1
|
Jiang C, Zhu Y, Chen H, Lin J, Xie R, Li W, Xue J, Chen L, Chen X, Xu S. Targeting c-Jun inhibits fatty acid oxidation to overcome tamoxifen resistance in estrogen receptor-positive breast cancer. Cell Death Dis 2023; 14:653. [PMID: 37803002 PMCID: PMC10558541 DOI: 10.1038/s41419-023-06181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
Tamoxifen-based endocrine therapy remains a major adjuvant therapy for estrogen receptor (ER)-positive breast cancer (BC). However, many patients develop tamoxifen resistance, which results in recurrence and poor prognosis. Herein, we show that fatty acid oxidation (FAO) was activated in tamoxifen-resistant (TamR) ER-positive BC cells by performing bioinformatic and functional studies. We also reveal that CPT1A, the rate-limiting enzyme of FAO, was significantly overexpressed and that its enzymatic activity was enhanced in TamR cells. Mechanistically, the transcription factor c-Jun was activated by JNK kinase-mediated phosphorylation. Activated c-Jun bound to the TRE motif in the CPT1A promoter to drive CPT1A transcription and recruited CBP/P300 to chromatin, catalysing histone H3K27 acetylation to increase chromatin accessibility, which ensured more effective transcription of CPT1A and an increase in the FAO rate, eliminating the cytotoxic effects of tamoxifen in ER-positive BC cells. Pharmacologically, inhibiting CPT1A enzymatic activity with the CPT1 inhibitor etomoxir or blocking c-Jun phosphorylation with a JNK inhibitor restored the tamoxifen sensitivity of TamR cells. Clinically, high levels of phosphorylated c-Jun and CPT1A were observed in ER-positive BC tissues in patients with recurrence after tamoxifen therapy and were associated with poor survival. These results indicate that the assessment and targeting of the JNK/c-Jun-CPT1A-FAO axis will provide promising insights for clinical management, increased tamoxifen responses and improved outcomes for ER-positive BC patients.
Collapse
Affiliation(s)
- Cen Jiang
- Central Laboratory, Fujian Medical University Union Hospital, 350001, Fuzhou, China
| | - Youzhi Zhu
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, 350005, Fuzhou, China
- Department of Thyroid and Breast Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Fuzhou, China
| | - Huaying Chen
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, 350005, Fuzhou, China
| | - Junyu Lin
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, 350005, Fuzhou, China
| | - Ruiwang Xie
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, 350005, Fuzhou, China
| | - Weiwei Li
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, 350005, Fuzhou, China
| | - Jiajie Xue
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, 350005, Fuzhou, China
- Department of Thyroid and Breast Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Fuzhou, China
| | - Ling Chen
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, 350005, Fuzhou, China
- Department of Thyroid and Breast Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Fuzhou, China
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, 350005, Fuzhou, China.
- Department of Thyroid and Breast Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Fuzhou, China.
| | - Sunwang Xu
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, 350005, Fuzhou, China.
- Department of Thyroid and Breast Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Fuzhou, China.
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, Fuzhou, China.
| |
Collapse
|
2
|
Li C, Li X. Advances in Therapy for Hormone Receptor (HR)-Positive, Human Epidermal Growth Factor Receptor 2 (HER2)-Negative Advanced Breast Cancer Patients Who Have Experienced Progression After Treatment with CDK4/6 Inhibitors. Onco Targets Ther 2021; 14:2929-2939. [PMID: 33976551 PMCID: PMC8104980 DOI: 10.2147/ott.s298720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Approximately 70% of breast cancer (BC) cases are hormone receptor-positive (HR+) and human epidermal growth factor receptor 2-negative (HER2-) BC. Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors have acted as star drugs for reversing endocrine therapy (ET) resistance and improving the prognosis of patients with HR+ advanced breast cancer (ABC) since they were initially approved. However, progression eventually occurs. In this review, we summarize the recent treatment strategies post CDK4/6 inhibitors: 1) CDK4/6 inhibitors plus exemestane and everolimus; 2) phosphoinositide-3-kinase (PI3K) inhibitor alpelisib plus fulvestrant for patients with PIK3CA mutation; 3) poly (ADP-ribose) polymerase (PARP) inhibitor for patients with germline PALB2 mutations, somatic BRCA1/2 mutations, or germline BRCA1/2 mutations; 4) exemestane and everolimus; and (5) chemotherapy. These strategies are all supported by evidence from clinical trials and retrospective studies. We also describe potential future treatment strategies post CDK4/6 inhibitors, such as the trophoblast cell surface antigen 2 (Trop-2) directed antibody–drug conjugate, cyclin-dependent kinase 7 (CDK7) inhibitors, and B-cell lymphoma-2 (BCL-2) inhibitors.
Collapse
Affiliation(s)
- Chao Li
- Department of Breast Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315000, People's Republic of China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315000, People's Republic of China
| | - Xujun Li
- Department of Breast Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315000, People's Republic of China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315000, People's Republic of China
| |
Collapse
|
3
|
Jeffreys SA, Powter B, Balakrishnar B, Mok K, Soon P, Franken A, Neubauer H, de Souza P, Becker TM. Endocrine Resistance in Breast Cancer: The Role of Estrogen Receptor Stability. Cells 2020; 9:cells9092077. [PMID: 32932819 PMCID: PMC7564140 DOI: 10.3390/cells9092077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Therapy of hormone receptor positive breast cancer (BCa) generally targets estrogen receptor (ER) function and signaling by reducing estrogen production or by blocking its interaction with the ER. Despite good long-term responses, resistance to treatment remains a significant issue, with approximately 40% of BCa patients developing resistance to ET. Mutations in the gene encoding ERα, ESR1, have been identified in BCa patients and are implicated as drivers of resistance and disease recurrence. Understanding the molecular consequences of these mutations on ER protein levels and its activity, which is tightly regulated, is vital. ER activity is in part controlled via its short protein half-life and therefore changes to its stability, either through mutations or alterations in pathways involved in protein stability, may play a role in therapy resistance. Understanding these connections and how ESR1 alterations could affect protein stability may identify novel biomarkers of resistance. This review explores the current reported data regarding posttranslational modifications (PTMs) of the ER and the potential impact of known resistance associated ESR1 mutations on ER regulation by affecting these PTMs in the context of ET resistance.
Collapse
Affiliation(s)
- Sarah A. Jeffreys
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
- School of Medicine, Western Sydney University, Campbelltown NSW 2560, Australia
- Correspondence: ; Tel.: +61-2-873-89022
| | - Branka Powter
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
| | - Bavanthi Balakrishnar
- Department of Medical Oncology, Liverpool Hospital, Liverpool NSW 2170, Australia; (B.B.); (K.M.)
| | - Kelly Mok
- Department of Medical Oncology, Liverpool Hospital, Liverpool NSW 2170, Australia; (B.B.); (K.M.)
| | - Patsy Soon
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool NSW 2170, Australia
- Department of Surgery, Bankstown Hospital, Bankstown NSW 2200, Australia
| | - André Franken
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
- Department of Obstetrics and Gynaecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Hans Neubauer
- Department of Obstetrics and Gynaecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Paul de Souza
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
- School of Medicine, Western Sydney University, Campbelltown NSW 2560, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool NSW 2170, Australia; (B.B.); (K.M.)
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool NSW 2170, Australia
- School of Medicine, University of Wollongong, Wollongong NSW 2522, Australia
| | - Therese M. Becker
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
- School of Medicine, Western Sydney University, Campbelltown NSW 2560, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool NSW 2170, Australia
| |
Collapse
|
4
|
Takagi K, Miki Y, Ishida T, Sasano H, Suzuki T. The interplay of endocrine therapy, steroid pathways and therapeutic resistance: Importance of androgen in breast carcinoma. Mol Cell Endocrinol 2018; 466:31-37. [PMID: 28918115 DOI: 10.1016/j.mce.2017.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/04/2017] [Accepted: 09/11/2017] [Indexed: 12/27/2022]
Abstract
A great majority of breast carcinomas expresses estrogen receptor (ER) and estrogens have crucial roles in the progress of breast carcinomas. Endocrine therapy targeting ER and/or intratumoral estrogen production significantly improved clinical outcomes of the patients with ER-positive breast carcinomas. However, resistance to endocrine therapy is often observed and significant number of patients will recur after the treatment. In addition, treatment for the patients with triple-negative breast carcinomas (negative for all ER, progesterone receptor (PR) and HER2) are limited to cytotoxic chemotherapy and novel therapeutic targets need to be identified. In breast carcinoma tissues, not only ER but androgen receptor (AR) is frequently expressed, suggesting pivotal roles of androgens in the progress of breast carcinomas. Growing interest on androgen action as possible therapeutic target has been taken, but androgen action seems quite complicated in breast carcinomas and inconsistent findings has been also proposed. In this review, we will summarize recent studies regarding intratumoral androgen production and its regulation as well as distinct subset of breast carcinomas characterized by activated AR signaling and recent clinical trial targeting AR in the patients with either ER-positive and ER-negative breast carcinomas.
Collapse
Affiliation(s)
- Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yasuhiro Miki
- Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
5
|
Antoon JW, Meacham WD, Bratton MR, Slaughter EM, Rhodes LV, Ashe HB, Wiese TE, Burow ME, Beckman BS. Pharmacological inhibition of sphingosine kinase isoforms alters estrogen receptor signaling in human breast cancer. J Mol Endocrinol 2011; 46:205-16. [PMID: 21321095 PMCID: PMC4007162 DOI: 10.1530/jme-10-0116] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, crosstalk between sphingolipid signaling pathways and steroid hormones has been illuminated as a possible therapeutic target. Sphingosine kinase (SK), the key enzyme metabolizing pro-apoptotic ceramide to pro-survival sphingosine-1-phosphate (S1P), is a promising therapeutic target for solid tumor cancers. In this study, we examined the ability of pharmacological inhibition of S1P formation to block estrogen signaling as a targeted breast cancer therapy. We found that the Sphk1/2 selective inhibitor (SK inhibitor (SKI))-II, blocked breast cancer viability, clonogenic survival and proliferation. Furthermore, SKI-II dose-dependently decreased estrogen-stimulated estrogen response element transcriptional activity and diminished mRNA levels of the estrogen receptor (ER)-regulated genes progesterone receptor and steroid derived factor-1. This inhibitor binds the ER directly in the antagonist ligand-binding domain. Taken together, our results suggest that SKIs have the ability to act as novel ER signaling inhibitors in breast carcinoma.
Collapse
Affiliation(s)
- James W Antoon
- Tulane Department of Pharmacology Section of Hematology and Medical Oncology, Tulane Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-83, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Agrawal A, Robertson JFR, Cheung KL. "Resurrection of clinical efficacy" after resistance to endocrine therapy in metastatic breast cancer. World J Surg Oncol 2006; 4:40. [PMID: 16822312 PMCID: PMC1538598 DOI: 10.1186/1477-7819-4-40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 07/05/2006] [Indexed: 12/01/2022] Open
Abstract
Background In a significant proportion of metastatic breast cancer (MBC) patients whose tumour has progressed within 6 months of endocrine therapy (de novo resistance), it is generally believed that the chance of achieving clinical benefit (CB) with further endocrine therapy is minimal. Methods Data was retrieved from a prospectively updated database of metastatic breast cancer. Relevant data was exported to SPSS™ software for statistical analysis. Results In oestrogen receptor (ER) positive MBC patients with assessable disease, CB was achieved in 159 (71.3%) (1st line) patients. When these patients were put on further endocrine therapy, the CB rates were 63.2% (on 2nd line), 46.1% (on 3rd line) and 20% (on 4th line) with a median duration of response (DOR) in those with CB of 22, 12, 11 and 15 months respectively. The remaining 64(28.7%) patients had de novo resistance on 1st line endocrine therapy. Seventeen of these patients were treated with further endocrine therapy. The CB rates were 29.4% (on 2nd line) and 22.2% (on 3rd line) with a median DOR in those with CB of 22.7 months and 14 months respectively. Conclusion The chance of further endocrine response continues to decrease with each line of therapy, yet CB is still seen with reasonable duration even with a 4th line agent. In addition, further endocrine response, with long duration, can be seen in a significant proportion of patients who have developed de novo resistance to 1st line endocrine therapy. The use of further endocrine therapy should not be excluded under these circumstances.
Collapse
Affiliation(s)
- Amit Agrawal
- Professorial Unit of Surgery, City Hospital, University of Nottingham, Nottingham, NG5 1PB, UK
| | - John FR Robertson
- Professorial Unit of Surgery, City Hospital, University of Nottingham, Nottingham, NG5 1PB, UK
| | - KL Cheung
- Professorial Unit of Surgery, City Hospital, University of Nottingham, Nottingham, NG5 1PB, UK
| |
Collapse
|
8
|
Zheng W, Zheng J, Ma L, Meng F, Huang L, Ma D. Comparison of HER-2/neu, ER and PCNA expression in premenopausal and postmenopausal patients with breast carcinoma. APMIS 2005; 113:175-81. [PMID: 15799760 DOI: 10.1111/j.1600-0463.2005.apm1130304.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We attempted to compare the pattern of HER-2/neu, ER and PCNA in premenopausal and postmenopausal patients with breast carcinoma to identify potential biological differences. Five hundred and forty-eight samples from 318 premenopausal and 230 postmenopausal women with invasive ductal carcinoma of the breast were evaluated for HER-2/neu, ER and PCNA expression by immunohistochemistry. HER-2/neu expression showed 27.4% positivity in premenopausal and 24.8% in postmenopausal women; there was no significant difference between the two groups (p>0.05). In contrast, HER-2/neu expression was found to be significantly associated with ER negativity in the two groups (p<0.05 in premenopausal, p<0.001 in postmenopausal patients). However, it was significantly associated with PCNA expression only in the postmenopausal group (p<0.001). 54.4% showed premenopausal tumor cell ER positivity, whereas 64.3% of the postmenopausal group showed positivity. ER expression showed a significant correlation with patient menopausal status (p<0.05). The prevalence of PCNA positivity in the tumor cell components is slightly higher in postmenopausal compared to premenopausal women (p>0.20). The current study is consistent with reports from other groups regarding the correlation of HER-2/neu with adverse pathologic features and with expression of other markers in carcinoma. We also observed there was no trend toward increased HER-2/neu expression in either premenopausal or postmenopausal patients, i.e. there was similar HER-2/neu expression in the two groups. This suggests that HER-2/neu status could be used to determine assignment to specific intensive adjuvant therapy and evaluation of biological behavior in both pre- and postmenopausal patients with breast carcinoma.
Collapse
MESH Headings
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/diagnosis
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/immunology
- Carcinoma, Ductal, Breast/pathology
- Cell Membrane/chemistry
- Cell Membrane/immunology
- Cell Nucleus/chemistry
- Cell Nucleus/immunology
- Cell Proliferation
- Female
- Humans
- Middle Aged
- Neoplasm Staging
- Postmenopause
- Premenopause
- Proliferating Cell Nuclear Antigen/analysis
- Proliferating Cell Nuclear Antigen/metabolism
- Receptor, ErbB-2/analysis
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/analysis
- Receptors, Estrogen/metabolism
Collapse
Affiliation(s)
- Weiqiang Zheng
- Changhai Hospital, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | | | | | | | | | | |
Collapse
|
9
|
Gee JMW, Harper ME, Hutcheson IR, Madden TA, Barrow D, Knowlden JM, McClelland RA, Jordan N, Wakeling AE, Nicholson RI. The antiepidermal growth factor receptor agent gefitinib (ZD1839/Iressa) improves antihormone response and prevents development of resistance in breast cancer in vitro. Endocrinology 2003; 144:5105-17. [PMID: 12960029 DOI: 10.1210/en.2003-0705] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although many estrogen receptor-positive breast cancers initially respond to antihormones, responses are commonly incomplete with resistance ultimately emerging. Delineation of signaling mechanisms underlying these phenomena would allow development of therapies to improve antihormone response and compromise resistance. This in vitro investigation in MCF-7 breast cancer cells examines whether epidermal growth factor receptor (EGFR) signaling limits antiproliferative and proapoptotic activity of antihormones and ultimately supports development of resistance. It addresses whether the anti-EGFR agent gefitinib (ZD1839/Iressa; TKI: 1 mum) combined with the antihormones 4-hydroxytamoxifen (TAM: 0.1 mum) or fulvestrant (Faslodex; 0.1 mum) enhances growth inhibition and prevents resistance. TAM significantly suppressed MCF-7 growth over wk 2-5, reducing proliferation detected by immunocytochemistry and fluorescence-activated cell sorter cell cycle analysis. A modest apoptotic increase was observed by fluorescence-activated cell sorter and fluorescence microscopy, with incomplete bcl-2 suppression. EGFR induction occurred during TAM response, as measured by immunocytochemistry and Western blotting, with EGFR-positive, highly proliferative resistant growth subsequently emerging. Although TKI alone was ineffective on growth, TAM plus TKI cotreatment exhibited superior antigrowth activity vs. TAM, with no viable cells by wk 12. Cotreatment was more effective in inhibiting proliferation, promoting apoptosis, and eliminating bcl-2. Cotreatment blocked EGFR induction, markedly depleted ERK1/2 MAPK and protein kinase B phosphorylation, and prevented emergence of EGFR-positive resistance. Faslodex plus TKI cotreatment was also a superior antitumor strategy. Thus, increased EGFR evolves during treatment with antihormones, limiting their efficacy and promoting resistance. Gefitinib addition to antihormonal therapy could prove more effective in treating estrogen receptor-positive breast cancer and may combat development of resistance.
Collapse
Affiliation(s)
- J M W Gee
- Tenovus Centre for Cancer Research, Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3XF, Wales, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Martin LA, Farmer I, Johnston SRD, Ali S, Marshall C, Dowsett M. Enhanced estrogen receptor (ER) alpha, ERBB2, and MAPK signal transduction pathways operate during the adaptation of MCF-7 cells to long term estrogen deprivation. J Biol Chem 2003; 278:30458-68. [PMID: 12775708 DOI: 10.1074/jbc.m305226200] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms involved in resistance to estrogen deprivation are of major importance for optimal patient therapy and the development of new drugs. Long term culture of MCF-7 cells in estrogen (E2)-depleted medium (long term estrogen deprivation; LTED) results in hypersensitivity to E2 coinciding with elevated levels of estrogen receptor (ER) alpha phosphorylated on Ser118 and MAPK, together with several of its downstream targets associated previously with ERalpha phosphorylation. Our data suggest elevated MAPK activity results from enhanced ERBB2 expression in the LTED cells versus the wild-type (wt), and treatment with the tyrosine kinase inhibitor ZD1839 revealed increased sensitivity in both transcription and proliferation assays. Similarly the MEK inhibitor U0126 decreased transcription and proliferation in the LTED cells and reduced their sensitivity to the proliferative effects of E2, while having no effect on the wt. However, the complete suppression of MAPK activity in the LTED cells did not inhibit ERalpha Ser118 phosphorylation suggesting that ER activity remained ligand-dependant. The LTED cells also expressed elevated levels of insulin-like growth factor-1R, and inhibition of phosphatidylinositol 3-kinase activity with LY294002 reduced basal ERalpha transactivation by 70% in the LTED cells compared with the wt. However, LY294002 had no effect on ERalpha Ser118 phosphorylation. These data suggest that although elevated levels of MAPK occur during LTED and influence the phenotype, this is unlikely to be the sole pathway operating to achieve adaptation.
Collapse
Affiliation(s)
- Lesley-Ann Martin
- Academic Department of Biochemistry, Institute of Cancer Research, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Loss of heterozygosity of ER gene in breast cancer and its clinical significance. Chin J Cancer Res 2002. [DOI: 10.1007/s11670-002-0027-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
13
|
Dorssers LC, Van der Flier S, Brinkman A, van Agthoven T, Veldscholte J, Berns EM, Klijn JG, Beex LV, Foekens JA. Tamoxifen resistance in breast cancer: elucidating mechanisms. Drugs 2002; 61:1721-33. [PMID: 11693462 DOI: 10.2165/00003495-200161120-00004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tamoxifen has been used for the systemic treatment of patients with breast cancer for nearly three decades. Treatment success is primarily dependent on the presence of the estrogen receptor (ER) in the breast carcinoma. While about half of patients with advanced ER-positive disease immediately fail to respond to tamoxifen, in the responding patients the disease ultimately progresses to a resistant phenotype. The possible causes for intrinsic and acquired resistance have been attributed to the pharmacology of tamoxifen, alterations in the structure and function of the ER, the interactions with the tumour environment and genetic alterations in the tumour cells. So far no prominent mechanism leading to resistance has been identified. The recent results of a functional screen for breast cancer antiestrogen resis- tance (BCAR) genes responsible for development of tamoxifen resistance in human breast cancer cells are reviewed. Individual BCAR genes can transform estrogen-dependent breast cancer cells into estrogen-independent and tamoxifen-resistant cells in vitro. Furthermore, high levels of BCAR1/pl30Cas protein in ER-positive primary breast tumours are associated with intrinsic resistance to tamoxifen treatment. These results indicate a prominent role for alternative growth control pathways independent of ER signalling in intrinsic tamoxifen resistance of ER-positive breast carcinomas. Deciphering the differentiation characteristics of normal and malignant breast epithelial cells with respect to proliferation control and regulation of cell death (apoptosis) is essential for understanding therapy response and development of resistance of breast carcinoma.
Collapse
Affiliation(s)
- L C Dorssers
- Department of Pathology, Josephine Nefkens Institute, University Hospital Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zheng WQ, Lu J, Zheng JM, Hu FX, Ni CR. Variation of ER status between primary and metastatic breast cancer and relationship to p53 expression*. Steroids 2001; 66:905-10. [PMID: 11711119 DOI: 10.1016/s0039-128x(01)00121-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Estrogen-dependent growth of breast cancer can be blocked by anti-estrogens. Estrogen receptor (ER) presence in breast cancer implies responsiveness to endocrine therapy. However, for those patients who ultimately develop resistance to endocrine therapy, the mechanisms remain unclear. The present study attempted to compare the expression status of ER mRNA in a series of primary breast tumors with matched metastases and explored the relation between ER and mutant p53 expression. METHODS In situ hybridization using a digoxigenin-labeled estrogen receptor cDNA probe was employed to determine the expression of ER mRNA in 52 cases of primary tumors and their matched axillary lymph node metastases. Immunohistochemical staining using a monoclonal antibody against ER was also performed. RESULTS ER expression was observed in 53.8% (28/52) of primary tumors and 48% (25/52) of metastases, while 57.7% (30/52) of primary tumors and 53.8% (28/52) of metastases showed ER mRNA positivity. There were variations in ER status between in situ hybridization and immunohistochemistry measurements and between primary tumors and metastases. Mutant p53 expression was inversely associated with ER-negative, high-grade tumors. CONCLUSIONS In situ hybridization may be a more specific and sensitive method for determination of ER status than immunohistochemistry. It is possible that the biologic properties of ER change, and these changes may influence tumor response to endocrine therapy. In view of the ER variation, it was suggested that the ER status of metastatic tumors in addition to primary tumors should be taken into consideration in order to better determine the benefit of clinical endocrine therapy.
Collapse
Affiliation(s)
- W Q Zheng
- Department of Pathology, Changhai Hospital, Second Military Medical University, 174 Changhai Road, Shanghai 200433, China.
| | | | | | | | | |
Collapse
|
15
|
Mamounas EP. Antiaromatase agents after adjuvant tamoxifen: rationale and clinical implications. Clin Breast Cancer 2000; 1 Suppl 1:S22-7. [PMID: 11970746 DOI: 10.3816/cbc.2000.s.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although tamoxifen is considered standard adjuvant hormonal therapy in receptor-positive, stage I and II breast cancer, information on its optimal duration of administration has only been reported recently and, for many, the subject is still a matter of scientific debate. Data suggest that there is a time period beyond which, if tamoxifen is continued, it may become ineffective or even detrimental to the patient. Tamoxifen is usually discontinued after approximately 5 years of therapy, at which time most patients are thought to be disease free; however, some patients may harbor residual micrometastases. A fraction of these patients will have micrometastatic tumor cells that are still responsive to tamoxifen, and tamoxifen discontinuation could result in cancer cell growth. The preponderance of clinical data, however, indicate that a greater fraction of patients will have micrometastatic tumor cells that have become progressively resistant to tamoxifen. In fact, tumor cell growth could be stimulated by continued therapy with the drug. Although in some patients the micrometastatic tumor cells may have become hormonally unresponsive, in most cases (tamoxifen-responsive or tamoxifen-stimulated micrometastases), the tumor remains hormonally responsive. Therefore, the use of anti-aromatase agents to reduce the level of estrogenic stimulation and, as a result, the risk of recurrence may prove to be a valuable approach at the time of tamoxifen discontinuation. The National Surgical Adjuvant Breast and Bowel Project (NSABP) is in the final stages of developing a clinical trial (NSABP B-33) to evaluate the effect of administering 2 years of therapy with the aromatase inactivator exemestane to postmenopausal, receptor-positive patients who have completed 5 years of tamoxifen therapy and are disease free at the time of tamoxifen discontinuation.
Collapse
|
16
|
Nicholson RI, Gee JM. Oestrogen and growth factor cross-talk and endocrine insensitivity and acquired resistance in breast cancer. Br J Cancer 2000; 82:501-13. [PMID: 10682656 PMCID: PMC2363333 DOI: 10.1054/bjoc.1999.0954] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- R I Nicholson
- Tenovus Cancer Research Centre, University of Wales College of Medicine, Cardiff, UK
| | | |
Collapse
|