• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4672506)   Today's Articles (1434)
For: Andreu I, Natividad E. Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. Int J Hyperthermia 2013;29:739-51. [DOI: 10.3109/02656736.2013.826825] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]  Open
Number Cited by Other Article(s)
1
Villanueva D, G Gubieda A, Gandarias L, Abad Díaz de Cerio A, Orue I, Ángel García J, de Cos D, Alonso J, Fdez-Gubieda ML. Heating Efficiency of Different Magnetotactic Bacterial Species: Influence of Magnetosome Morphology and Chain Arrangement. ACS APPLIED MATERIALS & INTERFACES 2024;16:67216-67224. [PMID: 39592122 DOI: 10.1021/acsami.4c13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
2
Castelo-Grande T, Augusto PA, Gomes L, Lopes ARC, Araújo JP, Barbosa D. Economic and Accessible Portable Homemade Magnetic Hyperthermia System: Influence of the Shape, Characteristics and Type of Nanoparticles in Its Effectiveness. MATERIALS (BASEL, SWITZERLAND) 2024;17:2279. [PMID: 38793346 PMCID: PMC11123042 DOI: 10.3390/ma17102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
3
Sabzi Dizajyekan B, Jafari A, Vafaie-Sefti M, Saber R, Fakhroueian Z. Preparation of stable colloidal dispersion of surface modified Fe3O4 nanoparticles for magnetic heating applications. Sci Rep 2024;14:1296. [PMID: 38221547 PMCID: PMC10788351 DOI: 10.1038/s41598-024-51801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]  Open
4
van Oossanen R, Maier A, Godart J, Pignol JP, Denkova AG, van Rhoon GC, Djanashvili K. Magnetic hybrid Pd/Fe-oxide nanoparticles meet the demands for ablative thermo-brachytherapy. Int J Hyperthermia 2024;41:2299480. [PMID: 38189281 DOI: 10.1080/02656736.2023.2299480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]  Open
5
Niraula G, Wu C, Yu X, Malik S, Verma DS, Yang R, Zhao B, Ding S, Zhang W, Sharma SK. The Curie temperature: a key playmaker in self-regulated temperature hyperthermia. J Mater Chem B 2024;12:286-331. [PMID: 37955235 DOI: 10.1039/d3tb01437a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
6
Pommella A, Griffiths P, Coativy G, Dalmas F, Ranoo S, Schmidt AM, Méchin F, Bernard J, Zinn T, Narayanan T, Meille S, Baeza GP. Fate of Magnetic Nanoparticles during Stimulated Healing of Thermoplastic Elastomers. ACS NANO 2023;17:17394-17404. [PMID: 37578990 DOI: 10.1021/acsnano.3c05440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
7
Gandarias L, Jefremovas EM, Gandia D, Marcano L, Martínez-Martínez V, Ramos-Cabrer P, Chevrier DM, Valencia S, Fernández Barquín L, Fdez-Gubieda ML, Alonso J, García-Prieto A, Muela A. Incorporation of Tb and Gd improves the diagnostic functionality of magnetotactic bacteria. Mater Today Bio 2023;20:100680. [PMID: 37304575 PMCID: PMC10250929 DOI: 10.1016/j.mtbio.2023.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023]  Open
8
Carlton H, Ivkov R. A new method to measure magnetic nanoparticle heating efficiency in non-adiabatic systems using transient pulse analysis. JOURNAL OF APPLIED PHYSICS 2023;133:044302. [PMID: 36718210 PMCID: PMC9884152 DOI: 10.1063/5.0131058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
9
Arranz D, Weigand R, de la Presa P. Towards the Standardization of Photothermal Measurements of Iron Oxide Nanoparticles in Two Biological Windows. NANOMATERIALS (BASEL, SWITZERLAND) 2023;13:nano13030450. [PMID: 36770411 PMCID: PMC9921180 DOI: 10.3390/nano13030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 05/14/2023]
10
Gandia D, Marcano L, Gandarias L, Villanueva D, Orue I, Abrudan RM, Valencia S, Rodrigo I, Ángel García J, Muela A, Fdez-Gubieda ML, Alonso J. Tuning the Magnetic Response of Magnetospirillum magneticum by Changing the Culture Medium: A Straightforward Approach to Improve Their Hyperthermia Efficiency. ACS APPLIED MATERIALS & INTERFACES 2023;15:566-577. [PMID: 36563339 PMCID: PMC9982817 DOI: 10.1021/acsami.2c18435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
11
Sharma A, Avinash Jangam A, Low Yung Shen J, Ahmad A, Arepally N, Carlton H, Ivkov R, Attaluri A. Design of a temperature-feedback controlled automated magnetic hyperthermia therapy device. FRONTIERS IN THERMAL ENGINEERING 2023;3:1131262. [PMID: 36945684 PMCID: PMC10026551 DOI: 10.3389/fther.2023.1131262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
12
Hyperthermia of Magnetically Soft-Soft Core-Shell Ferrite Nanoparticles. Int J Mol Sci 2022;23:ijms232314825. [PMID: 36499152 PMCID: PMC9735482 DOI: 10.3390/ijms232314825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]  Open
13
Ramírez-Morales MA, Goldt AE, Kalachikova PM, Ramirez B. JA, Suzuki M, Zhigach AN, Ben Salah A, Shurygina LI, Shandakov SD, Zatsepin T, Krasnikov DV, Maekawa T, Nikolaev EN, Nasibulin AG. Albumin Stabilized Fe@C Core-Shell Nanoparticles as Candidates for Magnetic Hyperthermia Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022;12:2869. [PMID: 36014734 PMCID: PMC9414223 DOI: 10.3390/nano12162869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
14
Sharma A, Cressman E, Attaluri A, Kraitchman DL, Ivkov R. Current Challenges in Image-Guided Magnetic Hyperthermia Therapy for Liver Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2022;12:2768. [PMID: 36014633 PMCID: PMC9414548 DOI: 10.3390/nano12162768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 05/09/2023]
15
Guba S, Horváth B, Szalai I. Application and comparison of thermistors and fiber optic temperature sensor reference for ILP measurement of magnetic fluids in double cell magnetic hyperthermia. Heliyon 2022;8:e09606. [PMID: 35694425 PMCID: PMC9178333 DOI: 10.1016/j.heliyon.2022.e09606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/06/2022] [Accepted: 05/26/2022] [Indexed: 11/01/2022]  Open
16
Jardim KV, Palomec‐Garfias AF, Araújo MV, Márquez‐Beltrán C, Bakuzis AF, Moya SE, Parize AL, Sousa MH. Remotely triggered curcumin release from stimuli‐responsive magneto‐polymeric layer‐by‐layer engineered nanoplatforms. J Appl Polym Sci 2022. [DOI: 10.1002/app.52200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
17
Narayanaswamy V, Al-Omari IA, Kamzin AS, Issa B, Obaidat IM. Tailoring Interfacial Exchange Anisotropy in Hard-Soft Core-Shell Ferrite Nanoparticles for Magnetic Hyperthermia Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022;12:262. [PMID: 35055278 PMCID: PMC8781948 DOI: 10.3390/nano12020262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/30/2022]
18
Kazantseva NE, Smolkova IS, Babayan V, Vilčáková J, Smolka P, Saha P. Magnetic Nanomaterials for Arterial Embolization and Hyperthermia of Parenchymal Organs Tumors: A Review. NANOMATERIALS 2021;11:nano11123402. [PMID: 34947751 PMCID: PMC8706233 DOI: 10.3390/nano11123402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/14/2023]
19
Ovejero JG, Spizzo F, Morales MP, Del Bianco L. Nanoparticles for Magnetic Heating: When Two (or More) Is Better Than One. MATERIALS (BASEL, SWITZERLAND) 2021;14:6416. [PMID: 34771940 PMCID: PMC8585339 DOI: 10.3390/ma14216416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/16/2023]
20
Morales I, Costo R, Mille N, Carrey J, Hernando A, de la Presa P. Time-dependent AC magnetometry and chain formation in magnetite: the influence of particle size, initial temperature and the shortening of the relaxation time by the applied field. NANOSCALE ADVANCES 2021;3:5801-5812. [PMID: 36132668 PMCID: PMC9417483 DOI: 10.1039/d1na00463h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/13/2021] [Indexed: 05/30/2023]
21
Magnetic Nanoparticles Used in Oncology. MATERIALS 2021;14:ma14205948. [PMID: 34683540 PMCID: PMC8539633 DOI: 10.3390/ma14205948] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022]
22
Farkaš B, de Leeuw NH. A Perspective on Modelling Metallic Magnetic Nanoparticles in Biomedicine: From Monometals to Nanoalloys and Ligand-Protected Particles. MATERIALS (BASEL, SWITZERLAND) 2021;14:3611. [PMID: 34203371 PMCID: PMC8269646 DOI: 10.3390/ma14133611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
23
Iglesias CAM, de Araújo JCR, Xavier J, Anders RL, de Araújo JM, da Silva RB, Soares JM, Brito EL, Streck L, Fonseca JLC, Plá Cid CC, Gamino M, Silva EF, Chesman C, Correa MA, de Medeiros SN, Bohn F. Magnetic nanoparticles hyperthermia in a non-adiabatic and radiating process. Sci Rep 2021;11:11867. [PMID: 34088933 PMCID: PMC8178398 DOI: 10.1038/s41598-021-91334-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022]  Open
24
Ovejero JG, Spizzo F, Morales MP, Del Bianco L. Mixing iron oxide nanoparticles with different shape and size for tunable magneto-heating performance. NANOSCALE 2021;13:5714-5729. [PMID: 33704298 DOI: 10.1039/d0nr09121a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
25
Sánchez J, Rodríguez-Reyes M, Cortés-Hernández DA, Ávila-Orta CA, Reyes-Rodríguez PY. Heating capacity and biocompatibility of Pluronic-coated manganese gallium ferrites for magnetic hyperthermia treatment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
26
Lavorato GC, Das R, Alonso Masa J, Phan MH, Srikanth H. Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications. NANOSCALE ADVANCES 2021;3:867-888. [PMID: 36133290 PMCID: PMC9418677 DOI: 10.1039/d0na00828a] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/06/2021] [Indexed: 05/04/2023]
27
Role of Magnetic Anisotropy on the Hyperthermia Efficiency in Spherical Fe3−xCoxO4 (x = 0–1) Nanoparticles. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11030930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
28
Magnetic Hyperthermia on γ-Fe2O3@SiO2 Core-Shell Nanoparticles for mi-RNA 122 Detection. NANOMATERIALS 2021;11:nano11010149. [PMID: 33435365 PMCID: PMC7828054 DOI: 10.3390/nano11010149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 11/16/2022]
29
Rehman Y, Cheng Z, Wang X, Huang XF, Konstantinov K. Theranostic two-dimensional superparamagnetic maghemite quantum structures for ROS-mediated cancer therapy. J Mater Chem B 2021;9:5805-5817. [PMID: 34231637 DOI: 10.1039/d1tb01036k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
30
Raouf I, Lee J, Kim HS, Kim MH. Parametric Investigations of Magnetic Nanoparticles Hyperthermia in Ferrofluid using Finite Element Analysis. INTERNATIONAL JOURNAL OF THERMAL SCIENCES = REVUE GENERALE DE THERMIQUE 2021;159:106604. [PMID: 38872874 PMCID: PMC11172412 DOI: 10.1016/j.ijthermalsci.2020.106604] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
31
Najafipour A, Gharieh A, Fassihi A, Sadeghi-Aliabadi H, Mahdavian AR. MTX-Loaded Dual Thermoresponsive and pH-Responsive Magnetic Hydrogel Nanocomposite Particles for Combined Controlled Drug Delivery and Hyperthermia Therapy of Cancer. Mol Pharm 2020;18:275-284. [PMID: 33300343 DOI: 10.1021/acs.molpharmaceut.0c00910] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
32
Eivazzadeh-Keihan R, Bahojb Noruzi E, Khanmohammadi Chenab K, Jafari A, Radinekiyan F, Hashemi SM, Ahmadpour F, Behboudi A, Mosafer J, Mokhtarzadeh A, Maleki A, Hamblin MR. Metal-based nanoparticles for bone tissue engineering. J Tissue Eng Regen Med 2020;14:1687-1714. [PMID: 32914573 DOI: 10.1002/term.3131] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022]
33
Steinmetz L, Bourquin J, Barosova H, Haeni L, Caldwell J, Milosevic A, Geers C, Bonmarin M, Taladriz-Blanco P, Rothen-Rutishauser B, Petri-Fink A. Rapid and sensitive quantification of cell-associated multi-walled carbon nanotubes. NANOSCALE 2020;12:17362-17372. [PMID: 32789375 DOI: 10.1039/d0nr03330h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
34
Investigating a Lock-In Thermal Imaging Setup for the Detection and Characterization of Magnetic Nanoparticles. NANOMATERIALS 2020;10:nano10091665. [PMID: 32854404 PMCID: PMC7559474 DOI: 10.3390/nano10091665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/10/2020] [Accepted: 08/22/2020] [Indexed: 11/24/2022]
35
Etemadi H, Plieger PG. Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000061] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
36
Rodrigo I, Castellanos-Rubio I, Garaio E, Arriortua OK, Insausti M, Orue I, García JÁ, Plazaola F. Exploring the potential of the dynamic hysteresis loops via high field, high frequency and temperature adjustable AC magnetometer for magnetic hyperthermia characterization. Int J Hyperthermia 2020;37:976-991. [PMID: 32781865 DOI: 10.1080/02656736.2020.1802071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]  Open
37
Soetaert F, Korangath P, Serantes D, Fiering S, Ivkov R. Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Adv Drug Deliv Rev 2020;163-164:65-83. [PMID: 32603814 PMCID: PMC7736167 DOI: 10.1016/j.addr.2020.06.025] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/19/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
38
Raouf I, Khalid S, Khan A, Lee J, Kim HS, Kim MH. A review on numerical modeling for magnetic nanoparticle hyperthermia: Progress and challenges. J Therm Biol 2020;91:102644. [PMID: 32716885 DOI: 10.1016/j.jtherbio.2020.102644] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 01/08/2023]
39
Magnetic fluid hyperthermia simulations in evaluation of SAR calculation methods. Phys Med 2020;71:39-52. [DOI: 10.1016/j.ejmp.2020.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/21/2020] [Accepted: 02/13/2020] [Indexed: 11/21/2022]  Open
40
Liu X, Zhang Y, Wang Y, Zhu W, Li G, Ma X, Zhang Y, Chen S, Tiwari S, Shi K, Zhang S, Fan HM, Zhao YX, Liang XJ. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics 2020;10:3793-3815. [PMID: 32206123 PMCID: PMC7069093 DOI: 10.7150/thno.40805] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022]  Open
41
Lanier OL, Korotych OI, Monsalve AG, Wable D, Savliwala S, Grooms NWF, Nacea C, Tuitt OR, Dobson J. Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia. Int J Hyperthermia 2020;36:687-701. [PMID: 31340687 DOI: 10.1080/02656736.2019.1628313] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]  Open
42
Principles of Magnetic Hyperthermia: A Focus on Using Multifunctional Hybrid Magnetic Nanoparticles. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5040067] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
43
Gandia D, Gandarias L, Rodrigo I, Robles-García J, Das R, Garaio E, García JÁ, Phan MH, Srikanth H, Orue I, Alonso J, Muela A, Fdez-Gubieda ML. Unlocking the Potential of Magnetotactic Bacteria as Magnetic Hyperthermia Agents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019;15:e1902626. [PMID: 31454160 DOI: 10.1002/smll.201902626] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/24/2019] [Indexed: 05/19/2023]
44
Sandler SE, Fellows B, Mefford OT. Best Practices for Characterization of Magnetic Nanoparticles for Biomedical Applications. Anal Chem 2019;91:14159-14169. [DOI: 10.1021/acs.analchem.9b03518] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
45
Grumezescu V, Gherasim O, Negut I, Banita S, Holban AM, Florian P, Icriverzi M, Socol G. Nanomagnetite-embedded PLGA Spheres for Multipurpose Medical Applications. MATERIALS 2019;12:ma12162521. [PMID: 31398805 PMCID: PMC6719237 DOI: 10.3390/ma12162521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 12/25/2022]
46
Hadadian Y, Azimbagirad M, Navas EA, Pavan TZ. A versatile induction heating system for magnetic hyperthermia studies under different experimental conditions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019;90:074701. [PMID: 31370463 DOI: 10.1063/1.5080348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
47
Del Bianco L, Spizzo F, Barucca G, Ruggiero MR, Geninatti Crich S, Forzan M, Sieni E, Sgarbossa P. Mechanism of magnetic heating in Mn-doped magnetite nanoparticles and the role of intertwined structural and magnetic properties. NANOSCALE 2019;11:10896-10910. [PMID: 31139801 DOI: 10.1039/c9nr03131f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
48
Gupta R, Sharma D. Biofunctionalization of magnetite nanoparticles with stevioside: effect on the size and thermal behaviour for use in hyperthermia applications. Int J Hyperthermia 2019;36:302-312. [DOI: 10.1080/02656736.2019.1565787] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]  Open
49
Yang CT, Li KY, Meng FQ, Lin JF, Young IC, Ivkov R, Lin FH. ROS-induced HepG2 cell death from hyperthermia using magnetic hydroxyapatite nanoparticles. NANOTECHNOLOGY 2018;29:375101. [PMID: 29920184 PMCID: PMC6931263 DOI: 10.1088/1361-6528/aacda1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
50
Zhou X, Wang L, Xu Y, Du W, Cai X, Wang F, Ling Y, Chen H, Wang Z, Hu B, Zheng Y. A pH and magnetic dual-response hydrogel for synergistic chemo-magnetic hyperthermia tumor therapy. RSC Adv 2018;8:9812-9821. [PMID: 35540837 PMCID: PMC9078710 DOI: 10.1039/c8ra00215k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/02/2018] [Indexed: 12/03/2022]  Open
PrevPage 1 of 2 12Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA