1
|
Heo D, Lokeshwar BL, Barrett JT, Mostafaei F, Kwon SH, Huh C. Quantitative analysis of radiosensitizing effect for magnetic hyperthermia-radiation combined therapy on prostate cancer cells. Med Phys 2024; 51:7606-7618. [PMID: 38923579 DOI: 10.1002/mp.17248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Magnetic hyperthermia (MHT) has emerged as a promising therapeutic approach in the field of radiation oncology due to its superior precision in controlling temperature and managing the heating area compared to conventional hyperthermia. Recent studies have proposed solutions to address clinical safety concerns associated with MHT, which arise from the use of highly concentrated magnetic nanoparticles and the strong magnetic field needed to induce hyperthermic effects. Despite these efforts, challenges remain in quantifying therapeutic outcomes and developing treatment plan systems for combining MHT with radiation therapy (RT). PURPOSE This study aims to quantitatively measure the therapeutic effect, including radiation dose enhancement (RDE) in the magnetic hyperthermia-radiation combined therapy (MHRT), using the equivalent radiation dose (EQD) estimation method. METHODS To conduct EQD estimation for MHRT, we compared the therapeutic effects between the conventional hyperthermia-radiation combined therapy (HTRT) and MHRT in human prostate cancer cell lines, PC3 and LNCaP. We adopted a clonogenic assay to validate RDE and the radiosensitizing effect induced by MHT. The data on survival fractions were analyzed using both the linear-quadradic model and Arrhenius model to estimate the biological parameters describing RDE and radiosensitizing effect of MHRT for both cell lines through maximum likelihood estimation. Based on these parameters, a new survival fraction model was suggested for EQD estimation of MHRT. RESULTS The newly designed model describing the MHRT effect, effectively captures the variations in thermal and radiation dose for both cell lines (R2 > 0.95), and its suitability was confirmed through the normality test of residuals. This model appropriately describes the survival fractions up to 10 Gy for PC3 cells and 8 Gy for LNCaP cells under RT-only conditions. Furthermore, using the newly defined parameter r, the RDE effect was calculated as 29% in PC3 cells and 23% in LNCaP cells. EQDMHRT calculated through this model was 9.47 Gy for PC3 and 4.71 Gy for LNCaP when given 2 Gy and MHT for 30 min. Compared to EQDHTRT, EQDMHRT showed a 26% increase for PC3 and a 20% increase for LNCaP. CONCLUSIONS The proposed model effectively describes the changes of the survival fraction induced by MHRT in both cell lines and adequately represents actual data values through residual analysis. Newly suggested parameter r for RDE effect shows potential for quantitative comparisons between HTRT and MHRT, and optimizing therapeutic outcomes in MHRT for prostate cancer.
Collapse
Affiliation(s)
- Dan Heo
- Georgia Cancer Center, Department of Radiation Oncology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Bal L Lokeshwar
- Georgia Cancer Center, Department of Medicine, Augusta University, Augusta, Georgia, USA
| | - John T Barrett
- Georgia Cancer Center, Department of Radiation Oncology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Farshad Mostafaei
- Georgia Cancer Center, Department of Radiation Oncology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Chulhaeng Huh
- Georgia Cancer Center, Department of Radiation Oncology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
2
|
Smadja DM. Hyperthermia for Targeting Cancer and Cancer Stem Cells: Insights from Novel Cellular and Clinical Approaches. Stem Cell Rev Rep 2024; 20:1532-1539. [PMID: 38795304 DOI: 10.1007/s12015-024-10736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 05/27/2024]
Abstract
The Cellular Heat Shock Response and in particular heat shock protein activation are vital stress reactions observed in both healthy and cancer cells. Hyperthermia (HT) has been proposed for several years as an advancing non-invasive cancer therapy. It selectively targets cancer cells through mechanisms influenced by temperature and temperature variations. This article delves into the impact of HT on cancer cells, especially cancer stem cells (CSCs), essential contributors to cancer recurrence and metastasis. HT has shown promise in eliminating CSCs, sensitizing them to conventional treatments and modulating the tumor microenvironment. The exploration extends to mesenchymal stem cells (MSCs), which exhibit both pro-tumorigenic and anti-tumorigenic effects. HT's potential in recruiting therapeutic MSCs for targeted delivery of antitumoral agents is also discussed. Furthermore, the article introduces Brain Thermodynamics-guided Hyperthermia (BTGH) technology, a breakthrough in temperature control and modulation of heat transfer under different conditions. This non-invasive method leverages the brain-eyelid thermal tunnel (BTT) to monitor and regulate internal brain temperature. BTGH technology, with its precision and noninvasive continuous monitoring capabilities, is under clinical investigation for applications in neurological disorders and cancer. The innovative three-phase approach involves whole-body HT, targeted brain HT, and organ-specific HT. In conclusion, the exploration of localized or whole-body HT offers promising avenues for cancer, psychiatric and neurological diseases. The ongoing clinical investigations and potential applications underscore the significance of understanding and harnessing heat's responses to enhance human health.
Collapse
Affiliation(s)
- David M Smadja
- Paris Cité University, INSERM, Innovative Therapies in Hemostasis, Paris, F-75006, France.
- Hematology Department, AP-HP, Georges Pompidou European Hospital, 20 rue Leblanc, Paris, F-75015, France.
| |
Collapse
|
3
|
Ödén J, Eriksson K, Pavoni B, Crezee H, Kok HP. A Novel Framework for Thermoradiotherapy Treatment Planning. Int J Radiat Oncol Biol Phys 2024; 119:1530-1544. [PMID: 38387812 DOI: 10.1016/j.ijrobp.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
PURPOSE Thermoradiotherapy combines radiation therapy with hyperthermia to increase therapeutic effectiveness. Currently, both modalities are optimized separately and in state-of-the-art research the enhanced therapeutic effect is evaluated using equivalent radiation dose in 2-Gy fractions (EQD2). This study proposes a novel thermoradiotherapy treatment planning framework with voxelwise EQD2 radiation therapy optimizing including thermal radiosensitization and direct thermal cytotoxicity. METHODS AND MATERIALS To demonstrate proof-of-concept of the planning framework, 3 strategies consisting of 20 radiation therapy fractions were planned for 4 prostate cancer cases with substantially different temperature distributions: (1) Conventional radiation therapy plan of 60 Gy combined with 4 hyperthermia sessions (RT60 + HT), (2) standalone uniform dose escalation to 68 Gy without hyperthermia (RT68), and (3) uniform target EQD2 that maximizes the tumor control probability (TCP) accounting for voxelwise thermal effects of 4 hyperthermia sessions without increasing normal tissue doses (RTHT + HT). Assessment included dose, EQD2, TCP, and rectal normal tissue complication probability (NTCP), alongside robustness analyses for TCP and NTCP against parameter uncertainties. RESULTS The estimated TCP of around 76% for RT60 without hyperthermia was increased to an average of 85.9% (range, 81.3%-90.5%) for RT60 + HT, 92.5% (92.4%-92.5%) for RT68, and 94.4% (91.7%-96.6%) for RTHT + HT. The corresponding averaged rectal NTCPs were 8.7% (7.9%-10.0%), 14.9% (13.8%-17.1%), and 8.4% (7.5%-9.7%), respectively. RT68 and RTHT + HT exhibited slightly enhanced TCP robustness against parameter uncertainties compared with RT60 + HT, and RT68 presented higher and less robust rectal NTCP values compared with the other planning strategies. CONCLUSIONS This study introduces an innovative thermoradiotherapy planning approach, integrating thermal effects into EQD2-based radiation therapy optimization. Results demonstrate an ability to achieve enhanced and uniform target EQD2 and TCP across various temperature distributions without elevating normal tissue EQD2 or NTCP compared with conventional methods. Although promising for improving clinical outcomes, realizable enhancements depend on accurate tumor- and tissue-specific data and precise quantification of hyperthermic effects, which are seamlessly integrable in the planning framework as they emerge.
Collapse
Affiliation(s)
- Jakob Ödén
- RaySearch Laboratories AB, Stockholm, Sweden.
| | | | | | - Hans Crezee
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Herrera TD, Ödén J, Lorenzo Polo A, Crezee J, Kok HP. Thermoradiotherapy Optimization Strategies Accounting for Hyperthermia Delivery Uncertainties. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)02960-2. [PMID: 39019236 DOI: 10.1016/j.ijrobp.2024.07.2146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
PURPOSE The combined effect of hyperthermia and radiation therapy can be quantified by an enhanced equivalent radiation dose (EQDRT). Uncertainties in hyperthermia treatment planning and adjustments during treatment can impact achieved EQDRT. We developed and compared strategies for EQDRT optimization of radiation therapy plans, focusing on robustness against common adjustments. METHODS AND MATERIALS Using Plan2Heat, we computed preplanning hyperthermia plans and treatment adjustment scenarios for 3 cervical cancer patients. We imported these scenarios into RayStation 12A for optimization with 4 different strategies: (1) conventional radiation therapy optimization prescribing 46 Gy to the planning target volume (PTV), (2) nominal EQDRT optimization using the preplanning scenario, targeting uniform 58 Gy in the gross tumor volume (GTV), keeping organs at risk doses as in plan 1, (3) robust EQDRT optimization, as plan 2 but adding adjusted scenarios for optimization, and (4) library of plans (4 plans) with strategy 2 criteria but optimizing on 1 adjusted scenario per plan. We calculated for each radiation therapy plan EQDRT distributions for preplanning and adjusted scenarios, evaluating each combination of GTV coverage and homogeneity objectives. RESULTS EQDRT95% increased from 49.9 to 50.9 Gy in strategy 1 to 56.1 to 57.4 Gy in strategy 2 with the preplanning scenario, improving homogeneity by ∼10%. Strategy 2 demonstrated the best overall robustness, with 62% of all GTV objectives within tolerance. Strategy 3 had a higher percentage of coverage objectives within tolerance than strategy 2 (68% vs 54%) but a lower percentage for uniformity (44% vs 71%). Strategy 4 showed a similar EQDRT95% and homogeneity for adjusted scenarios than strategy 2 for a preplanning scenario. D0.1% (radiation dose received by the 0.1% most irradiated volume) for organs at risk was increased by strategies 2 to 4 by up to ∼6 Gy. CONCLUSIONS EQDRT optimization enhances EQDRT levels and uniformity compared with conventional optimization. Better overall robustness is achieved by optimizing the preplanning hyperthermia plan. Robust optimization improves coverage but reduces homogeneity. A library of plans ensures coverage and uniformity when dealing with adjusted hyperthermia scenarios.
Collapse
Affiliation(s)
- Timoteo D Herrera
- Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands.
| | - Jakob Ödén
- RaySearch Laboratories AB, Stockholm, Sweden
| | | | - Johannes Crezee
- Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - H Petra Kok
- Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Mingo Barba S, Ademaj A, Marder D, Riesterer O, Lattuada M, Füchslin RM, Petri-Fink A, Scheidegger S. Theoretical evaluation of the impact of diverse treatment conditions by calculation of the tumor control probability (TCP) of simulated cervical cancer Hyperthermia-Radiotherapy (HT-RT) treatments in-silico. Int J Hyperthermia 2024; 41:2320852. [PMID: 38465653 DOI: 10.1080/02656736.2024.2320852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/15/2024] [Indexed: 03/12/2024] Open
Abstract
INTRODUCTION Hyperthermia (HT) induces various cellular biological processes, such as repair impairment and direct HT cell killing. In this context, in-silico biophysical models that translate deviations in the treatment conditions into clinical outcome variations may be used to study the extent of such processes and their influence on combined hyperthermia plus radiotherapy (HT + RT) treatments under varying conditions. METHODS An extended linear-quadratic model calibrated for SiHa and HeLa cell lines (cervical cancer) was used to theoretically study the impact of varying HT treatment conditions on radiosensitization and direct HT cell killing effect. Simulated patients were generated to compute the Tumor Control Probability (TCP) under different HT conditions (number of HT sessions, temperature and time interval), which were randomly selected within margins based on reported patient data. RESULTS Under the studied conditions, model-based simulations suggested a treatment improvement with a total CEM43 thermal dose of approximately 10 min. Additionally, for a given thermal dose, TCP increased with the number of HT sessions. Furthermore, in the simulations, we showed that the TCP dependence on the temperature/time interval is more correlated with the mean value than with the minimum/maximum value and that comparing the treatment outcome with the mean temperature can be an excellent strategy for studying the time interval effect. CONCLUSION The use of thermoradiobiological models allows us to theoretically study the impact of varying thermal conditions on HT + RT treatment outcomes. This approach can be used to optimize HT treatments, design clinical trials, and interpret patient data.
Collapse
Affiliation(s)
- Sergio Mingo Barba
- School of Engineering, Zürich University of Applied Sciences (ZHAW), Winterthur, Switzerland
- Chemistry Department, University of Fribourg, Fribourg, Switzerland
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Adela Ademaj
- Center for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland
- Doctoral Clinical Science Program, Medical Faculty, University of Zurich, Zürich, Switzerland
| | - Dietmar Marder
- Center for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Oliver Riesterer
- Center for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Marco Lattuada
- Chemistry Department, University of Fribourg, Fribourg, Switzerland
| | - Rudolf M Füchslin
- School of Engineering, Zürich University of Applied Sciences (ZHAW), Winterthur, Switzerland
- European Centre for Living Technology, Venice, Italy
| | - Alke Petri-Fink
- Chemistry Department, University of Fribourg, Fribourg, Switzerland
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Stephan Scheidegger
- School of Engineering, Zürich University of Applied Sciences (ZHAW), Winterthur, Switzerland
| |
Collapse
|
6
|
Mei X, Kok HP, Rodermond HM, van Bochove GGW, Snoek BC, van Leeuwen CM, Franken NAP, Ten Hagen TLM, Crezee J, Vermeulen L, Stalpers LJA, Oei AL. Radiosensitization by Hyperthermia Critically Depends on the Time Interval. Int J Radiat Oncol Biol Phys 2024; 118:817-828. [PMID: 37820768 DOI: 10.1016/j.ijrobp.2023.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Hyperthermia is a potent sensitizer of radiation therapy that improves both tumor control and survival in women with locally advanced cervical cancer (LACC). The optimal sequence and interval between hyperthermia and radiation therapy are still under debate. METHODS AND MATERIALS We investigated the interval and sequence in vitro in cervical cancer cell lines, patient-derived organoids, and SiHa cervical cancer hind leg xenografts in athymic nude mice and compared the results with retrospective results from 58 women with LACC treated with thermoradiotherapy. RESULTS All 3 approaches confirmed that shortening the interval between hyperthermia and radiation therapy enhanced hyperthermic radiosensitization by 2 to 8 times more DNA double-strand breaks and apoptosis and 10 to 100 times lower cell survival, delayed tumor growth in mice, and increased the 5-year survival rate of women with LACC from 22% (interval ≥80 minutes) to 54% (interval <80 minutes). In vitro and in vivo results showed that the sequence of hyperthermia and radiation therapy did not affect the outcome. CONCLUSIONS Shortening the interval between hyperthermia and radiation therapy significantly improves treatment outcomes. The sequence of hyperthermia and radiation therapy (before or after) does not seem to matter.
Collapse
Affiliation(s)
- Xionge Mei
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Hans M Rodermond
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Gregor G W van Bochove
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Barbara C Snoek
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Caspar M van Leeuwen
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Nicolaas A P Franken
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Louis Vermeulen
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Oncode Institute, Amsterdam, The Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Agnass P, Rodermond HM, van Veldhuisen E, Vogel JA, Ten Cate R, van Lienden KP, van Gulik TM, Franken NAP, Oei AL, Kok HP, Besselink MG, Crezee J. Quantitative analysis of contribution of mild and moderate hyperthermia to thermal ablation and sensitization of irreversible electroporation of pancreatic cancer cells. J Therm Biol 2023; 115:103619. [PMID: 37437370 DOI: 10.1016/j.jtherbio.2023.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Irreversible electroporation (IRE) is an ablation modality that applies short, high-voltage electric pulses to unresectable cancers. Although considered a non-thermal technique, temperatures do increase during IRE. This temperature rise sensitizes tumor cells for electroporation as well as inducing partial direct thermal ablation. AIM To evaluate the extent to which mild and moderate hyperthermia enhance electroporation effects, and to establish and validate in a pilot study cell viability models (CVM) as function of both electroporation parameters and temperature in a relevant pancreatic cancer cell line. METHODS Several IRE-protocols were applied at different well-controlled temperature levels (37 °C ≤ T ≤ 46 °C) to evaluate temperature dependent cell viability at enhanced temperatures in comparison to cell viability at T = 37 °C. A realistic sigmoid CVM function was used based on thermal damage probability with Arrhenius Equation and cumulative equivalent minutes at 43 °C (CEM43°C) as arguments, and fitted to the experimental data using "Non-linear-least-squares"-analysis. RESULTS Mild (40 °C) and moderate (46 °C) hyperthermic temperatures boosted cell ablation with up to 30% and 95%, respectively, mainly around the IRE threshold Eth,50% electric-field strength that results in 50% cell viability. The CVM was successfully fitted to the experimental data. CONCLUSION Both mild- and moderate hyperthermia significantly boost the electroporation effect at electric-field strengths neighboring Eth,50%. Inclusion of temperature in the newly developed CVM correctly predicted both temperature-dependent cell viability and thermal ablation for pancreatic cancer cells exposed to a relevant range of electric-field strengths/pulse parameters and mild moderate hyperthermic temperatures.
Collapse
Affiliation(s)
- P Agnass
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Surgery, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam, the Netherlands.
| | - H M Rodermond
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Experimental Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands.
| | - E van Veldhuisen
- Amsterdam UMC Location University of Amsterdam, Surgery, Meibergdreef 9, Amsterdam, the Netherlands.
| | - J A Vogel
- Amsterdam UMC Location University of Amsterdam, Gastroenterology & Hepatology, Meibergdreef 9, Amsterdam, the Netherlands.
| | - R Ten Cate
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Experimental Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands.
| | - K P van Lienden
- Department of Intervention Radiology, St. Antonius Hospital, Nieuwegein, the Netherlands.
| | - T M van Gulik
- Amsterdam UMC Location University of Amsterdam, Surgery, Meibergdreef 9, Amsterdam, the Netherlands.
| | - N A P Franken
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Experimental Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands.
| | - A L Oei
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Experimental Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands.
| | - H P Kok
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, the Netherlands.
| | - M G Besselink
- Amsterdam UMC Location University of Amsterdam, Surgery, Meibergdreef 9, Amsterdam, the Netherlands.
| | - J Crezee
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Kok HP, Herrera TD, Crezee J. The Relevance of High Temperatures and Short Time Intervals Between Radiation Therapy and Hyperthermia: Insights in Terms of Predicted Equivalent Enhanced Radiation Dose. Int J Radiat Oncol Biol Phys 2023; 115:994-1003. [PMID: 36288756 DOI: 10.1016/j.ijrobp.2022.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE The radiosensitization effect of hyperthermia can be considered and quantified as an enhanced equivalent radiation dose (EQDRT), that is, the dose needed to achieve the same effect without hyperthermia. EQDRT can be predicted using an extended linear quadratic model, with temperature-dependent parameters. Clinical data show that both the achieved temperature and time interval between radiation therapy and hyperthermia correlate with clinical outcome, but their effect on expected EQDRT is unknown and was therefore evaluated in this study. METHODS AND MATERIALS Biological modeling was performed using our in-house developed software (X-Term), considering a 23- × 2-Gy external beam radiation scheme, as applied for patients with locally advanced cervical cancer. First, the EQDRT was calculated for homogeneous temperature levels, evaluating time intervals between 0 and 4 hours. Next, realistic heterogeneous hyperthermia treatment plans were combined with radiation therapy plans and the EQDRT was calculated for 10 patients. Furthermore, the effect of achieving 0.5°C to 1°C lower or higher temperatures was evaluated. RESULTS EQDRT increases substantially with both increasing temperature and decreasing time interval. The effect of the time interval is most pronounced at higher temperatures (>41°C). At a typical hyperthermic temperature level of 41.5°C, an enhancement of ∼10 Gy can be realized with a 0-hour time interval, which is decreased to only ∼4 Gy enhancement with a 4-hour time interval. Most enhancement is already lost after 1 hour. Evaluation in patients predicted an average additional EQDRT (D95%) of 2.2 and 6.3 Gy for 4- and 0-hour time intervals, respectively. The effect of 0.5°C to 1°C lower or higher temperatures is most pronounced at high temperature levels and short time intervals. The additional EQDRT (D95%) ranged between 1.5 and 3.3 Gy and between 4.5 and 8.5 Gy for 4- and 0-hour time intervals, respectively. CONCLUSIONS Biological modeling provides relevant insight into the relationship between treatment parameters and expected EQDRT. Both high temperatures and short time intervals are essential to maximize EQDRT.
Collapse
Affiliation(s)
- H Petra Kok
- Amsterdam UMC Location University of Amsterdam, Department of Radiation Oncology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands.
| | - Timoteo D Herrera
- Amsterdam UMC Location University of Amsterdam, Department of Radiation Oncology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Johannes Crezee
- Amsterdam UMC Location University of Amsterdam, Department of Radiation Oncology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Sharma A, Jangam A, Shen JLY, Ahmad A, Arepally N, Rodriguez B, Borrello J, Bouras A, Kleinberg L, Ding K, Hadjipanayis C, Kraitchman DL, Ivkov R, Attaluri A. Validation of a Temperature-Feedback Controlled Automated Magnetic Hyperthermia Therapy Device. Cancers (Basel) 2023; 15:327. [PMID: 36672278 PMCID: PMC9856953 DOI: 10.3390/cancers15020327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
We present in vivo validation of an automated magnetic hyperthermia therapy (MHT) device that uses real-time temperature input measured at the target to control tissue heating. MHT is a thermal therapy that uses heat generated by magnetic materials exposed to an alternating magnetic field. For temperature monitoring, we integrated a commercial fiber optic temperature probe containing four gallium arsenide (GaAs) temperature sensors. The controller device used temperature from the sensors as input to manage power to the magnetic field applicator. We developed a robust, multi-objective, proportional-integral-derivative (PID) algorithm to control the target thermal dose by modulating power delivered to the magnetic field applicator. The magnetic field applicator was a 20 cm diameter Maxwell-type induction coil powered by a 120 kW induction heating power supply operating at 160 kHz. Finite element (FE) simulations were performed to determine values of the PID gain factors prior to verification and validation trials. Ex vivo verification and validation were conducted in gel phantoms and sectioned bovine liver, respectively. In vivo validation of the controller was achieved in a canine research subject following infusion of magnetic nanoparticles (MNPs) into the brain. In all cases, performance matched controller design criteria, while also achieving a thermal dose measured as cumulative equivalent minutes at 43 °C (CEM43) 60 ± 5 min within 30 min.
Collapse
Affiliation(s)
- Anirudh Sharma
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Avesh Jangam
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University—Harrisburg, Harrisburg, PA 17057, USA
| | - Julian Low Yung Shen
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University—Harrisburg, Harrisburg, PA 17057, USA
| | - Aiman Ahmad
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University—Harrisburg, Harrisburg, PA 17057, USA
| | - Nageshwar Arepally
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University—Harrisburg, Harrisburg, PA 17057, USA
| | - Benjamin Rodriguez
- Sinai BioDesign, Mount Sinai Hospital, New York, NY 10029, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph Borrello
- Sinai BioDesign, Mount Sinai Hospital, New York, NY 10029, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexandros Bouras
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lawrence Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Constantinos Hadjipanayis
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dara L. Kraitchman
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anilchandra Attaluri
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University—Harrisburg, Harrisburg, PA 17057, USA
| |
Collapse
|
10
|
Scutigliani EM, Lobo-Cerna F, Mingo Barba S, Scheidegger S, Krawczyk PM. The Effects of Heat Stress on the Transcriptome of Human Cancer Cells: A Meta-Analysis. Cancers (Basel) 2022; 15:cancers15010113. [PMID: 36612111 PMCID: PMC9817844 DOI: 10.3390/cancers15010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Hyperthermia is clinically applied cancer treatment in conjunction with radio- and/or chemotherapy, in which the tumor volume is exposed to supraphysiological temperatures. Since cells can effectively counteract the effects of hyperthermia by protective measures that are commonly known as the heat stress response, the identification of cellular processes that are essential for surviving hyperthermia could lead to novel treatment strategies that improve its therapeutic effects. Here, we apply a meta-analytic approach to 18 datasets that capture hyperthermia-induced transcriptome alterations in nine different human cancer cell lines. We find, in line with previous reports, that hyperthermia affects multiple processes, including protein folding, cell cycle, mitosis, and cell death, and additionally uncover expression changes of genes involved in KRAS signaling, inflammatory responses, TNF-a signaling and epithelial-to-mesenchymal transition (EMT). Interestingly, however, we also find a considerable inter-study variability, and an apparent absence of a 'universal' heat stress response signature, which is likely caused by the differences in experimental conditions. Our results suggest that gene expression alterations after heat stress are driven, to a large extent, by the experimental context, and call for a more extensive, controlled study that examines the effects of key experimental parameters on global gene expression patterns.
Collapse
Affiliation(s)
- Enzo M. Scutigliani
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Treatment and Quality of Life, 1081HV Amsterdam, The Netherlands
- Correspondence: (E.M.S.); (P.M.K.)
| | - Fernando Lobo-Cerna
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Treatment and Quality of Life, 1081HV Amsterdam, The Netherlands
| | - Sergio Mingo Barba
- ZHAW School of Engineering, University of Applied Sciences, CH 8401 Winterthur, Switzerland
- Chemistry Department, University of Fribourg, 1700 Fribourg, Switzerland
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Stephan Scheidegger
- ZHAW School of Engineering, University of Applied Sciences, CH 8401 Winterthur, Switzerland
| | - Przemek M. Krawczyk
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Treatment and Quality of Life, 1081HV Amsterdam, The Netherlands
- Correspondence: (E.M.S.); (P.M.K.)
| |
Collapse
|
11
|
Evaluation of the Heat Shock Protein 90 Inhibitor Ganetespib as a Sensitizer to Hyperthermia-Based Cancer Treatments. Cancers (Basel) 2022; 14:cancers14215250. [PMID: 36358669 PMCID: PMC9654690 DOI: 10.3390/cancers14215250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Hyperthermia boosts the effects of radio- and chemotherapy regimens, but its clinical potential is hindered by the ability of (cancer) cells to activate a protective mechanism known as the heat stress response. Strategies that inhibit its activation or functions have the potential, therefore, to improve the overall efficacy of hyperthermia-based treatments. In this study, we evaluated the efficacy of the HSP90 inhibitor ganetespib in promoting the effects of radiotherapy or cisplatin combined with hyperthermia in vitro and in a cervix cancer mouse model. Abstract Hyperthermia is being used as a radio- and chemotherapy sensitizer for a growing range of tumor subtypes in the clinic. Its potential is limited, however, by the ability of cancer cells to activate a protective mechanism known as the heat stress response (HSR). The HSR is marked by the rapid overexpression of molecular chaperones, and recent advances in drug development make their inhibition an attractive option to improve the efficacy of hyperthermia-based therapies. Our previous in vitro work showed that a single, short co-treatment with a HSR (HSP90) inhibitor ganetespib prolongs and potentiates the effects of hyperthermia on DNA repair, enhances hyperthermic sensitization to radio- and chemotherapeutic agents, and reduces thermotolerance. In the current study, we first validated these results using an extended panel of cell lines and more robust methodology. Next, we examined the effects of hyperthermia and ganetespib on global proteome changes. Finally, we evaluated the potential of ganetespib to boost the efficacy of thermo-chemotherapy and thermo-radiotherapy in a xenograft murine model of cervix cancer. Our results revealed new insights into the effects of HSR inhibition on cellular responses to heat and show that ganetespib could be employed to increase the efficacy of hyperthermia when combined with radiation.
Collapse
|
12
|
A patterns of care analysis of hyperthermia in combination with radio(chemo)therapy or chemotherapy in European clinical centers. Strahlenther Onkol 2022; 199:436-444. [PMID: 36038671 PMCID: PMC10133066 DOI: 10.1007/s00066-022-01980-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE The combination of hyperthermia (HT) with radio(chemo)therapy or chemotherapy (CT) is an established treatment strategy for specific indications. Its application in routine clinical practice in Europe depends on regulatory and local conditions. We conducted a survey among European clinical centers to determine current practice of HT. METHODS A questionnaire with 22 questions was sent to 24 European HT centers. The questions were divided into two main categories. The first category assessed how many patients are treated with HT in combination with radio(chemo)therapy or CT for specific indications per year. The second category addressed which hyperthermia parameters are recorded. Analysis was performed using descriptive methods. RESULTS The response rate was 71% (17/24) and 16 centers were included in this evaluation. Annually, these 16 centers treat approximately 637 patients using HT in combination with radio(chemo)therapy or CT. On average, 34% (range: 3-100%) of patients are treated in clinical study protocols. Temperature readings and the time interval between HT and radio(chemo)therapy or CT are recorded in 13 (81%) and 9 (56%) centers, respectively. The thermal dose quality parameter "cumulative equivalent minutes at 43 °C" (CEM43°C) is only evaluated in five (31%) centers for each HT session. With regard to treatment sequence, 8 (50%) centers administer HT before radio(chemo)therapy and the other 8 in the reverse order. CONCLUSION There is a significant heterogeneity among European HT centers as to the indications treated and the recording of thermometric parameters. More evidence from clinical studies is necessary to achieve standardization of HT practice.
Collapse
|
13
|
Sharma A, Cressman E, Attaluri A, Kraitchman DL, Ivkov R. Current Challenges in Image-Guided Magnetic Hyperthermia Therapy for Liver Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2768. [PMID: 36014633 PMCID: PMC9414548 DOI: 10.3390/nano12162768] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 05/09/2023]
Abstract
For patients diagnosed with advanced and unresectable hepatocellular carcinoma (HCC), liver transplantation remains the best option to extend life. Challenges with organ supply often preclude liver transplantation, making palliative non-surgical options the default front-line treatments for many patients. Even with imaging guidance, success following treatment remains inconsistent and below expectations, so new approaches are needed. Imaging-guided thermal therapy interventions have emerged as attractive procedures that offer individualized tumor targeting with the potential for the selective targeting of tumor nodules without impairing liver function. Furthermore, imaging-guided thermal therapy with added standard-of-care chemotherapies targeted to the liver tumor can directly reduce the overall dose and limit toxicities commonly seen with systemic administration. Effectiveness of non-ablative thermal therapy (hyperthermia) depends on the achieved thermal dose, defined as time-at-temperature, and leads to molecular dysfunction, cellular disruption, and eventual tissue destruction with vascular collapse. Hyperthermia therapy requires controlled heat transfer to the target either by in situ generation of the energy or its on-target conversion from an external radiative source. Magnetic hyperthermia (MHT) is a nanotechnology-based thermal therapy that exploits energy dissipation (heat) from the forced magnetic hysteresis of a magnetic colloid. MHT with magnetic nanoparticles (MNPs) and alternating magnetic fields (AMFs) requires the targeted deposition of MNPs into the tumor, followed by exposure of the region to an AMF. Emerging modalities such as magnetic particle imaging (MPI) offer additional prospects to develop fully integrated (theranostic) systems that are capable of providing diagnostic imaging, treatment planning, therapy execution, and post-treatment follow-up on a single platform. In this review, we focus on recent advances in image-guided MHT applications specific to liver cancer.
Collapse
Affiliation(s)
- Anirudh Sharma
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Erik Cressman
- Department of Interventional Radiology, Division of Diagnostic Imaging, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anilchandra Attaluri
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University, Middletown, PA 17057, USA
| | - Dara L. Kraitchman
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
14
|
Healy S, Bakuzis AF, Goodwill PW, Attaluri A, Bulte JWM, Ivkov R. Clinical magnetic hyperthermia requires integrated magnetic particle imaging. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1779. [PMID: 35238181 PMCID: PMC9107505 DOI: 10.1002/wnan.1779] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/29/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022]
Abstract
Magnetic nanomaterials that respond to clinical magnetic devices have significant potential as cancer nanotheranostics. The complexities of their physics, however, introduce challenges for these applications. Hyperthermia is a heat‐based cancer therapy that improves treatment outcomes and patient survival when controlled energy delivery is combined with accurate thermometry. To date, few technologies have achieved the needed evolution for the demands of the clinic. Magnetic fluid hyperthermia (MFH) offers this potential, but to be successful it requires particle‐imaging technology that provides real‐time thermometry. Presently, the only technology having the potential to meet these requirements is magnetic particle imaging (MPI), for which a proof‐of‐principle demonstration with MFH has been achieved. Successful clinical translation and adoption of integrated MPI/MFH technology will depend on successful resolution of the technological challenges discussed. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging
Collapse
Affiliation(s)
- Sean Healy
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andris F Bakuzis
- Instituto de Física and CNanoMed, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Anilchandra Attaluri
- Department of Mechanical Engineering, Pennsylvania State University, Harrisburg, Harrisburg, Pennsylvania, USA
| | - Jeff W M Bulte
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Schouten D, van Os R, Westermann AM, Crezee H, van Tienhoven G, Kolff MW, Bins AD. A randomized phase-II study of reirradiation and hyperthermia versus reirradiation and hyperthermia plus chemotherapy for locally recurrent breast cancer in previously irradiated area. Acta Oncol 2022; 61:441-448. [PMID: 35139725 DOI: 10.1080/0284186x.2022.2033315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND In patients with inoperable local regional recurrences of breast cancer in previously irradiated areas, local control is difficult to maintain and treatment options are limited. The Dutch standard treatment for such recurrences is reirradiation combined with hyperthermia. Apart from enhancing the effect of reirradiation, hyperthermia is also known to improve local effects of chemotherapy like cisplatin. This randomized phase-II trial compares reirradiation and hyperthermia versus the same treatment combined with cisplatin. PATIENTS AND METHODS From December 2010 up to January 2019, 49 patients were randomized, 27 in the standard arm and 22 in the combined arm. A total of 32 Gy was given in eight fractions of 4 Gy in 4 weeks, at two fractions per week. After January 2015, the radiation schedule was changed to 46 Gy in 23 fractions of 2 Gy, at five fractions per week. Hyperthermia was added once a week after radiotherapy. The combined arm was treated with four cycles of weekly cisplatin 40 mg/m2. RESULTS Complete response rate was 60.9% in the standard arm and 61.1% in the combined arm (p = 0.87). Partial response rate was 30.4% in the standard arm and 33.3% in the combined arm (p = 0.79). One-year overall survival was 63.4% in the standard arm and 57.4% in the combined arm. One-year local progression-free interval was 81.5% in the standard arm and 88.1% in the combined arm (p = 0.95). Twenty-five percentage of patients in the standard arm experienced grade 3 or 4 acute toxicity and 29% of patients in the combined arm (p = 0.79). CONCLUSION No potential benefit could be detected of adding cisplatin to reirradiation and hyperthermia in patients with recurrent breast cancer in a previously irradiated area. With or without cisplatin, most patients had subsequent local control until last follow-up or death.
Collapse
Affiliation(s)
- Daphne Schouten
- Department of Radiotherapy, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Rob van Os
- Department of Radiotherapy, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Anneke M. Westermann
- Medical Oncology, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Hans Crezee
- Department of Radiotherapy, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Geertjan van Tienhoven
- Department of Radiotherapy, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - M. Willemijn Kolff
- Department of Radiotherapy, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Adriaan D. Bins
- Medical Oncology, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
16
|
IJff M, Crezee J, Oei AL, Stalpers LJA, Westerveld H. The role of hyperthermia in the treatment of locally advanced cervical cancer: a comprehensive review. Int J Gynecol Cancer 2022; 32:288-296. [PMID: 35046082 PMCID: PMC8921566 DOI: 10.1136/ijgc-2021-002473] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/14/2021] [Indexed: 01/02/2023] Open
Abstract
Radiotherapy with cisplatin (chemoradiation) is the standard treatment for women with locally advanced cervical cancer. Radiotherapy with deep hyperthermia (thermoradiation) is a well established alternative, but is rarely offered as an alternative to chemoradiation, particularly for patients in whom cisplatin is contraindicated. The scope of this review is to provide an overview of the biological rationale of hyperthermia treatment delivery, including patient workflow, and the clinical effectiveness of hyperthermia as a radiosensitizer in the treatment of cervical cancer. Hyperthermia is especially effective in hypoxic and nutrient deprived areas of the tumor where radiotherapy is less effective. Its radiosensitizing effectiveness depends on the temperature level, duration of treatment, and the time interval between radiotherapy and hyperthermia. High quality hyperthermia treatment requires an experienced team, adequate online adaptive treatment planning, and is preferably performed using a phased array radiative locoregional hyperthermia device to achieve the optimal thermal dose effect. Hyperthermia is well tolerated and generally leads to only mild toxicity, such as patient discomfort. Patients in whom cisplatin is contraindicated should therefore be referred to a hyperthermia center for thermoradiation.
Collapse
Affiliation(s)
- Marloes IJff
- Department of Radiation Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory for Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory for Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory for Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Henrike Westerveld
- Department of Radiation Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Zhu L, Huang Y, Lam D, Gach HM, Zoberi I, Hallahan DE, Grigsby PW, Chen H, Altman MB. Targetability of cervical cancer by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated hyperthermia (HT) for patients receiving radiation therapy. Int J Hyperthermia 2021; 38:498-510. [PMID: 33757406 DOI: 10.1080/02656736.2021.1895330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To evaluate the targetability of late-stage cervical cancer by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-induced hyperthermia (HT) as an adjuvant to radiation therapy (RT). METHODS Seventy-nine cervical cancer patients (stage IIIB-IVA) who received RT with lesions visible on positron emission tomography-computed tomography (PET-CT) were retrospectively analyzed for targetability using a commercially-available HT-capable MRgHIFU system. Targetability was assessed for both primary targets and/or any metastatic lymph nodes using both posterior (supine) and anterior (prone) patient setups relative to the transducer. Thirty-four different angles of rotation along subjects' longitudinal axis were analyzed. Targetability was categorized as: (1) Targetable with/without minimal intervention; (2) Not targetable. To determine if any factors could be used for prospective screening of patients, potential associations between demographic/anatomical factors and targetability were analyzed. RESULTS 72.15% primary tumors and 33.96% metastatic lymph nodes were targetable from at least one angle. 49.37% and 39.24% of primary tumors could be targeted with patient laying in supine and prone positions, respectively. 25°-30° rotation and 0° rotation had the highest rate of the posterior and anterior targetability, respectively. The ventral depth of the tumor and its distance to the coccyx were statistically correlated with the anterior and posterior targetability, respectively. CONCLUSION Most late-stage cervical cancer primaries were targetable by MRgHIFU HT requiring either no/minimal intervention. A rotation of 0° or 25°-30° relative to the transducer might benefit anterior and posterior targetability, respectively. Certain demographic/anatomic parameters might be useful in screening patients for treatability.
Collapse
Affiliation(s)
- Lifei Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yi Huang
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA
| | - Dao Lam
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA
| | - H Michael Gach
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.,Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Imran Zoberi
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA.,Siteman Comprehensive Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Dennis E Hallahan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.,Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA.,Siteman Comprehensive Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.,Institute of Clinical and Translational Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Perry W Grigsby
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA.,Siteman Comprehensive Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.,Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA.,Siteman Comprehensive Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael B Altman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.,Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA.,Siteman Comprehensive Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
18
|
Efficient Heat Shock Response Affects Hyperthermia-Induced Radiosensitization in a Tumor Spheroid Control Probability Assay. Cancers (Basel) 2021; 13:cancers13133168. [PMID: 34201993 PMCID: PMC8269038 DOI: 10.3390/cancers13133168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
Hyperthermia (HT) combined with irradiation is a well-known concept to improve the curative potential of radiotherapy. Technological progress has opened new avenues for thermoradiotherapy, even for recurrent head and neck squamous cell carcinomas (HNSCC). Preclinical evaluation of the curative radiosensitizing potential of various HT regimens remains ethically, economically, and technically challenging. One key objective of our study was to refine an advanced 3-D assay setup for HT + RT research and treatment testing. For the first time, HT-induced radiosensitization was systematically examined in two differently radioresponsive HNSCC spheroid models using the unique in vitro "curative" analytical endpoint of spheroid control probability. We further investigated the cellular stress response mechanisms underlying the HT-related radiosensitization process with the aim to unravel the impact of HT-induced proteotoxic stress on the overall radioresponse. HT disrupted the proteome's thermal stability, causing severe proteotoxic stress. It strongly enhanced radiation efficacy and affected paramount survival and stress response signaling networks. Transcriptomics, q-PCR, and western blotting data revealed that HT + RT co-treatment critically triggers the heat shock response (HSR). Pre-treatment with chemical chaperones intensified the radiosensitizing effect, thereby suppressing HT-induced Hsp27 expression. Our data suggest that HT-induced radiosensitization is adversely affected by the proteotoxic stress response. Hence, we propose the inhibition of particular heat shock proteins as a targeting strategy to improve the outcome of combinatorial HT + RT.
Collapse
|
19
|
Gavazzi S, van Lier ALHMW, Zachiu C, Jansen E, Lagendijk JJW, Stalpers LJA, Crezee H, Kok HP. Advanced patient-specific hyperthermia treatment planning. Int J Hyperthermia 2021; 37:992-1007. [PMID: 32806979 DOI: 10.1080/02656736.2020.1806361] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hyperthermia treatment planning (HTP) is valuable to optimize tumor heating during thermal therapy delivery. Yet, clinical hyperthermia treatment plans lack quantitative accuracy due to uncertainties in tissue properties and modeling, and report tumor absorbed power and temperature distributions which cannot be linked directly to treatment outcome. Over the last decade, considerable progress has been made to address these inaccuracies and therefore improve the reliability of hyperthermia treatment planning. Patient-specific electrical tissue conductivity derived from MR measurements has been introduced to accurately model the power deposition in the patient. Thermodynamic fluid modeling has been developed to account for the convective heat transport in fluids such as urine in the bladder. Moreover, discrete vasculature trees have been included in thermal models to account for the impact of thermally significant large blood vessels. Computationally efficient optimization strategies based on SAR and temperature distributions have been established to calculate the phase-amplitude settings that provide the best tumor thermal dose while avoiding hot spots in normal tissue. Finally, biological modeling has been developed to quantify the hyperthermic radiosensitization effect in terms of equivalent radiation dose of the combined radiotherapy and hyperthermia treatment. In this paper, we review the present status of these developments and illustrate the most relevant advanced elements within a single treatment planning example of a cervical cancer patient. The resulting advanced HTP workflow paves the way for a clinically feasible and more reliable patient-specific hyperthermia treatment planning.
Collapse
Affiliation(s)
- Soraya Gavazzi
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Cornel Zachiu
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eric Jansen
- Amsterdam UMC, Department of Radiation Oncology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan J W Lagendijk
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lukas J A Stalpers
- Amsterdam UMC, Department of Radiation Oncology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans Crezee
- Amsterdam UMC, Department of Radiation Oncology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - H Petra Kok
- Amsterdam UMC, Department of Radiation Oncology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Kok HP, Cressman ENK, Ceelen W, Brace CL, Ivkov R, Grüll H, Ter Haar G, Wust P, Crezee J. Heating technology for malignant tumors: a review. Int J Hyperthermia 2021; 37:711-741. [PMID: 32579419 DOI: 10.1080/02656736.2020.1779357] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 °C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 °C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors.
Collapse
Affiliation(s)
- H Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik N K Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
| | - Christopher L Brace
- Department of Radiology and Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Holger Grüll
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Gail Ter Haar
- Department of Physics, The Institute of Cancer Research, London, UK
| | - Peter Wust
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Modulating the Heat Stress Response to Improve Hyperthermia-Based Anticancer Treatments. Cancers (Basel) 2021; 13:cancers13061243. [PMID: 33808973 PMCID: PMC8001574 DOI: 10.3390/cancers13061243] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Hyperthermia is a method to expose a tumor to elevated temperatures. Heating of the tumor promotes the effects of various treatment regimens that are based on chemo and radiotherapy. Several aspects, however, limit the efficacy of hyperthermia-based treatments. This review provides an overview of the effects and limitations of hyperthermia and discusses how current drawbacks of the therapy can potentially be counteracted by inhibiting the heat stress response—a mechanism that cells activate to defend themselves against hyperthermia. Abstract Cancer treatments based on mild hyperthermia (39–43 °C, HT) are applied to a widening range of cancer types, but several factors limit their efficacy and slow down more widespread adoption. These factors include difficulties in adequate heat delivery, a short therapeutic window and the acquisition of thermotolerance by cancer cells. Here, we explore the biological effects of HT, the cellular responses to these effects and their clinically-relevant consequences. We then identify the heat stress response—the cellular defense mechanism that detects and counteracts the effects of heat—as one of the major forces limiting the efficacy of HT-based therapies and propose targeting this mechanism as a potentially universal strategy for improving their efficacy.
Collapse
|
22
|
Mathematical model for the thermal enhancement of radiation response: thermodynamic approach. Sci Rep 2021; 11:5503. [PMID: 33750833 PMCID: PMC7970926 DOI: 10.1038/s41598-021-84620-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/15/2021] [Indexed: 02/08/2023] Open
Abstract
Radiotherapy can effectively kill malignant cells, but the doses required to cure cancer patients may inflict severe collateral damage to adjacent healthy tissues. Recent technological advances in the clinical application has revitalized hyperthermia treatment (HT) as an option to improve radiotherapy (RT) outcomes. Understanding the synergistic effect of simultaneous thermoradiotherapy via mathematical modelling is essential for treatment planning. We here propose a theoretical model in which the thermal enhancement ratio (TER) relates to the cell fraction being radiosensitised by the infliction of sublethal damage through HT. Further damage finally kills the cell or abrogates its proliferative capacity in a non-reversible process. We suggest the TER to be proportional to the energy invested in the sensitisation, which is modelled as a simple rate process. Assuming protein denaturation as the main driver of HT-induced sublethal damage and considering the temperature dependence of the heat capacity of cellular proteins, the sensitisation rates were found to depend exponentially on temperature; in agreement with previous empirical observations. Our findings point towards an improved definition of thermal dose in concordance with the thermodynamics of protein denaturation. Our predictions well reproduce experimental in vitro and in vivo data, explaining the thermal modulation of cellular radioresponse for simultaneous thermoradiotherapy.
Collapse
|
23
|
van der Horst A, Kok HP, Crezee J. Effect of gastrointestinal gas on the temperature distribution in pancreatic cancer hyperthermia treatment planning. Int J Hyperthermia 2021; 38:229-240. [PMID: 33602033 DOI: 10.1080/02656736.2021.1882709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE In pancreatic cancer treatment, hyperthermia can be added to increase efficacy of chemo- and/or radiotherapy. Gas in stomach, intestines and colon is often in close proximity to the target volume. We investigated the impact of variations in gastrointestinal gas (GG) on temperature distributions during simulated hyperthermia treatment (HT). METHODS We used sets of one CT and eight cone-beam CT (CBCT) scans obtained prior to/during fractionated image-guided radiotherapy in four pancreatic cancer patients. In Plan2Heat, we simulated locoregional heating by an ALBA-4D phased array radiofrequency system and calculated temperature distributions for (i) the segmented CT (sCT), (ii) sCT with GG replaced by muscle (sCT0), (iii) sCT0 with eight different GG distributions as visible on CBCT inserted (sCTCBCT). We calculated cumulative temperature-volume histograms for the clinical target volume (CTV) for all ten temperature distributions for each patient and investigated the relationship between GG volume and change in ΔT50 (temperature increase at 50% of CTV volume). We determined location and volume of normal tissue receiving a high thermal dose. RESULTS GG volume on CBCT varied greatly (9-991 cm3). ΔT50 increased for increasing GG volume; maximum ΔT50 difference per patient was 0.4-0.6 °C. The risk for GG-associated treatment-limiting hot spots appeared low. Normal tissue high-temperature regions mostly occurred anteriorly; their volume and maximum temperature showed moderate positive correlations with GG volume, while fat-muscle interfaces were associated with higher risks for hot spots. CONCLUSIONS Considerable changes in volume and position of gastrointestinal gas can occur and are associated with clinically relevant tumor temperature differences.
Collapse
Affiliation(s)
- Astrid van der Horst
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Rubia-Rodríguez I, Santana-Otero A, Spassov S, Tombácz E, Johansson C, De La Presa P, Teran FJ, Morales MDP, Veintemillas-Verdaguer S, Thanh NTK, Besenhard MO, Wilhelm C, Gazeau F, Harmer Q, Mayes E, Manshian BB, Soenen SJ, Gu Y, Millán Á, Efthimiadou EK, Gaudet J, Goodwill P, Mansfield J, Steinhoff U, Wells J, Wiekhorst F, Ortega D. Whither Magnetic Hyperthermia? A Tentative Roadmap. MATERIALS (BASEL, SWITZERLAND) 2021; 14:706. [PMID: 33546176 PMCID: PMC7913249 DOI: 10.3390/ma14040706] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
The scientific community has made great efforts in advancing magnetic hyperthermia for the last two decades after going through a sizeable research lapse from its establishment. All the progress made in various topics ranging from nanoparticle synthesis to biocompatibilization and in vivo testing have been seeking to push the forefront towards some new clinical trials. As many, they did not go at the expected pace. Today, fruitful international cooperation and the wisdom gain after a careful analysis of the lessons learned from seminal clinical trials allow us to have a future with better guarantees for a more definitive takeoff of this genuine nanotherapy against cancer. Deliberately giving prominence to a number of critical aspects, this opinion review offers a blend of state-of-the-art hints and glimpses into the future of the therapy, considering the expected evolution of science and technology behind magnetic hyperthermia.
Collapse
Affiliation(s)
| | | | - Simo Spassov
- Geophysical Centre of the Royal Meteorological Institute, 1 rue du Centre Physique, 5670 Dourbes, Belgium;
| | - Etelka Tombácz
- Soós Water Technology Research and Development Center, University of Pannonia, 8200 Nagykanizsa, Hungary;
| | - Christer Johansson
- RISE Research Institutes of Sweden, Sensors and Materials, Arvid Hedvalls Backe 4, 411 33 Göteborg, Sweden;
| | - Patricia De La Presa
- Instituto de Magnetismo Aplicado UCM-ADIF-CSIC, A6 22,500 km, 29260 Las Rozas, Spain;
- Departamento de Física de Materiales, Universidad Complutense de Madrid, Avda. Complutense s/n, 28048 Madrid, Spain
| | - Francisco J. Teran
- IMDEA Nanoscience, Faraday 9, 28049 Madrid, Spain; (I.R.-R.); (A.S.-O.); (F.J.T.)
- Nanotech Solutions, Ctra Madrid, 23, 40150 Villacastín, Spain
| | - María del Puerto Morales
- Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM/CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (M.P.M.); (S.V.-V.)
| | - Sabino Veintemillas-Verdaguer
- Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM/CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (M.P.M.); (S.V.-V.)
| | - Nguyen T. K. Thanh
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK;
- Biophysics Group, Department of Physics and Astronomy, Gower Street, London WC1E 6BT, UK
| | - Maximilian O. Besenhard
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK;
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes MSC, Université de Paris/CNRS, 75013 Paris, France; (C.W.); (F.G.)
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes MSC, Université de Paris/CNRS, 75013 Paris, France; (C.W.); (F.G.)
| | - Quentin Harmer
- Endomag, The Jeffreys Building, St John’s Innovation Park, Cowley Road, Cambridge CB4 0WS, UK; (Q.H.); (E.M.)
| | - Eric Mayes
- Endomag, The Jeffreys Building, St John’s Innovation Park, Cowley Road, Cambridge CB4 0WS, UK; (Q.H.); (E.M.)
| | - Bella B. Manshian
- Biomedical Sciences Group, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, 3000 Leuven, Belgium; (B.B.M.); (S.J.S.)
| | - Stefaan J. Soenen
- Biomedical Sciences Group, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, 3000 Leuven, Belgium; (B.B.M.); (S.J.S.)
| | - Yuanyu Gu
- INMA Instituto de Nanociencia de Materiales de Aragón, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (Y.G.); (Á.M.)
| | - Ángel Millán
- INMA Instituto de Nanociencia de Materiales de Aragón, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (Y.G.); (Á.M.)
| | - Eleni K. Efthimiadou
- Chemistry Department, Inorganic Chemistry Laboratory, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Jeff Gaudet
- Magnetic Insight, Alameda, CA 94501, USA; (J.G.); (P.G.); (J.M.)
| | - Patrick Goodwill
- Magnetic Insight, Alameda, CA 94501, USA; (J.G.); (P.G.); (J.M.)
| | - James Mansfield
- Magnetic Insight, Alameda, CA 94501, USA; (J.G.); (P.G.); (J.M.)
| | - Uwe Steinhoff
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany; (U.S.); (J.W.); (F.W.)
| | - James Wells
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany; (U.S.); (J.W.); (F.W.)
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany; (U.S.); (J.W.); (F.W.)
| | - Daniel Ortega
- IMDEA Nanoscience, Faraday 9, 28049 Madrid, Spain; (I.R.-R.); (A.S.-O.); (F.J.T.)
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cádiz (INiBICA), 11002 Cádiz, Spain
- Condensed Matter Physics Department, Faculty of Sciences, Campus Universitario de Puerto Real s/n, 11510 Puerto Real, Spain
| |
Collapse
|
25
|
[Low-dose irradiation of non-malignant diseases: Did we throw the baby out with the bathwater?]. Cancer Radiother 2021; 25:279-282. [PMID: 33451911 DOI: 10.1016/j.canrad.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022]
Abstract
The irradiation of non-malignant diseases, essentially for anti-inflammatory purpose, have been largely proposed and performed worldwide until the 1970-80s. At that time, the better assessment of the radio-induced malignancies, essentially in children and young patients, as well as the efficacy of the new anti-inflammatory drugs (steroids and non-steroids), led to the almost disappearance of those techniques, at least in France. In contrast, our German colleagues are still going on treating about 50,000 patients per year for non-malignant (more or less severe) diseases. After a short historical overview, the present article suggests that we were possibly going too far in the rejection of those low-dose irradiations for benign lesions. The recent emergence of new preclinical data, the better understanding of the risk of radio-induced secondary tumours (almost nil in the elderly), and the severity of some situations, such as the cytokine storm of the COVID-19, should probably lead us to reconsider those low - and sometimes very low (less than 1Gy) - irradiations for well-selected indications in the elderly.
Collapse
|
26
|
Moradi S, Mokhtari-Dizaji M, Ghassemi F, Sheibani S, Asadi Amoli F. Increasing the efficiency of the retinoblastoma brachytherapy protocol with ultrasonic hyperthermia and gold nanoparticles: a rabbit model. Int J Radiat Biol 2020; 96:1614-1627. [PMID: 33074061 DOI: 10.1080/09553002.2020.1838657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE This study purposed to evaluate the efficacy of brachytherapy with the modality of ultrasonic hyperthermia in the presence of gold nanoparticles (GNPs) on an ocular retinoblastoma tumor in an animal model of the rabbit. MATERIALS AND METHODS A retinoblastoma tumor was induced by the injection of the human cell line of Y79 in rabbit eyes (n = 41). After two weeks, tumor size reached a diameter of about 5-7 mm. Seven groups were involved: control, GNPs injection, hyperthermia, hyperthermia with GNPs injection, brachytherapy with I-125, a combination of hyperthermia and brachytherapy, and a combination of brachytherapy, hyperthermia and, GNPs. The tumor area was measured using B-mode ultrasound images on the zero-day and at the end of the third week. The groups were evaluated for a histopathological study of tumor necrosis. RESULTS There was a significant difference between the relative area changes of tumor in the combination group with the other study groups (p < .05). The results of histopathologic studies confirmed the necrosis of living retinoblastoma cells. CONCLUSION Combination therapy of brachytherapy and hyperthermia with GNPs reduces the relative size of the tumor. This method increases the necrosis percentage of retinoblastoma and significantly reduces the retinoblastoma mass in the rabbit eyes.
Collapse
Affiliation(s)
- Somayeh Moradi
- Faculty of Medical Sciences, Department of Medical Physics, Tarbiat Modares University, Tehran, Iran
| | - Manijhe Mokhtari-Dizaji
- Faculty of Medical Sciences, Department of Medical Physics, Tarbiat Modares University, Tehran, Iran
| | - Fariba Ghassemi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Fahimeh Asadi Amoli
- Department of Pathology, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Regional deep hyperthermia in combination with whole brain radiotherapy (WBRT) in poor prognosis patients with brain metastases. Clin Transl Oncol 2020; 23:190-194. [PMID: 32748093 DOI: 10.1007/s12094-020-02404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/13/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The aim of this study is to assess for the first time, the role of regional deep hyperthermia in combination with radiotherapy and systemic therapy in patients with poor prognosis of brain metastases (GPI ≤ 2.5). METHODS Patients with confirmed cerebral metastases and classified as GPI score ≤ 2.5 were included in this prospective study. Pretreatment stratification was defined as patients with 0-1 GPI score (Group A) and patients with 1.5-2.5 GPI score (Group B). HT was applied twice a week, 60 min per session, during RT by regional capacitive device (HY-DEEP 600WM system) at 13.56 MHz radiofrequency. RESULTS Between June 2015 and June 2017, 15 patients and a total of 49 brain metastases were included in the protocol. All patients received all HT sessions as planned. RT and systemic therapy were also completed as prescribed. Tolerance to treatment was excellent and no toxicity was registered. Patients with HT effective treatment time longer than the median (W90time > 88%) showed better actuarial PFS at 6 and 12 months (100% and 66.7%, respectively) compared to those with less HT effective treatment time (50% and 0%, respectively) (p < 0.031). Median OS was 6 months (range 1-36 months). Stratification by GPI score showed a median OS of 3 months (CI 95% 2.49-3.51) in Group A and 8.0 months (CI 95% 5.15-10.41) in Group B (p = 0.035). CONCLUSIONS Regional hyperthermia is a feasible and safe technique to be used in combination with RT in brain metastases patients, improving PFS and survival in poor prognostic brain metastasis patients.
Collapse
|
28
|
Soetaert F, Korangath P, Serantes D, Fiering S, Ivkov R. Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Adv Drug Deliv Rev 2020; 163-164:65-83. [PMID: 32603814 PMCID: PMC7736167 DOI: 10.1016/j.addr.2020.06.025] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/19/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
Significant research and preclinical investment in cancer nanomedicine has produced several products, which have improved cancer care. Nevertheless, there exists a perception that cancer nanomedicine 'has not lived up to its promise' because the number of approved products and their clinical performance are modest. Many of these analyses do not consider the long clinical history and many clinical products developed from iron oxide nanoparticles. Iron oxide nanoparticles have enjoyed clinical use for about nine decades demonstrating safety, and considerable clinical utility and versatility. FDA-approved applications of iron oxide nanoparticles include cancer diagnosis, cancer hyperthermia therapy, and iron deficiency anemia. For cancer nanomedicine, this wealth of clinical experience is invaluable to provide key lessons and highlight pitfalls in the pursuit of nanotechnology-based cancer therapeutics. We review the clinical experience with systemic liposomal drug delivery and parenteral therapy of iron deficiency anemia (IDA) with iron oxide nanoparticles. We note that the clinical success of injectable iron exploits the inherent interaction between nanoparticles and the (innate) immune system, which designers of liposomal drug delivery seek to avoid. Magnetic fluid hyperthermia, a cancer therapy that harnesses magnetic hysteresis heating is approved for treating humans only with iron oxide nanoparticles. Despite its successful demonstration to enhance overall survival in clinical trials, this nanotechnology-based thermal medicine struggles to establish a clinical presence. We review the physical and biological attributes of this approach, and suggest reasons for barriers to its acceptance. Finally, despite the extensive clinical experience with iron oxide nanoparticles new and exciting research points to surprising immune-modulating potential. Recent data demonstrate the interactions between immune cells and iron oxide nanoparticles can induce anti-tumor immune responses. These present new and exciting opportunities to explore additional applications with this venerable technology. Clinical applications of iron oxide nanoparticles present poignant case studies of the opportunities, complexities, and challenges in cancer nanomedicine. They also illustrate the need for revised paradigms and multidisciplinary approaches to develop and translate nanomedicines into clinical cancer care.
Collapse
Affiliation(s)
- Frederik Soetaert
- Department of Electrical Energy, Metals, Mechanical Constructions and Systems, Ghent University, Belgium; Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Preethi Korangath
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - David Serantes
- Department of Applied Physics and Instituto de Investigacións Tecnolóxicas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Steven Fiering
- Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Centre, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore 21218, USA; Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore 21218, USA.
| |
Collapse
|
29
|
Crezee J, Oei AL, Franken NAP, Stalpers LJA, Kok HP. Response: Commentary: The Impact of the Time Interval Between Radiation and Hyperthermia on Clinical Outcome in Patients With Locally Advanced Cervical Cancer. Front Oncol 2020; 10:528. [PMID: 32351897 PMCID: PMC7174773 DOI: 10.3389/fonc.2020.00528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Johannes Crezee
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
30
|
Wang Y, Zou L, Qiang Z, Jiang J, Zhu Z, Ren J. Enhancing Targeted Cancer Treatment by Combining Hyperthermia and Radiotherapy Using Mn–Zn Ferrite Magnetic Nanoparticles. ACS Biomater Sci Eng 2020; 6:3550-3562. [DOI: 10.1021/acsbiomaterials.0c00287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yijue Wang
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Liqing Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhe Qiang
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jianhai Jiang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China
| | - Jie Ren
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
31
|
Mei X, ten Cate R, van Leeuwen CM, Rodermond HM, de Leeuw L, Dimitrakopoulou D, Stalpers LJA, Crezee J, Kok HP, Franken NAP, Oei AL. Radiosensitization by Hyperthermia: The Effects of Temperature, Sequence, and Time Interval in Cervical Cell Lines. Cancers (Basel) 2020; 12:cancers12030582. [PMID: 32138173 PMCID: PMC7139900 DOI: 10.3390/cancers12030582] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/03/2022] Open
Abstract
Cervical cancers are almost exclusively caused by an infection with the human papillomavirus (HPV). When patients suffering from cervical cancer have contraindications for chemoradiotherapy, radiotherapy combined with hyperthermia is a good treatment option. Radiation-induced DNA breaks can be repaired by nonhomologous end-joining (NHEJ) or homologous recombination (HR). Hyperthermia can temporarily inactivate homologous recombination. Therefore, combining radiotherapy with hyperthermia can result in the persistence of more fatal radiation-induced DNA breaks. However, there is no consensus on the optimal sequence of radiotherapy and hyperthermia and the optimal time interval between these modalities. Moreover, the temperature of hyperthermia and HPV-type may also be important in radiosensitization by hyperthermia. In this study we thoroughly investigated the impact of different temperatures (37–42 °C), and the sequence of and time interval (0 up to 4 h) between ionizing radiation and hyperthermia on HPV16+: SiHa, Caski; HPV18+: HeLa, C4I; and HPV−: C33A, HT3 cervical cancer cell lines. Our results demonstrate that a short time interval between treatments caused more unrepaired DNA damages and more cell kill, especially at higher temperatures. Although hyperthermia before ionizing radiation may result in slightly more DNA damage, the sequence between hyperthermia and ionizing radiation yielded similar effects on cell survival.
Collapse
Affiliation(s)
- Xionge Mei
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (X.M.); (R.t.C.); (H.M.R.); (L.d.L.); (D.D.); (L.J.A.S.); (N.A.P.F.)
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
| | - Rosemarie ten Cate
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (X.M.); (R.t.C.); (H.M.R.); (L.d.L.); (D.D.); (L.J.A.S.); (N.A.P.F.)
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
| | - Caspar M. van Leeuwen
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
| | - Hans M. Rodermond
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (X.M.); (R.t.C.); (H.M.R.); (L.d.L.); (D.D.); (L.J.A.S.); (N.A.P.F.)
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
| | - Lidewij de Leeuw
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (X.M.); (R.t.C.); (H.M.R.); (L.d.L.); (D.D.); (L.J.A.S.); (N.A.P.F.)
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
| | - Dionysia Dimitrakopoulou
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (X.M.); (R.t.C.); (H.M.R.); (L.d.L.); (D.D.); (L.J.A.S.); (N.A.P.F.)
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
| | - Lukas J. A. Stalpers
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (X.M.); (R.t.C.); (H.M.R.); (L.d.L.); (D.D.); (L.J.A.S.); (N.A.P.F.)
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
| | - Johannes Crezee
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
| | - H. Petra Kok
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
| | - Nicolaas A. P. Franken
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (X.M.); (R.t.C.); (H.M.R.); (L.d.L.); (D.D.); (L.J.A.S.); (N.A.P.F.)
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
| | - Arlene L. Oei
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (X.M.); (R.t.C.); (H.M.R.); (L.d.L.); (D.D.); (L.J.A.S.); (N.A.P.F.)
- Department of Radiotherapy, Amsterdam University Medical Centers, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands; (C.M.v.L.); (J.C.); (H.P.K.)
- Correspondence: ; Tel.: +31-205-663-641
| |
Collapse
|
32
|
Oei A, Kok H, Oei S, Horsman M, Stalpers L, Franken N, Crezee J. Molecular and biological rationale of hyperthermia as radio- and chemosensitizer. Adv Drug Deliv Rev 2020; 163-164:84-97. [PMID: 31982475 DOI: 10.1016/j.addr.2020.01.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/11/2019] [Accepted: 01/20/2020] [Indexed: 12/24/2022]
Abstract
Mild hyperthermia, local heating of the tumour up to temperatures <43 °C, has been clinically applied for almost four decades and has been proven to substantially enhance the effectiveness of both radiotherapy and chemotherapy in treatment of primary and recurrent tumours. Clinical results and mechanisms of action are discussed in this review, including the molecular and biological rationale of hyperthermia as radio- and chemosensitizer as established in in vitro and in vivo experiments. Proven mechanisms include inhibition of different DNA repair processes, (in)direct reduction of the hypoxic tumour cell fraction, enhanced drug uptake, increased perfusion and oxygen levels. All mechanisms show different dose effect relationships and different optimal scheduling with radiotherapy and chemotherapy. Therefore, obtaining the ideal multi-modality treatment still requires elucidation of more detailed data on dose, sequence, duration, and possible synergisms between modalities. A multidisciplinary approach with different modalities including hyperthermia might further increase anti-tumour effects and diminish normal tissue damage.
Collapse
|
33
|
Role of Simulations in the Treatment Planning of Radiofrequency Hyperthermia Therapy in Clinics. JOURNAL OF ONCOLOGY 2019; 2019:9685476. [PMID: 31558904 PMCID: PMC6735211 DOI: 10.1155/2019/9685476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/20/2019] [Accepted: 07/28/2019] [Indexed: 12/26/2022]
Abstract
Hyperthermia therapy is a treatment modality in which tumor temperatures are elevated to higher temperatures to cause damage to cancerous tissues. Numerical simulations are integral in the development of hyperthermia treatment systems and in clinical treatment planning. In this study, simulations in radiofrequency hyperthermia therapy are reviewed in terms of their technical development and clinical aspects for effective clinical use. This review offers an overview of mathematical models and the importance of tissue properties; locoregional mild hyperthermia therapy, including phantom and realistic human anatomy models; phase array systems; tissue damage; thermal dose analysis; and thermoradiotherapy planning. This review details the improvements in numerical approaches in treatment planning and their application for effective clinical use. Furthermore, the modeling of thermoradiotherapy planning, which can be integrated with radiotherapy to provide combined hyperthermia and radiotherapy treatment planning strategies, are also discussed. This review may contribute to the effective development of thermoradiotherapy planning in clinics.
Collapse
|
34
|
Datta NR, Bodis S. Hyperthermia with radiotherapy reduces tumour alpha/beta: Insights from trials of thermoradiotherapy vs radiotherapy alone. Radiother Oncol 2019; 138:1-8. [PMID: 31132683 DOI: 10.1016/j.radonc.2019.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/16/2019] [Accepted: 05/05/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Hyperthermia inhibits the repair of irradiation-induced DNA damage and thereby could alter the α/β values of tumours. This study estimates the clinical α/βHTRT values from clinical trials of thermoradiotherapy (HTRT) vs radiotherapy (RT) in recurrent breast (RcBC), head and neck (III/IV) (LAHNC) and cervix cancers (IIB-IVA) (LACC). METHODS Three recently published meta-analyses for HTRT vs RT in RcBC, LAHNC and LACC were evaluated for complete response (CR). Studies with specified RT dose (D), dose/fraction (d) and corresponding CRs were selected. Tumour biological effective dose (BED) for each study with RT (BEDRT) was computed assuming an α/βRT of 10 Gy. As outcomes were favourable with HTRT, thermoradiobiological BED (BEDHTRT) was calculated as a product of BEDRT and %CRHTRT/%CRRT. The α/βHTRT was estimated as Dd/(BEDHTRT - D). RESULTS 12 trials with 864 patients were shortlisted - RcBC (3 studies, n = 259), LAHNC (5 studies, n = 338) and LACC (4 studies, n = 267). Overall risk difference of 0.28 favoured HTRT (p < 0.001). Mean BEDRT and BEDHTRT were 64.7 Gy (SD: ±15.5) and 109.5 Gy (SD: ±32.1) respectively and global α/βHTRT was 2.25 Gy (SD: ±0.79). Mean α/βHTRT for RcBC, LAHNC and LACC were 2.05 Gy, 1.74 Gy and 3.03 Gy respectively. On meta-regression, α/βHTRT was the sole predictor for the corresponding risk differences of the studies (coefficient = -0.096; p = 0.03). CONCLUSION Thermoradiobiological effects on the repair of RT induced DNA damage results in reduction in α/β values of tumours. This should be considered to effectively optimize HTRT dose-fractionation schedules in the clinic.
Collapse
Affiliation(s)
- Niloy R Datta
- Centre for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Switzerland.
| | - Stephan Bodis
- Centre for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Switzerland; Department of Radiation Oncology, University Hospital Zurich, Switzerland
| |
Collapse
|
35
|
Crezee H, Kok HP, Oei AL, Franken NAP, Stalpers LJA. The Impact of the Time Interval Between Radiation and Hyperthermia on Clinical Outcome in Patients With Locally Advanced Cervical Cancer. Front Oncol 2019; 9:412. [PMID: 31165046 PMCID: PMC6536646 DOI: 10.3389/fonc.2019.00412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/02/2019] [Indexed: 01/22/2023] Open
Affiliation(s)
- Hans Crezee
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - H P Kok
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
36
|
Lloret M, García-Cabrera L, Hernandez A, Santana N, López-Molina L, Lara PC. Feasibility of a deep hyperthermia and radiotherapy programme for advanced tumors: first Spanish experience. Clin Transl Oncol 2019; 21:1771-1775. [PMID: 31102061 DOI: 10.1007/s12094-019-02097-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/20/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hyperthermia (HT) is used to increase the temperature of the tumor-sensitizing cells to the effects of radiation/chemotherapy. We aimed to assess the feasibility, tolerability and safety of hyperthermia treatment in a Radiation Oncology Department. METHODS Between June 2015 and June 2017, 106 patients and a total of 159 tumor lesions were included in a prospective study (EudraCT 2018-001089-40) of HT concomitant with radiotherapy (RT). Systemic treatment was accepted. HT was given twice a week, 60 min per session, during RT treatment by a regional capacitive device (HY-DEEP 600WM system) at 13.56 MHz radiofrequency. RESULTS Most lesions (138 cases, 86.8%) received all HT sessions planned. Thirteen lesions (12 patients) withdrew treatment due to grade ≥3 QMHT toxicity. All these 12 patients completed the prescribed radiotherapy and/or systemic treatment. CONCLUSIONS Regional hyperthermia is a feasible and safe technique to be used in combination with radiotherapy and systemic treatment.
Collapse
Affiliation(s)
- M Lloret
- Department of Radiation Oncology, Dr. Negrin Hospital, Barranco de la Ballena s/n, 35010, Las Palmas de Gran Canaria, Spain.
- Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.
- Instituto Canario de Investigación del Cáncer, Las Palmas de Gran Canaria, Spain.
| | - L García-Cabrera
- Department of Radiation Oncology, Dr. Negrin Hospital, Barranco de la Ballena s/n, 35010, Las Palmas de Gran Canaria, Spain
| | - A Hernandez
- Department of Radiation Oncology, Dr. Negrin Hospital, Barranco de la Ballena s/n, 35010, Las Palmas de Gran Canaria, Spain
| | - N Santana
- Department of Radiation Oncology, Dr. Negrin Hospital, Barranco de la Ballena s/n, 35010, Las Palmas de Gran Canaria, Spain
| | - L López-Molina
- Department of Radiation Oncology, Dr. Negrin Hospital, Barranco de la Ballena s/n, 35010, Las Palmas de Gran Canaria, Spain
| | - P C Lara
- Instituto Canario de Investigación del Cáncer, Las Palmas de Gran Canaria, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas, Spain
- Hospital Universitario San Roque, Las Palmas, Spain
| |
Collapse
|
37
|
Zhu L, Altman MB, Laszlo A, Straube W, Zoberi I, Hallahan DE, Chen H. Ultrasound Hyperthermia Technology for Radiosensitization. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1025-1043. [PMID: 30773377 PMCID: PMC6475527 DOI: 10.1016/j.ultrasmedbio.2018.12.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 11/28/2018] [Accepted: 12/17/2018] [Indexed: 05/08/2023]
Abstract
Hyperthermia therapy (HT) raises tissue temperature to 40-45°C for up to 60 min. Hyperthermia is one of the most potent sensitizers of radiation therapy (RT). Ultrasound-mediated HT for radiosensitization has been used clinically since the 1960s. Recently, magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU), which has been approved by the United States Food and Drug Administration for thermal ablation therapy, has been adapted for HT. With emerging clinical trials using MRgHIFU HT for radiosensitization, there is a pressing need to review the ultrasound HT technology. The objective of this review is to overview existing HT technology, summarize available ultrasound HT devices, evaluate clinical studies combining ultrasound HT with RT and discuss challenges and future directions.
Collapse
Affiliation(s)
- Lifei Zhu
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Michael B Altman
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Andrei Laszlo
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - William Straube
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Imran Zoberi
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Dennis E Hallahan
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA; Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA.
| |
Collapse
|
38
|
Quantitative Estimation of the Equivalent Radiation Dose Escalation using Radiofrequency Hyperthermia in Mouse Xenograft Models of Human Lung Cancer. Sci Rep 2019; 9:3942. [PMID: 30850669 PMCID: PMC6408478 DOI: 10.1038/s41598-019-40595-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
Hyperthermia is a potent radiosensitizer, and its effect varies according to the different types of cancer cells. In the present study, the radiosensitizing effect of hyperthermia on lung cancer cell lines A549 and NCI-H1299 was determined based on the equivalent radiation dose escalation. In vitro cell experiments were conducted using lung cancer cell lines A549 and NCI-H1299 to determine thermal radiosensitivity. In vivo experiments were conducted using mouse heterotopic xenograft models to determine the treatment response and increase in the temperature of tumors using a 13.56 MHz radiofrequency (RF) hyperthermia device. Using the α and β values of the linear–quadratic equations of cell survival curves, numerical simulations were performed to calculate the equivalent radiation dose escalations. The dielectric properties of tumors were measured, and their effect on the calculated equivalent radiation dose was analyzed. Hyperthermia increased the equivalent radiation dose of lung cancer xenografts and a higher escalation was found in NCI-H1299 cells compared with that observed in A549 cells. An underestimation of the calculated equivalent radiation dose was observed when the dielectric property of the tumor was varied. This study may contribute to the effective planning of thermoradiotherapy in clinics.
Collapse
|
39
|
Cohen J, Anvari A, Samanta S, Poirier Y, Soman S, Alexander A, Ranjbar M, Pavlovic R, Zodda A, Jackson IL, Mahmood J, Vujaskovic Z, Sawant A. Mild hyperthermia as a localized radiosensitizer for deep-seated tumors: investigation in an orthotopic prostate cancer model in mice. Br J Radiol 2019; 92:20180759. [PMID: 30673305 PMCID: PMC6541201 DOI: 10.1259/bjr.20180759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/02/2019] [Accepted: 01/16/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE: Non-ablative or mild hyperthermia (HT) has been shown in preclinical (and clinical) studies as a localized radiosensitizer that enhances the tumoricidal effects of radiation. Most preclinical in vivo HT studies use subcutaneous tumor models which do not adequately represent clinical conditions (e.g. proximity of normal/critical organs) or replicate the tumor microenvironment-both of which are important factors for eventual clinical translation. The purpose of this work is to demonstrate proof-of-concept of locoregional radiosensitization with superficially applied, radiofrequency (RF)-induced HT in an orthotopic mouse model of prostate cancer. METHODS: In a 4-arm study, 40 athymic male nude mice were inoculated in the prostate with luciferase-transfected human prostate cancer cells (PC3). Tumor volumes were allowed to reach 150-250 mm3 (as measured by ultrasound) following which, mice were randomized into (i) control (no intervention); (ii) HT alone; (iii) RT alone; and (iv) HT + RT. RF-induced HT was administered (Groups ii and iv) using the Oncotherm LAB EHY-100 device to achieve a target temperature of 41 °C in the prostate. RT was administered ~30 min following HT, using an image-guided small animal radiotherapy research platform. In each case, a dual arc plan was used to deliver 12 Gy to the target in a single fraction. One animal from each cohort was euthanized on Day 10 or 11 after treatment for caspase-9 and caspase-3 Western blot analysis. RESULTS: The inoculation success rate was 89%. Mean tumor size at randomization (~16 days post-inoculation) was ~189 mm3 . Following the administration of RT and HT, mean tumor doubling times in days were: control = 4.2; HT = 4.5; RT = 30.4; and HT + RT = 33.4. A significant difference (p = 0.036) was noted between normalized nadir volumes for the RT alone (0.76) and the HT + RT (0.40) groups. Increased caspase-3 expression was seen in the combination treatment group compared to the other treatment groups. CONCLUSION: These early results demonstrate the successful use of external mild HT as a localized radiosensitizer for deep-seated tumors. ADVANCES IN KNOWLEDGE: We successfully demonstrated the feasibility of administering external mild HT in an orthotopic tumor model and demonstrated preclinical proof-of-concept of HT-based localized radiosensitization in prostate cancer radiotherapy.
Collapse
Affiliation(s)
- Justin Cohen
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Akbar Anvari
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Santanu Samanta
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yannick Poirier
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sandrine Soman
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allen Alexander
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maida Ranjbar
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ramilda Pavlovic
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew Zodda
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Isabel L Jackson
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Javed Mahmood
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
40
|
Elming PB, Sørensen BS, Oei AL, Franken NAP, Crezee J, Overgaard J, Horsman MR. Hyperthermia: The Optimal Treatment to Overcome Radiation Resistant Hypoxia. Cancers (Basel) 2019; 11:E60. [PMID: 30634444 PMCID: PMC6356970 DOI: 10.3390/cancers11010060] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/14/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Regions of low oxygenation (hypoxia) are a characteristic feature of solid tumors, and cells existing in these regions are a major factor influencing radiation resistance as well as playing a significant role in malignant progression. Consequently, numerous pre-clinical and clinical attempts have been made to try and overcome this hypoxia. These approaches involve improving oxygen availability, radio-sensitizing or killing the hypoxic cells, or utilizing high LET (linear energy transfer) radiation leading to a lower OER (oxygen enhancement ratio). Interestingly, hyperthermia (heat treatments of 39⁻45 °C) induces many of these effects. Specifically, it increases blood flow thereby improving tissue oxygenation, radio-sensitizes via DNA repair inhibition, and can kill cells either directly or indirectly by causing vascular damage. Combining hyperthermia with low LET radiation can even result in anti-tumor effects equivalent to those seen with high LET. The various mechanisms depend on the time and sequence between radiation and hyperthermia, the heating temperature, and the time of heating. We will discuss the role these factors play in influencing the interaction between hyperthermia and radiation, and summarize the randomized clinical trials showing a benefit of such a combination as well as suggest the potential future clinical application of this combination.
Collapse
Affiliation(s)
- Pernille B Elming
- Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | - Brita S Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | - Arlene L Oei
- Department of Radiation Oncology, Academic University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands.
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Academic University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands.
| | - Johannes Crezee
- Department of Radiation Oncology, Academic University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands.
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | - Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
41
|
Bakker A, van der Zee J, van Tienhoven G, Kok HP, Rasch CRN, Crezee H. Temperature and thermal dose during radiotherapy and hyperthermia for recurrent breast cancer are related to clinical outcome and thermal toxicity: a systematic review. Int J Hyperthermia 2019; 36:1024-1039. [PMID: 31621437 DOI: 10.1080/02656736.2019.1665718] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 01/07/2023] Open
Abstract
Objective: Hyperthermia therapy (HT), heating tumors to 40-45 °C, is a known radiotherapy (RT) and chemotherapy sensitizer. The additional benefit of HT to RT for recurrent breast cancer has been proven in multiple randomized trials. However, published outcome after RT + HT varies widely. We performed a systematic review to investigate whether there is a relationship between achieved HT dose and clinical outcome and thermal toxicity for patients with recurrent breast cancer treated with RT + HT. Method: Four databases, EMBASE, PubMed, Cochrane library and clinicaltrials.gov, were searched with the terms breast, radiotherapy, hyperthermia therapy and their synonyms. Final search was performed on 3 April 2019. Twenty-two articles were included in the systematic review, reporting on 2330 patients with breast cancer treated with RT + HT. Results: Thirty-two HT parameters were tested for a relationship with clinical outcome. In studies reporting a relationship, the relationship was significant for complete response in 10/15 studies, in 10/13 studies for duration of local control, in 2/2 studies for overall survival and in 7/11 studies for thermal toxicity. Patients who received high thermal dose had on average 34% (range 27%-53%) more complete responses than patients who received low thermal dose. Patients who achieved higher HT parameters had increased odds/probability on improved clinical outcome and on thermal toxicity. Conclusion: Temperature and thermal dose during HT had significant influence on complete response, duration of local control, overall survival and thermal toxicity of patients with recurrent breast cancer treated with RT + HT. Higher temperature and thermal dose improved outcome, while higher maximum temperature increased incidence of thermal toxicity.
Collapse
Affiliation(s)
- Akke Bakker
- Department of Radiation Oncology, Amsterdam UMC , Amsterdam , The Netherlands
| | - Jacoba van der Zee
- Department of Radiation Oncology, Erasmus MC , Rotterdam , The Netherlands
| | | | - H Petra Kok
- Department of Radiation Oncology, Amsterdam UMC , Amsterdam , The Netherlands
| | - Coen R N Rasch
- Department of Radiation Oncology, Amsterdam UMC , Amsterdam , The Netherlands
- Department of Radiation Oncology, LUMC , Leiden , The Netherlands
| | - Hans Crezee
- Department of Radiation Oncology, Amsterdam UMC , Amsterdam , The Netherlands
| |
Collapse
|
42
|
Kok HP, Van Dijk IWEM, Crama KF, Franken NAP, Rasch CRN, Merks JHM, Crezee J, Balgobind BV, Bel A. Re‑irradiation plus hyperthermia for recurrent pediatric sarcoma; a simulation study to investigate feasibility. Int J Oncol 2018; 54:209-218. [PMID: 30387837 DOI: 10.3892/ijo.2018.4622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/21/2018] [Indexed: 11/05/2022] Open
Abstract
Recurrent pediatric tumors pose a challenge since treatment options may be limited, particularly after previous irradiation. Positive results have been reported for chemotherapy and hyperthermia, but the combination of re‑irradiation and hyperthermia has not been investigated thus far, although it is a proven treatment strategy in adults. The theoretical feasibility of re‑irradiation plus hyperthermia was investigated for infield recurrent pediatric sarcoma in the pelvic region and the extremities. A total of 46 recurrent pediatric sarcoma cases diagnosed at the Academic Medical Center (Amsterdam, The Netherlands) between 2002 and 2017 were evaluated. Patients not previously irradiated, outfield recurrences and locations other than the pelvis and extremities were excluded, ultimately yielding four eligible patients: Two with sarcomas in the pelvis and two in an extremity. Re‑irradiation and hyperthermia treatment plans were simulated for 23x2 Gy treatment schedules and weekly hyperthermia. The radiosensitizing effect of hyperthermia was quantified using biological modelling with a temperature‑dependent change in the parameters of the linear‑quadratic model. The possible effectiveness of re‑irradiation plus hyperthermia was estimated by calculating the equivalent radiotherapy dose distribution. Treatment planning revealed that tumors located in the pelvis and the extremities can be effectively heated in children. Equivalent dose distributions indicated that hyperthermic radiosensitization can be quantified as a target‑selective additional D95% of typically 10 Gy, thereby delivering a possibly curative dose of 54 Gy, without substantially increasing the equivalent dose to the organs at risk. Therefore, re‑irradiation plus hyperthermia is a theoretically feasible and possibly effective treatment option for recurrent pediatric sarcoma in the pelvic region and the extremities, and its clinical feasibility is worthy of evaluation.
Collapse
Affiliation(s)
- H Petra Kok
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Irma W E M Van Dijk
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Koen F Crama
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Coen R N Rasch
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Johannes H M Merks
- Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Brian V Balgobind
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Arjan Bel
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
43
|
van Leeuwen CM, Crezee J, Oei AL, Franken NAP, Stalpers LJA, Bel A, Kok HP. The effect of time interval between radiotherapy and hyperthermia on planned equivalent radiation dose. Int J Hyperthermia 2018; 34:901-909. [PMID: 29749270 DOI: 10.1080/02656736.2018.1468930] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Thermoradiotherapy is an effective treatment for locally advanced cervical cancer. However, the optimal time interval between radiotherapy and hyperthermia, resulting in the highest therapeutic gain, remains unclear. This study aims to evaluate the effect of time interval on the therapeutic gain using biological treatment planning. METHODS Radiotherapy and hyperthermia treatment plans were created for 15 cervical cancer patients. Biological modeling was used to calculate the equivalent radiation dose, that is, the radiation dose that results in the same biological effect as the thermoradiotherapy treatment, for different time intervals ranging from 0-4 h. Subsequently, the thermal enhancement ratio (TER, i.e. the ratio of the dose for the thermoradiotherapy and the radiotherapy-only plan) was calculated for the gross tumor volume (GTV) and the organs at risk (OARs: bladder, rectum, bowel), for each time interval. Finally, the therapeutic gain factor (TGF, i.e. TERGTV/TEROAR) was calculated for each OAR. RESULTS The median TERGTV ranged from 1.05 to 1.16 for 4 h and 0 h time interval, respectively. Similarly, for bladder, rectum and bowel, TEROARs ranged from 1-1.03, 1-1.04 and 1-1.03, respectively. Radiosensitization in the OARs was much less than in the GTV, because temperatures were lower, fractionation sensitivity was higher (lower α/β) and direct cytotoxicity was assumed negligible in normal tissue. TGFs for the three OARs were similar, and were highest (around 1.12) at 0 h time interval. CONCLUSION This planning study indicates that the largest therapeutic gain for thermoradiotherapy in cervical cancer patients can be obtained when hyperthermia is delivered immediately before or after radiotherapy.
Collapse
Affiliation(s)
- C M van Leeuwen
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| | - J Crezee
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| | - A L Oei
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands.,b Laboratory for Experimental Oncology and Radiobiology (LEXOR)/Center for Experimental Molecular Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| | - N A P Franken
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands.,b Laboratory for Experimental Oncology and Radiobiology (LEXOR)/Center for Experimental Molecular Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| | - L J A Stalpers
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| | - A Bel
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| | - H P Kok
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , the Netherlands
| |
Collapse
|
44
|
Adibzadeh F, Paulides MM, van Rhoon GC. SAR thresholds for electromagnetic exposure using functional thermal dose limits. Int J Hyperthermia 2018; 34:1248-1254. [DOI: 10.1080/02656736.2018.1424945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Fatemeh Adibzadeh
- Department of Radiation Oncology, Hyperthermia Unit, Erasmus MC - Cancer Institute, Rotterdam, The Netherlands
| | - Margarethus M. Paulides
- Department of Radiation Oncology, Hyperthermia Unit, Erasmus MC - Cancer Institute, Rotterdam, The Netherlands
| | - Gerard C. van Rhoon
- Department of Radiation Oncology, Hyperthermia Unit, Erasmus MC - Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
45
|
Abstract
The term hyperthermia broadly refers to either an abnormally high fever or the treatment of a disease by the induction of fever. Its effect depends on the temperature and exposure time. The increasing number of applications and clinical trials at universities, clinics, and hospitals prove the feasibility and applicability of clinical therapeutic hyperthermia. This chapter aims to outline and discuss the means by which electromagnetic energy and other techniques can provide elevation of temperature within the human body. Because of the individual characteristic of each type of treatment, different modalities of heating systems have evolved. The chapter concludes with a discussion of challenges and opportunities for further improvement in technology and routine clinical application.
Collapse
Affiliation(s)
- Riadh W Y Habash
- School of Electrical Engineering and Computer Science, and McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
46
|
van der Horst A, Versteijne E, Besselink MGH, Daams JG, Bulle EB, Bijlsma MF, Wilmink JW, van Delden OM, van Hooft JE, Franken NAP, van Laarhoven HWM, Crezee J, van Tienhoven G. The clinical benefit of hyperthermia in pancreatic cancer: a systematic review. Int J Hyperthermia 2017; 34:969-979. [PMID: 29168401 DOI: 10.1080/02656736.2017.1401126] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE In pancreatic cancer, which is therapy resistant due to its hypoxic microenvironment, hyperthermia may enhance the effect of radio(chemo)therapy. The aim of this systematic review is to investigate the validity of the hypothesis that hyperthermia added to radiotherapy and/or chemotherapy improves treatment outcome for pancreatic cancer patients. METHODS AND MATERIALS We searched MEDLINE and Embase, supplemented by handsearching, for clinical studies involving hyperthermia in pancreatic cancer patients. The quality of studies was evaluated using the Oxford Centre for Evidence-Based Medicine levels of evidence. Primary outcome was treatment efficacy; we calculated overall response rate and the weighted estimate of the population median overall survival (mp) and compared these between hyperthermia and control cohorts. RESULTS Overall, 14 studies were included, with 395 patients with locally advanced and/or metastatic pancreatic cancer of whom 248 received hyperthermia. Patients were treated with regional (n = 189), intraoperative (n = 39) or whole-body hyperthermia (n = 20), combined with chemotherapy, radiotherapy or both. Quality of the studies was low, with level of evidence 3 (five studies) and 4. The six studies including a control group showed a longer mp in the hyperthermia groups than in the control groups (11.7 vs. 5.6 months). Overall response rate, reported in three studies with a control group, was also better for the hyperthermia groups (43.9% vs. 35.3%). CONCLUSIONS Hyperthermia, when added to chemotherapy and/or radiotherapy, may positively affect treatment outcome for patients with pancreatic cancer. However, the quality of the reviewed studies was limited and future randomised controlled trials are needed to establish efficacy.
Collapse
Affiliation(s)
- Astrid van der Horst
- a Department of Radiation Oncology and Hyperthermia , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Eva Versteijne
- a Department of Radiation Oncology and Hyperthermia , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Marc G H Besselink
- b Department of Surgery , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Joost G Daams
- c Medical Library , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Esther B Bulle
- a Department of Radiation Oncology and Hyperthermia , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Maarten F Bijlsma
- d Laboratory for Experimental Oncology and Radiobiology (LEXOR) , Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Johanna W Wilmink
- e Department of Medical Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Otto M van Delden
- f Department of Radiology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Jeanin E van Hooft
- g Department of Gastroenterology and Hepatology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Nicolaas A P Franken
- d Laboratory for Experimental Oncology and Radiobiology (LEXOR) , Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Hanneke W M van Laarhoven
- e Department of Medical Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Johannes Crezee
- a Department of Radiation Oncology and Hyperthermia , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Geertjan van Tienhoven
- a Department of Radiation Oncology and Hyperthermia , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
47
|
Kok HP, Korshuize-van Straten L, Bakker A, de Kroon – Oldenhof R, Westerveld GH, Versteijne E, Stalpers LJA, Crezee J. Feasibility of on-line temperature-based hyperthermia treatment planning to improve tumour temperatures during locoregional hyperthermia. Int J Hyperthermia 2017; 34:1082-1091. [DOI: 10.1080/02656736.2017.1400120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- H. P. Kok
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - L. Korshuize-van Straten
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - A. Bakker
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - R. de Kroon – Oldenhof
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - G. H. Westerveld
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - E. Versteijne
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - L. J. A. Stalpers
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - J. Crezee
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Fu Q, Huang T, Wang X, Lu C, Liu F, Yang G, Wang Y, Wang B. Association of elevated reactive oxygen species and hyperthermia induced radiosensitivity in cancer stem-like cells. Oncotarget 2017; 8:101560-101571. [PMID: 29254186 PMCID: PMC5731896 DOI: 10.18632/oncotarget.21678] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer stem-like cells (CSCs) are the principal causes of tumor radio-resistance, dormancy and recurrence after radiotherapy. Clinical trials show hyperthermia (HT) might be a potent radiation sensitizer. In this study, CSCs were found to be more susceptible to radiation when combined with HT treatment. Treated cells showed significantly reduced self-renewal, cell survival and proliferation in vitro, as well as significant reduced tumor formation in vivo. Further study demonstrated that the radiosensitization effect was associated with increased intracellular reactive oxygen species (ROS) level in CSCs, confirmed by modifying redox status in CSCs bidirectionally. Pharmacologic depletion of glutathione by buthionine sulphoximine mimicked HT induced radiosensitivity in CSCs. Antioxidant N-acetylcysteine could efficiently rescue HT induced radiosensitivity in CSCs. To our knowledge, this may be the first report suggesting the association between elevated intracellular ROS level and HT induced radiosensitization in human breast CSCs and pancreatic CSCs, which might provide new strategy for improving CSCs radiosensitivity.
Collapse
Affiliation(s)
- Qibin Fu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Tuchen Huang
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Xudong Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Chunyang Lu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Feng Liu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Yugang Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Biao Wang
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| |
Collapse
|
49
|
Peeken JC, Vaupel P, Combs SE. Integrating Hyperthermia into Modern Radiation Oncology: What Evidence Is Necessary? Front Oncol 2017; 7:132. [PMID: 28713771 PMCID: PMC5492395 DOI: 10.3389/fonc.2017.00132] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022] Open
Abstract
Hyperthermia (HT) is one of the hot topics that have been discussed over decades. However, it never made its way into primetime. The basic biological rationale of heat to enhance the effect of radiation, chemotherapeutic agents, and immunotherapy is evident. Preclinical work has confirmed this effect. HT may trigger changes in perfusion and oxygenation as well as inhibition of DNA repair mechanisms. Moreover, there is evidence for immune stimulation and the induction of systemic immune responses. Despite the increasing number of solid clinical studies, only few centers have included this adjuvant treatment into their repertoire. Over the years, abundant prospective and randomized clinical data have emerged demonstrating a clear benefit of combined HT and radiotherapy for multiple entities such as superficial breast cancer recurrences, cervix carcinoma, or cancers of the head and neck. Regarding less investigated indications, the existing data are promising and more clinical trials are currently recruiting patients. How do we proceed from here? Preclinical evidence is present. Multiple indications benefit from additional HT in the clinical setting. This article summarizes the present evidence and develops ideas for future research.
Collapse
Affiliation(s)
- Jan C Peeken
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Peter Vaupel
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, München, Germany.,Department of Radiation Sciences (DRS), Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
50
|
Laser Ablation for Cancer: Past, Present and Future. J Funct Biomater 2017; 8:jfb8020019. [PMID: 28613248 PMCID: PMC5492000 DOI: 10.3390/jfb8020019] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/30/2017] [Accepted: 06/13/2017] [Indexed: 12/27/2022] Open
Abstract
Laser ablation (LA) is gaining acceptance for the treatment of tumors as an alternative to surgical resection. This paper reviews the use of lasers for ablative and surgical applications. Also reviewed are solutions aimed at improving LA outcomes: hyperthermal treatment planning tools and thermometric techniques during LA, used to guide the surgeon in the choice and adjustment of the optimal laser settings, and the potential use of nanoparticles to allow biologic selectivity of ablative treatments. Promising technical solutions and a better knowledge of laser-tissue interaction should allow LA to be used in a safe and effective manner as a cancer treatment.
Collapse
|