1
|
Chen B, Dammann P, Jabbarli R, Sure U, Quick HH, Kraff O, Wrede KH. Safety and function of programmable ventriculo-peritoneal shunt valves: An in vitro 7 Tesla magnetic resonance imaging study. PLoS One 2023; 18:e0292666. [PMID: 37819939 PMCID: PMC10566673 DOI: 10.1371/journal.pone.0292666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVE The quantity of ultra-high field MRI neuroimaging studies has rapidly increased. This study tests function, safety, and image artifacts of two frequently implanted programmable ventriculo-peritoneal (VP) shunt valves in a 7T MRI system. METHODS All tests were performed using a whole-body 7T MRI system. Three proGAV 2.0 and 3 CODMAN CERTAS® Plus programmable VP-shunt valves were tested in three steps. 1) Deflection angle tests close to the bore opening at the location of a static magnetic field gradient of 3-5 T/m. 2) Valves were fixed on a spherical phantom in 3 positions (a. lateral, b. cranial, c. cranial with 22.5° tilt anteriorly) and assessed for keeping the programmed pressure setting and reprogrammability. 3) Valves were fixed on the phantom and positioned lateral in a radiofrequency head coil. MRI scans were performed for both models, including MPRAGE, GRE and SE sequences. RESULTS Deflection angles were moderate (13°, 14°, 13°) for the proGAV valves and close to critical (43°, 43°, 41°) for the CODMAN valves at the test location. Taking a scaling factor of 2-3 for the maximum spatial magnetic field gradient accessible to a patient within the magnet bore into account renders both valves MR unsafe regarding ferromagnetic attraction. The proGAV valves kept the pressure settings in all positions and were reprogrammable in positions a. and b. In position c., reprogrammability was lost. The CODMAN valves changed their pressure setting and reprogrammability was lost in all positions. MR image signal homogeneity was unaltered in the phantom center, artifacts limit the assessability of structures in close vicinity to the valves. CONCLUSION Both tested programmable VP-shunt valves are MR unsafe for 7T systems. Novel programming mechanisms using permanent magnets with sufficient magnetic coercivity or magnet-free mechanisms may allow the development of programmable VP-shunt valves that are conditional for 7T MR systems.
Collapse
Affiliation(s)
- Bixia Chen
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, North Rhine Westphalia, Germany
- Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen, Essen, North Rhine Westphalia, Germany
| | - Philipp Dammann
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, North Rhine Westphalia, Germany
- Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen, Essen, North Rhine Westphalia, Germany
| | - Ramazan Jabbarli
- Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen, Essen, North Rhine Westphalia, Germany
| | - Ulrich Sure
- Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen, Essen, North Rhine Westphalia, Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, North Rhine Westphalia, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, North Rhine Westphalia, Germany
| | - Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, North Rhine Westphalia, Germany
| | - Karsten H. Wrede
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, North Rhine Westphalia, Germany
- Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen, Essen, North Rhine Westphalia, Germany
| |
Collapse
|
2
|
Fleming CH, Ritter AM, Bruce DA. Development of shunt valves used for treating hydrocephalus: comparison with endoscopy treatment. Childs Nerv Syst 2023; 39:2709-2717. [PMID: 37354289 DOI: 10.1007/s00381-023-06049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
The pathophysiology of hydrocephalus is not clearly defined. Thus, treatment will remain empirical until a fuller understanding of the various forms of hydrocephalus is achieved. Valve-controlled shunting has been the mainstay of therapy since the late 1950s. Initially, shunting occurred from the ventricular system to the atrium. In the 1970s, VA shunts were replaced by ventriculoperitoneal shunts as the primary location for the distal end. Multiple types of one-way valve systems have been developed in the pursuit of draining the appropriate amount of CSF that avoids either overdrainage or underdrainage while preserving normal brain development and cognition. These valves are reviewed and compared as to their function. Other locations for the distal end of the shunting system are reviewed to include pleural space and gallbladder. The lumbar subarachnoid space as the proximal location for a shunt is also reviewed. The only other surgical alternative for treating hydrocephalus is endoscopic third ventriculostomy. Since 2000, approximately 50% of children with hydrocephalus have been shown to be candidates for ETV. The benefits are the lack of need for an artificial shunt system and thus lower rates of infection and over time fewer reoperations. Future progress is dependent on improved shunt valve systems that are affordable worldwide and ready availability of ETV in developing countries. Anatomic and molecular causes of hydrocephalus need to be defined so that medications or genetic modifications become available for potential cure of hydrocephalus.
Collapse
Affiliation(s)
| | - Ann M Ritter
- Virginia Commonwealth University Health System, Richmond, VA, USA
| | - Derek A Bruce
- Neurosurgery & Pediatrics, Children's National Medical Center, Washington D.C, USA.
| |
Collapse
|
3
|
Shaffer A, Nigh N, Weisbaum D, Anderson A, Wszalek T, Sutton BP, Webb A, Damon B, Moussa I, Arnold PM. Cardiothoracic and Vascular Surgery Implant Compatibility With Ultrahigh Field Magnetic Resonance Imaging (4.7 Tesla and 7 Tesla). Am J Cardiol 2023; 201:239-246. [PMID: 37392607 DOI: 10.1016/j.amjcard.2023.05.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 07/03/2023]
Abstract
The use of 7 Tesla (T) magnetic resonance imaging (MRI) is expanding across medical specialties, particularly, clinical neurosciences and orthopedics. Investigational 7 T MRI has also been performed in cardiology. A limiting factor for expansion of the role of 7 T, irrespective of the body part being imaged, is the sparse testing of biomedical implant compatibility at field strengths >3 T. Implant compatibility can be tested following the American Society for Testing and Materials International guidelines. To assess the current state of cardiovascular implant safety at field strengths >3 T, a systematic search was performed using PubMed, Web of Science, and citation matching. Studies written in English that included at least 1 cardiovascular-related implant and at least 1 safety outcome (deflection angle, torque, or temperature change) were included. Data were extracted for the implant studied, implant composition, deflection angle, torque, and temperature change, and the American Society for Testing and Materials International standards were followed. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines for scoping reviews were followed. A total of 9 studies were included. A total of 34 cardiovascular-related implants tested ex vivo at 7 T and 91 implants tested ex vivo at 4.7 T were included. The implants included vascular grafts and conduits, vascular access ports, peripheral and coronary stents, caval filters, and artificial valves. A total of 2 grafts, 1 vascular access port, 2 vena cava filters, and 5 stents were identified as incompatible with the 7 T MRI. All incompatible stents were 40 mm in length. Based on the safety outcomes reported, we identify several implants that may be compatible with >3 T MRI. This scoping review seeks to concisely summarize all the cardiovascular-related implants tested for ultrahigh field MRI compatibility to date.
Collapse
Affiliation(s)
- Annabelle Shaffer
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana, Illinois
| | - Noah Nigh
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana, Illinois
| | - David Weisbaum
- Department of Neurosurgery, Carle Foundation Hospital, Urbana, Illinois
| | - Aaron Anderson
- Carle Illinois Advanced Imaging Center, Carle Foundation Hospital, Urbana, Illinois; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tracey Wszalek
- Carle Illinois Advanced Imaging Center, Carle Foundation Hospital, Urbana, Illinois; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bradley P Sutton
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana, Illinois; Carle Illinois Advanced Imaging Center, Carle Foundation Hospital, Urbana, Illinois; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Webb
- Carle Illinois Advanced Imaging Center, Carle Foundation Hospital, Urbana, Illinois; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands; Leiden University Medical Center, Leiden, The Netherlands
| | - Bruce Damon
- Carle Illinois Advanced Imaging Center, Carle Foundation Hospital, Urbana, Illinois; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Issam Moussa
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana, Illinois; Heart and Vascular Institute, Carle Foundation Hospital, Urbana, Illinois
| | - Paul M Arnold
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana, Illinois; Department of Neurosurgery, Carle Foundation Hospital, Urbana, Illinois.
| |
Collapse
|
4
|
Shaffer A, Weisbaum D, Naik A, Anderson A, Wszalek T, Cohen M, Sutton B, Webb A, Damon B, Arnold PM. Neurosurgical Implant Safety in 7 T MRI: A Scoping Review. J Magn Reson Imaging 2023; 57:661-669. [PMID: 36173367 DOI: 10.1002/jmri.28449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022] Open
Abstract
The use of 7 Tesla (T) magnetic resonance imaging (MRI) is expanding across neurosurgical and neurologic specialties. However, few neurosurgical-related implants have been tested for safety at 7 T, limiting its use in patients with cranial fixation, shunt placements, and other implants. Implant safety can be determined via the American Society for Testing Materials International (ASTM) guidelines. To assess the current state of neurosurgical implant safety at 7 T, a systematic search was performed using PubMed, MEDLINE, Web of Knowledge, and citation matching. Studies written in English that included at least one neurosurgical implant and at least one safety outcome were included. Data were extracted for implant studied, implant composition, deflection angle, torque, temperature change, and ASTM guidelines followed. PRISMA reporting guidelines for scoping reviews were followed. Overall, 18 studies consisting of 45 unique implants were included. Implants included cranial fixation devices, aneurysm clips, spinal rods, pedicle screws, ventriculoperitoneal (VP) shunts, deep brain stimulation devices, and electroencephalogram (EEG) caps and electrodes. Cranial fixation devices, deep brain stimulation devices, spinal rods, and pedicle screws are likely 7 T MRI compatible based on outcomes reported. Aneurysm clips and EEG devices had variable safety outcomes. The VP shunts studied lost functionality after 7 T MRI exposure. We identified several implants that are likely compatible with 7 T MRI. Given the growth in 7 T imaging and expansion of the technology, neurosurgical implants should be constructed with the aforementioned considerations. Caution must be taken with all implants, especially aneurysm clips, programmable VP shunts, and EEG recording devices. It is also noteworthy that several implant testing reports did not report following ASTM standards. This scoping review seeks to concisely summarize all neurosurgical-related implants that have been tested for safety in 7 T MRI. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Annabelle Shaffer
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana, Illinois, USA
| | - David Weisbaum
- Department of Neurosurgery, Carle Foundation Hospital, Urbana, Illinois, USA
| | - Anant Naik
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana, Illinois, USA
| | - Aaron Anderson
- Carle Illinois Advanced Imaging Center, Urbana, Illinois, USA.,Beckman Institute for Advanced Science & Technology, University of Illinois Urbana Champaign, Urbana, Illinois, USA
| | - Tracey Wszalek
- Carle Illinois Advanced Imaging Center, Urbana, Illinois, USA.,Beckman Institute for Advanced Science & Technology, University of Illinois Urbana Champaign, Urbana, Illinois, USA
| | - Mark Cohen
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana, Illinois, USA
| | - Brad Sutton
- Carle Illinois Advanced Imaging Center, Urbana, Illinois, USA.,Beckman Institute for Advanced Science & Technology, University of Illinois Urbana Champaign, Urbana, Illinois, USA
| | - Andrew Webb
- Carle Illinois Advanced Imaging Center, Urbana, Illinois, USA.,Beckman Institute for Advanced Science & Technology, University of Illinois Urbana Champaign, Urbana, Illinois, USA.,Leiden University Medical Center, Leiden, Netherlands
| | - Bruce Damon
- Carle Illinois Advanced Imaging Center, Urbana, Illinois, USA.,Beckman Institute for Advanced Science & Technology, University of Illinois Urbana Champaign, Urbana, Illinois, USA
| | - Paul M Arnold
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana, Illinois, USA.,Department of Neurosurgery, Carle Foundation Hospital, Urbana, Illinois, USA
| |
Collapse
|
5
|
Davidson C, White M, Abosch A, Katzir M. Category-2 shunt valve marketed as MRI-Conditional malfunction following routine 3 T magnetic resonance imaging. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
6
|
Jaimes C, Biaggotti D, Sreedher G, Chaturvedi A, Moore MM, Danehy AR. Magnetic resonance imaging in children with implants. Pediatr Radiol 2021; 51:748-759. [PMID: 33871727 DOI: 10.1007/s00247-021-04965-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/21/2020] [Accepted: 01/07/2021] [Indexed: 11/24/2022]
Abstract
As access to MRI in pediatrics increases, the radiologist needs to become acquainted with the basic principles of MRI safety. As part of the image acquisition, the static magnetic field, gradient system, and the radiofrequency transmit-receive coil interact with medical and non-medical implants and can result in serious injury. The main stage of risk triage is based on the determination of whether the implant is MRI-safe, conditional, unsafe or unknown. Guiding principles include the strict adherence to manufacturer specifications for MRI-conditional implants and the assumption that an unknown implant is MR-unsafe. In this article we review considerations for common medical implants encountered in pediatrics including ventriculoperitoneal shunts, orthopedic hardware, orthodontic hardware, pacemakers, vascular stents, vagal nerve stimulators and cochlear implants. Finally, we review a set of high-yield considerations, including the non-communicative patient (sedated or non-verbal), susceptibility artifacts from unclear source, and the approach to an unknown implant.
Collapse
Affiliation(s)
- Camilo Jaimes
- Division of Neuroradiology, Department of Radiology, Boston Children's Hospital, 300 Longwood Ave., 2nd floor, Main Building, Boston, MA, 02115, USA.
| | - Diane Biaggotti
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
| | | | - Apeksha Chaturvedi
- Pediatric Radiology, University of Rochester Medical Center, University of Rochester, Rochester, NY, USA
| | - Michael M Moore
- Pediatric Radiology, Milton S. Hershey Medical Center, Penn State University, Hershey, PA, USA
| | - Amy R Danehy
- Division of Neuroradiology, Department of Radiology, Boston Children's Hospital, 300 Longwood Ave., 2nd floor, Main Building, Boston, MA, 02115, USA.,MRI Safety Committee, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Greenberg TD, Hoff MN, Gilk TB, Jackson EF, Kanal E, McKinney AM, Och JG, Pedrosa I, Rampulla TL, Reeder SB, Rogg JM, Shellock FG, Watson RE, Weinreb JC, Hernandez D. ACR guidance document on MR safe practices: Updates and critical information 2019. J Magn Reson Imaging 2019; 51:331-338. [PMID: 31355502 DOI: 10.1002/jmri.26880] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
The need for a guidance document on MR safe practices arose from a growing awareness of the MR environment's potential risks and adverse event reports involving patients, equipment, and personnel. Initially published in 2002, the American College of Radiology White Paper on MR Safety established de facto industry standards for safe and responsible practices in clinical and research MR environments. The most recent version addresses new sources of risk of adverse events, increases awareness of dynamic MR environments, and recommends that those responsible for MR medical director safety undergo annual MR safety training. With regular updates to these guidelines, the latest MR safety concerns can be accounted for to ensure a safer MR environment where dangers are minimized. Level of Evidence: 1 Technical Efficacy Stage: 5 J. Magn. Reson. Imaging 2020;51:331-338.
Collapse
Affiliation(s)
| | | | - Michael N Hoff
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | | | - Edward F Jackson
- Departments of Medical Physics, Radiology, and Human Oncology, University of Wisconsin School of Medicine and Public Heath, Madison, Wisconsin, USA
| | - Emanuel Kanal
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Alexander M McKinney
- Department of Radiology, University of Minnesota Medical Center, Minneapolis, Minnesota, USA
| | - Joseph G Och
- Department of Medical & Health Physics, Geisinger, Danville, Pennsylvania, USA
| | - Ivan Pedrosa
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Scott B Reeder
- Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Jeffrey M Rogg
- Department of Diagnostic Imaging, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Frank G Shellock
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Robert E Watson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey C Weinreb
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
8
|
Hoff MN, McKinney A, Shellock FG, Rassner U, Gilk T, Watson RE, Greenberg TD, Froelich J, Kanal E. Safety Considerations of 7-T MRI in Clinical Practice. Radiology 2019; 292:509-518. [PMID: 31310177 DOI: 10.1148/radiol.2019182742] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although 7-T MRI has recently received approval for use in clinical patient care, there are distinct safety issues associated with this relatively high magnetic field. Forces on metallic implants and radiofrequency power deposition and heating are safety considerations at 7 T. Patient bioeffects such as vertigo, dizziness, false feelings of motion, nausea, nystagmus, magnetophosphenes, and electrogustatory effects are more common and potentially more pronounced at 7 T than at lower field strengths. Herein the authors review safety issues associated with 7-T MRI. The rationale for safety concerns at this field strength are discussed as well as potential approaches to mitigate risk to patients and health care professionals.
Collapse
Affiliation(s)
- Michael N Hoff
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Alexander McKinney
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Frank G Shellock
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Ulrich Rassner
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Tobias Gilk
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Robert E Watson
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Todd D Greenberg
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Jerry Froelich
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Emanuel Kanal
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| |
Collapse
|
9
|
Pershad J, Taylor A, Hall MK, Klimo P. Imaging Strategies for Suspected Acute Cranial Shunt Failure: A Cost-Effectiveness Analysis. Pediatrics 2017; 140:peds.2016-4263. [PMID: 28771407 DOI: 10.1542/peds.2016-4263] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2017] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES We compared cost-effectiveness of cranial computed tomography (CT), fast sequence magnetic resonance imaging (fsMRI), and ultrasonography measurement of optic nerve sheath diameter (ONSD) for suspected acute shunt failure from the perspective of a health care organization. METHODS We modeled 4 diagnostic imaging strategies: (1) CT scan, (2) fsMRI, (3) screening ONSD by using point of care ultrasound (POCUS) first, combined with CT, and (4) screening ONSD by using POCUS first, combined with fsMRI. All patients received an initial plain radiographic shunt series (SS). Short- and long-term costs of radiation-induced cancer were assessed with a Markov model. Effectiveness was measured as quality-adjusted life-years. Utilities and inputs for clinical variables were obtained from published literature. Sensitivity analyses were performed to evaluate the effects of parameter uncertainty. RESULTS At a previous probability of shunt failure of 30%, a screening POCUS in patients with a normal SS was the most cost-effective. For children with abnormal SS or ONSD measurement, fsMRI was the preferred option over CT. Performing fsMRI on all patients would cost $269 770 to gain 1 additional quality-adjusted life-year compared with POCUS. An imaging pathway that involves CT alone was dominated by ONSD and fsMRI because it was more expensive and less effective. CONCLUSIONS In children with low pretest probability of cranial shunt failure, an ultrasonographic measurement of ONSD is the preferred initial screening test. fsMRI is the more cost-effective, definitive imaging test when compared with cranial CT.
Collapse
Affiliation(s)
- Jay Pershad
- Departments of Pediatrics and .,Emergency Medicine, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Andrew Taylor
- Department of Emergency Medicine, Yale School of Medicine, New Haven, Connecticut
| | - M Kennedy Hall
- Division of Emergency Medicine, University of Washington School of Medicine, Seattle, Washington; and
| | - Paul Klimo
- Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee.,Semmes-Murphey Neurologic & Spine Institute, Memphis, Tennessee
| |
Collapse
|
10
|
Radiographic evaluation of pediatric cerebrospinal fluid shunt malfunction in the emergency setting. Pediatr Emerg Care 2015; 31:435-40; quiz 441-3. [PMID: 26035499 DOI: 10.1097/pec.0000000000000462] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Children with ventricular cerebrospinal fluid shunts for treatment of hydrocephalus require frequent evaluation for potential shunt malfunction. Current practice relies heavily on neuroimaging, particularly cranial computed tomography, which repeatedly exposes children to ionizing radiation. Rapid cranial magnetic resonance imaging is a new radiation-sparing alternative to CT for evaluation of potential shunt malfunction. We review the diagnostic test performance, radiation exposure, advantages, and limitations of the major neuroimaging modalities available to providers caring for children with possible shunt malfunction in the emergent setting.
Collapse
|
11
|
Benjamin P, Viessmann O, MacKinnon AD, Jezzard P, Markus HS. 7 Tesla MRI in Cerebral Small Vessel Disease. Int J Stroke 2015; 10:659-64. [PMID: 25845965 DOI: 10.1111/ijs.12490] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/04/2015] [Indexed: 11/29/2022]
Abstract
Cerebral small vessel disease (SVD) is a major cause of stroke and cognitive decline. Magnetic resonance imaging (MRI) currently plays a central role in diagnosis, and advanced MRI techniques are widely used in research but are limited by spatial resolution. Human 7 Tesla (7T) MRI has recently become available offering the ability to image at higher spatial resolution. This may provide additional insights into both the vascular pathology itself as well as parenchymal markers which could only previously be examined post mortem. In this review we cover the advantages and limitations of 7T MRI, review studies in SVD performed to date, and discuss potential future insights into SVD which 7T MRI may provide.
Collapse
Affiliation(s)
- Philip Benjamin
- Neurosciences Research Centre, St George's University of London, London, UK
| | - Olivia Viessmann
- Functional MRI of the Brain (FMRIB) Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andrew D. MacKinnon
- Atkinson Morley Regional Neuroscience Centre, St George's NHS Healthcare Trust, London, UK
| | - Peter Jezzard
- Functional MRI of the Brain (FMRIB) Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Hugh S. Markus
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|