656736.2013.800998] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endoluminal and catheter-based ultrasound applicators are currently under development and are in clinical use for minimally invasive hyperthermia and thermal ablation of various tissue targets. Computational models play a critical role in device design and optimisation, assessment of therapeutic feasibility and safety, devising treatment monitoring and feedback control strategies, and performing patient-specific treatment planning with this technology. The critical aspects of theoretical modelling, applied specifically to endoluminal and interstitial ultrasound thermotherapy, are reviewed. Principles and practical techniques for modeling acoustic energy deposition, bioheat transfer, thermal tissue damage, and dynamic changes in the physical and physiological state of tissue are reviewed. The integration of these models and applications of simulation techniques in identification of device design parameters, development of real time feedback-control platforms, assessing the quality and safety of treatment delivery strategies, and optimisation of inverse treatment plans are presented.
Collapse
Affiliation(s)
- Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA.
| | | | | |
Collapse
|
50
|
Abstract
Microwave tissue heating is being increasingly utilised in several medical applications, including focal tumour ablation, cardiac ablation, haemostasis and resection assistance. Computational modelling of microwave ablations is a precise and repeatable technique that can assist with microwave system design, treatment planning and procedural analysis. Advances in coupling temperature and water content to electrical and thermal properties, along with tissue contraction, have led to increasingly accurate computational models. Developments in experimental validation have led to broader acceptability and applicability of these newer models. This review will discuss the basic theory, current trends and future direction of computational modelling of microwave ablations.
Collapse
Affiliation(s)
- Jason Chiang
- Department of Radiology, University of Wisconsin – Madison, Madison WI
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison WI
| | - Peng Wang
- Department of Radiology, University of Wisconsin – Madison, Madison WI
| | - Christopher L. Brace
- Department of Radiology, University of Wisconsin – Madison, Madison WI
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison WI
| |
Collapse
|