1
|
Correia D, Indelicato DJ, Paulino AC, Ermoian R, Mihalcik S, Perkins SM, Hill-Kayser C, Mangona VS, Lee J, Chang JHC, Laack NN, Kwok Y, Perentesis J, Vatner R, Dave R, Gallotto SL, Lawell MP, Bajaj BVM, Allison KW, Perry A, Yock TI. Evolution of Proton Radiation Therapy Brainstem Constraints on the Pediatric Proton/Photon Consortium Registry. Pract Radiat Oncol 2024; 14:e507-e514. [PMID: 39128543 DOI: 10.1016/j.prro.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE Increasing concern that brainstem toxicity incidence after proton radiation therapy might be higher than with photons led to a 2014 University of Florida (UF) landmark paper identifying its risk factors and proposing more conservative dose constraints. We evaluated how practice patterns changed among the Pediatric Proton/Photon Consortium Registry (PPCR). MATERIAL AND METHODS This prospective multicenter cohort study gathered data from patients under the age of 22 years enrolled on the PPCR, treated between 2002 and 2019 for primary posterior fossa brain tumors. After standardizing brainstem contours, we garnered dosimetry data and correlated those meeting the 2014 proton-specific brainstem constraint guidelines by treatment era, histology, and extent of surgical resection. RESULTS A total of 467 patients with evaluable proton radiation therapy plans were reviewed. Median age was 7.1 years (range: <1-21.9), 63.0% (n = 296) were men, 76.0% (n = 357) were White, and predominant histology was medulloblastoma (55.0%, n = 256), followed by ependymoma (27.0%, n = 125). Extent of resection was mainly gross total resection (GTR) (67.0%, n = 312), followed by subtotal resection (STR) or biopsy (20.0%, n = 92), and near total resection (NTR) (9.2%, n = 43). The UF brainstem constraint metrics most often exceeded were the goal D50% of 52.4 gray relative biological equivalents (43.3%, n = 202) and maximal D50% of 54 gray relative biological equivalents (12.6%, n = 59). The compliance rate increased after the new guidelines (2002-2014: 64.0% vs 2015-2019: 74.6%, P = .02), except for ependymoma (46.3% pre- vs 50.0% post-guidelines, P = .86), presenting lower compliance (48.8%) in comparison to medulloblastoma/ primitive neuroectodermal tumors/pineoblastoma (77.7%), glioma (89.1%), and atypical teratoid/rhabdoid tumors (90.9%) (P < .001). Degree of surgical resection did not affect compliance rates (GTR/NTR 71.0% vs STR/biopsy 72.8%, P = .45), even within the ependymoma subset (GTR/NTR 50.5% vs STR/biopsy 38.1%, P = .82). CONCLUSION Since the publication of the UF guidelines, the pediatric proton community has implemented more conservative brainstem constraints in all patients except those with ependymoma, irrespective of residual disease after surgery. Future work will evaluate if this change in practice is associated with decreased rates of brainstem toxicity.
Collapse
Affiliation(s)
- Dora Correia
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Cantonal Hospital Aarau, Aarau, Aargau, Switzerland; Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Daniel J Indelicato
- Department of Radiation Oncology, University of Florida, Jacksonville, Florida
| | - Arnold C Paulino
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ralph Ermoian
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Stephen Mihalcik
- Northwestern Medicine Chicago Proton Center, Warrenville, Illinois
| | - Stephanie M Perkins
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Christine Hill-Kayser
- Department of Radiation Oncology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Victor S Mangona
- Department of Radiation Oncology, Texas Center for Proton Therapy, Irving, Texas
| | - Jae Lee
- Department of Radiation Oncology, ProCure Proton Therapy Center, Franklin Township, New Jersey
| | - John Han-Chih Chang
- Department of Radiation Oncology, The Oklahoma Proton Center and University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Nadia N Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Young Kwok
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland
| | - John Perentesis
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ralph Vatner
- Department of Radiation Oncology, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ronak Dave
- Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Sara L Gallotto
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Miranda P Lawell
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Benjamin V M Bajaj
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Keith W Allison
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alisa Perry
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Torunn I Yock
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Klawinski DM, Cottrell CE, Schieffer KM, Indyk JA, Gandhi K, Mardis ER, Rodriguez DP, Breneman JC, Osorio DS. Fatal brainstem injury following proton radiation in a patient with medulloblastoma and a germline variant in RNF213. Pediatr Blood Cancer 2024; 71:e30739. [PMID: 37877896 DOI: 10.1002/pbc.30739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Brainstem injury occurs secondary to radiation to the posterior fossa in up to 2% of pediatric patients. It may occur after months to years after treatment. It has been associated with age less than 5 years and with comorbid conditions such as cerebrovascular disease, diabetes mellitus, and hypertension. Radiation necrosis is often symptomatic and can be fatal. A pathogenic variant in RNF213 was found in a patient who suffered fatal radiation necrosis. This mutation has been associated with moyamoya disease and may predispose to radiation necrosis.
Collapse
Affiliation(s)
- Darren M Klawinski
- Department of Pediatrics, Nemours Children's Health Jacksonville, Jacksonville, Florida, USA
| | | | | | | | - Kajal Gandhi
- Nationwide Children's Hospital, Columbus, Ohio, USA
| | | | | | - John C Breneman
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | |
Collapse
|
3
|
Handeland AH, Lægdsmand PM, Toussaint L, Stokkevåg CH, Lassen-Ramshad YA, Klitgaard R, Henjum H, Ytre-Hauge KS, Indelicato DJ, Tjelta J, Lyngholm E, Muren LP. Linear energy transfer-inclusive brainstem necrosis risk models applied to an independent paediatric proton therapy cohort. Acta Oncol 2023; 62:1536-1540. [PMID: 37676670 DOI: 10.1080/0284186x.2023.2254476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Affiliation(s)
- Andreas H Handeland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Mt Lægdsmand
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Laura Toussaint
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Camilla H Stokkevåg
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | | | - Rasmus Klitgaard
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Helge Henjum
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | | | - Daniel J Indelicato
- Department of Radiation Oncology, University of Florida, Jacksonville, FL, USA
| | - Johannes Tjelta
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Erlend Lyngholm
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Ludvig P Muren
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Lo Greco MC, Milazzotto R, Liardo RLE, Foti PV, Palmucci S, Basile A, Pergolizzi S, Spatola C. The Role of Reirradiation in Childhood Progressive Diffuse Intrinsic Pontine Glioma (DIPG): An Ongoing Challenge beyond Radiobiology. Brain Sci 2023; 13:1449. [PMID: 37891817 PMCID: PMC10605436 DOI: 10.3390/brainsci13101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
To investigate the clinical impact of multiple courses of irradiation on pediatric patients with progressive diffuse intrinsic pontine glioma (DIPG), we conducted a retrospective case series on three children treated at our institution from 2018 to 2022. All children were candidates to receive systemic therapy with vinorelbine and nimotuzumab. Radiotherapy was administered to a total dose of 54 Gy. At any disease progression, our local tumor board evaluated the possibility of offering a new course of radiotherapy. To determine feasibility and assess toxicity rates, all children underwent clinical and hematological evaluation both during and after the treatment. To assess efficacy, all children performed contrast-enhanced MRI almost quarterly after the end of the treatment. In all children, following any treatment course, neurological improvement (>80%) was associated with a radiological response (41.7-46%). The longest overall survival (24 months) was observed in the child who underwent three courses of radiotherapy, without experiencing significant side effects. Even though it goes beyond the understanding of conventional radiobiology, first and second reirradiation in pediatric patients with progressive DIPG may represent a feasible and safe approach, capable of increasing overall survival and disease-free survival in selected patients and improving their quality of life.
Collapse
Affiliation(s)
- Maria Chiara Lo Greco
- Radiation Oncology Unit, Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy;
| | - Roberto Milazzotto
- Radiation Oncology Unit, Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (R.M.); (R.L.E.L.); (C.S.)
| | - Rocco Luca Emanuele Liardo
- Radiation Oncology Unit, Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (R.M.); (R.L.E.L.); (C.S.)
| | - Pietro Valerio Foti
- Radiology I Unit, Department of Medical Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (P.V.F.); (S.P.); (A.B.)
| | - Stefano Palmucci
- Radiology I Unit, Department of Medical Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (P.V.F.); (S.P.); (A.B.)
| | - Antonio Basile
- Radiology I Unit, Department of Medical Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (P.V.F.); (S.P.); (A.B.)
| | - Stefano Pergolizzi
- Radiation Oncology Unit, Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy;
| | - Corrado Spatola
- Radiation Oncology Unit, Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (R.M.); (R.L.E.L.); (C.S.)
| |
Collapse
|
5
|
Kim HJ, Suh CO. Radiotherapy for Diffuse Intrinsic Pontine Glioma: Insufficient but Indispensable. Brain Tumor Res Treat 2023; 11:79-85. [PMID: 37151149 PMCID: PMC10172015 DOI: 10.14791/btrt.2022.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 05/09/2023] Open
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) account for 10%-20% of all central nervous system tumors in children and are the leading cause of death in children with brain tumors. Although many clinical trials have been conducted over the past decades, the survival outcome has remained unchanged. Over 90% of children die within 2 years of the diagnosis, and radiotherapy remains the standard treatment to date. To improve the prognosis, hyperfractionated and hypofractionated radiotherapy and/or addition of radiosensitizers have been investigated. However, none of the radiotherapy approaches have shown a survival benefit, and the overall survival of patients with DIPG is approximately 11 months. Here, we comprehensively review the management of DIPG with focus on radiotherapy.
Collapse
Affiliation(s)
- Hyun Ju Kim
- Department of Radiation Oncology, Gachon University Gil Hospital, Gachon University College of Medicine, Incheon, Korea
| | - Chang-Ok Suh
- Department of Radiation Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea.
| |
Collapse
|
6
|
Puthenpura V, DeNunzio NJ, Zeng X, Giantsoudi D, Aboian M, Ebb D, Kahle KT, Yock TI, Marks AM. Radiation Necrosis with Proton Therapy in a Patient with Aarskog-Scott Syndrome and Medulloblastoma. Int J Part Ther 2021; 8:58-65. [PMID: 35127977 PMCID: PMC8768897 DOI: 10.14338/ijpt-21-00013.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose Medulloblastoma is known to be associated with multiple cancer-predisposition syndromes. In this article, we explore a possible association among a patient's Aarskog-Scott syndrome, development of medulloblastoma, and subsequent brainstem radiation necrosis. Case Presentation A 5-year-old male with Aarskog-Scott syndrome initially presented to his pediatrician with morning emesis, gait instability, and truncal weakness. He was ultimately found to have a posterior fossa tumor with pathology consistent with group 3 medulloblastoma. After receiving a gross total resection and standard proton beam radiation therapy with concurrent vincristine, he was noted to develop brainstem radiation necrosis, for which he underwent therapy with high-dose dexamethasone, bevacizumab, and hyperbaric oxygen therapy with radiographic improvement and clinical stabilization. Conclusion Based on several possible pathologic correlates in the FDG1 pathway, there exists a potential association between this patient's Aarskog-Scott syndrome and medulloblastoma, which needs to be investigated further. In patients with underlying, rare genetic syndromes, further caution should be taken when evaluating chemotherapy and radiation dosimetry planning.
Collapse
Affiliation(s)
- Vidya Puthenpura
- Section of Pediatric Hematology and Oncology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Nicholas J. DeNunzio
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Xue Zeng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Drosoula Giantsoudi
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Mariam Aboian
- Section of Neuroradiology and Nuclear Medicine, Department of Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - David Ebb
- Department of Pediatric Hematology/Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Kristopher T. Kahle
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Torunn I. Yock
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Asher M. Marks
- Section of Pediatric Hematology and Oncology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
7
|
Dell'Oro M, Short M, Wilson P, Bezak E. Normal tissue tolerance amongst paediatric brain tumour patients- current evidence in proton radiotherapy. Crit Rev Oncol Hematol 2021; 164:103415. [PMID: 34242771 DOI: 10.1016/j.critrevonc.2021.103415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 04/28/2021] [Accepted: 07/04/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Proton radiotherapy (PT) is used increasingly for paediatric brain cancer patients. However, as demonstrated here, the knowledge on normal tissue dose constraints, to minimize side-effects, for this cohort is limited. METHODS A search strategy was systematically conducted on MEDLINE® database. 65 papers were evaluated ranging from 2013 to 2021. RESULTS Large variations in normal tissue tolerance and toxicity reporting across PT studies makes estimation of normal tissue dose constraints difficult, with the potential for significant late effects to go unmeasured. Mean dose delivered to the pituitary gland varies from 20 to 30 Gy across literature. Similarly, the hypothalamic dose delivery ranges from 20 to 54.6 Gy for paediatric patients. CONCLUSION There is a significant lack of radiobiological data for paediatric brain cancer patients undergoing proton therapy, often using data from x-ray radiotherapy and adult populations. The way forward is through standardisation of reporting in order to validate relevant dose constraints.
Collapse
Affiliation(s)
- Mikaela Dell'Oro
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia; Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia.
| | - Michala Short
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Puthenparampil Wilson
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; UniSA STEM, University of South Australia, Adelaide, SA 5001, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia; Department of Physics, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
8
|
Indelicato DJ, Ioakeim-Ioannidou M, Bradley JA, Mailhot-Vega RB, Morris CG, Tarbell NJ, Yock T, MacDonald SM. Proton Therapy for Pediatric Ependymoma: Mature Results From a Bicentric Study. Int J Radiat Oncol Biol Phys 2021; 110:815-820. [PMID: 33508372 DOI: 10.1016/j.ijrobp.2021.01.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/17/2020] [Accepted: 01/20/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE To report the long-term efficacy and toxicity of proton therapy for pediatric ependymoma. METHODS AND MATERIALS Between 2000 and 2019, 386 children with nonmetastatic grade 2/3 intracranial ependymoma received proton therapy at 1 of 2 academic institutions. Median age at treatment was 3.8 years (range, 0.7-21.3); 56% were male. Most (72%) tumors were in the posterior fossa and classified as World Health Organization grade 3 (65%). Eighty-five percent had a gross total or near total tumor resection before radiation therapy; 30% received chemotherapy. Median radiation dose was 55.8 Gy relative biologic effectiveness (RBE) (range, 50.4-59.4). RESULTS Median follow-up was 5.0 years (range, 0.4-16.7). The 7-year local control, progression-free survival, and overall survival rates were 77.0% (95% confidence interval [CI], 71.9%-81.5%), 63.8% (95% CI, 58.0%-68.8%), and 82.2% (95% CI, 77.2%-86.3%), respectively. Subtotal resection was associated with inferior local control (59% vs 80%; P < .005), progression-free survival (48% vs 66%; P < .001), and overall survival (70% vs 84%; P < .05). Male sex was associated with inferior progression-free (60% vs 69%; P < .05) and overall survival (76% vs 89%; P < .05). Posterior fossa tumor site was also associated with inferior progression-free (59% vs 74%; P < .05) and overall survival (79% vs 89%; P < .01). Twenty-one patients (5.4%) required hearing aids; of these, 13 received cisplatin, including the 3 with bilateral hearing loss. Forty-five patients (11.7%) required hormone replacement, typically growth hormone (38/45). The cumulative incidence of grade 2+ brain stem toxicity was 4% and occurred more often in patients who received >54 GyRBE. Two patients (0.5%) died of brain stem necrosis. The second-malignancy rate was 0.8%. CONCLUSION Proton therapy offers disease control commensurate with modern photon therapy without unexpected toxicity. The high rate of long-term survival justifies efforts to reduce radiation exposure in this young population. Independent of radiation modality, this large series confirms extent of resection as the most important modifiable factor for survival.
Collapse
Affiliation(s)
- Daniel J Indelicato
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida.
| | | | - Julie A Bradley
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Raymond B Mailhot-Vega
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Christopher G Morris
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Nancy J Tarbell
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Torunn Yock
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Shannon M MacDonald
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Patteson BE, Baliga S, Bajaj BVM, MacDonald SM, Yeap BY, Gallotto SL, Giblin MJ, Weyman EA, Ebb DH, Huang MS, Jones RM, Tarbell NJ, Yock TI. Clinical outcomes in a large pediatric cohort of patients with ependymoma treated with proton radiotherapy. Neuro Oncol 2021; 23:156-166. [PMID: 32514542 DOI: 10.1093/neuonc/noaa139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Treatment for pediatric ependymoma includes surgical resection followed by local radiotherapy (RT). Proton RT (PRT) enables superior sparing of critical structures compared with photons, with potential to reduce late effects. We report mature outcomes, patterns of failure, and predictors of outcomes in patients treated with PRT. METHODS One hundred fifty patients (<22 y) with World Health Organization grades II/III ependymoma were treated with PRT between January 2001 and January 2019 at Massachusetts General Hospital. Demographic, tumor, and treatment-related characteristics were analyzed. Event-free survival (EFS), overall survival (OS), and local control (LC) were assessed. RESULTS Median follow-up was 6.5 years. EFS, OS, and LC for the intracranial cohort (n = 145) at 7 years were 63.4%, 82.6%, and 76.1%. Fifty-one patients recurred: 26 (51.0%) local failures, 19 (37.3%) distant failures, and 6 (11.8%) synchronous failures. One hundred sixteen patients (77.3%) underwent gross total resection (GTR), 5 (3.3%) underwent near total resection (NTR), and 29 (19.3%) underwent subtotal resection (STR). EFS for the intracranial cohort at 7 years for GTR/NTR and STR was 70.3% and 35.2%. With multivariate analysis, the effect of tumor excision persisted after controlling for tumor location. There was no adverse effect on disease control if surgery to RT interval was within 9 weeks of GTR/NTR. CONCLUSION PRT is effective and safe in pediatric ependymoma. Similar to previous studies, GTR/NTR was the most important prognostic factor. Intervals up to 9 weeks from surgery to PRT did not compromise disease outcomes. There was no LC benefit between patients treated with >54 Gray relative biological effectiveness (GyRBE) versus ≤54 GyRBE.
Collapse
Affiliation(s)
- Brooke E Patteson
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Sujith Baliga
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts.,Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Benjamin V M Bajaj
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Shannon M MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Beow Y Yeap
- Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Sara L Gallotto
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Megan J Giblin
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Elizabeth A Weyman
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - David H Ebb
- Department of Pediatric Hematology Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Mary S Huang
- Department of Pediatric Hematology Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Robin M Jones
- Department of Pediatric Hematology Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Nancy J Tarbell
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Torunn I Yock
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Modern Radiotherapy for Pediatric Brain Tumors. Cancers (Basel) 2020; 12:cancers12061533. [PMID: 32545204 PMCID: PMC7352417 DOI: 10.3390/cancers12061533] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer is a leading cause of death in children with tumors of the central nervous system, the most commonly encountered solid malignancies in this population. Radiotherapy (RT) is an integral part of managing brain tumors, with excellent long-term survival overall. The tumor histology will dictate the volume of tissue requiring treatment and the dose. However, radiation in developing children can yield functional deficits and/or cosmetic defects and carries a risk of second tumors. In particular, children receiving RT are at risk for neurocognitive effects, neuroendocrine dysfunction, hearing loss, vascular anomalies and events, and psychosocial dysfunction. The risk of these late effects is directly correlated with the volume of tissue irradiated and dose delivered and is inversely correlated with age. To limit the risk of developing these late effects, improved conformity of radiation to the target volume has come from adopting a volumetric planning process. Radiation beam characteristics have also evolved to achieve this end, as exemplified through development of intensity modulated photons and the use of protons. Understanding dose limits of critical at-risk structures for different RT modalities is evolving. In this review, we discuss the physical basis of the most common RT modalities used to treat pediatric brain tumors (intensity modulated radiation therapy and proton therapy), the RT planning process, survival outcomes for several common pediatric malignant brain tumor histologies, RT-associated toxicities, and steps taken to mitigate the risk of acute and late effects from treatment.
Collapse
|
11
|
Greenberger BA, Yock TI. The role of proton therapy in pediatric malignancies: Recent advances and future directions. Semin Oncol 2020; 47:8-22. [PMID: 32139101 DOI: 10.1053/j.seminoncol.2020.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 11/11/2022]
Abstract
Proton radiotherapy has promised an advantage in safely treating pediatric malignancies with an increased capability to spare normal tissues, reducing the risk of both acute and late toxicity. The past decade has seen the proliferation of more than 30 proton facilities in the United States, with increased capacity to provide access to approximately 3,000 children per year who will require radiotherapy for their disease. We provide a review of the initial efforts to describe outcomes after proton therapy across the common pediatric disease sites. We discuss the main attempts to assess comparative efficacy between proton and photon radiotherapy concerning toxicity. We also discuss recent efforts of multi-institutional registries aimed at accelerating research to better define the optimal treatment paradigm for children requiring radiotherapy for cure.
Collapse
Affiliation(s)
- Benjamin A Greenberger
- Department of Radiation Oncology, Sidney Kimmel Medical College & Cancer Center at Thomas Jefferson University, Philadelphia, PA
| | - Torunn I Yock
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Francis H. Burr Proton Therapy Center, Boston, MA.
| |
Collapse
|
12
|
Jin MC, Harris JP, Sabolch AN, Gensheimer M, Le QT, Beadle BM, Pollom EL. Proton radiotherapy and treatment delay in head and neck squamous cell carcinoma. Laryngoscope 2019; 130:E598-E604. [PMID: 31837165 DOI: 10.1002/lary.28458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/12/2019] [Accepted: 11/16/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE For patients with head and neck squamous cell carcinoma (HNSCC), delays in the initiation of radiotherapy (RT) have been closely associated with worse outcomes. We sought to investigate whether RT modality (proton vs. photon) is associated with differences in the time to initiation of RT. METHODS The National Cancer Database was queried for patients diagnosed with nonmetastatic HNSCC between 2004 and 2015 who received either proton or photon RT as part of their initial treatment. Wilcoxon rank-sum and chi-square tests were used to compare continuous and categorical variables, respectively. Multivariable logistic regression was used to determine the association between use of proton RT and delayed RT initiation. RESULTS A total of 175,088 patients with HNSCC receiving either photon or proton RT were identified. Patients receiving proton RT were more likely to be white, reside in higher income areas, and have private insurance. Proton RT was associated with delayed RT initiation compared to photon RT (median 59 days vs. 45, P < 0.001). Receipt of proton therapy was independently associated with RT initiation beyond 6 weeks after diagnosis (adjusted OR [aOR, definitive RT] = 1.69; 95% confidence interval [CI] 1.26-2.30) or surgery (aOR [adjuvant RT] = 4.08; 95% CI 2.64-6.62). In the context of adjuvant proton RT, increases in treatment delay were associated with worse overall survival (weeks, adjusted hazard ratio = 1.099, 95% CI 1.011-1.194). CONCLUSION Use of proton therapy is associated with delayed RT in both the definitive and adjuvant settings for patients with HNSCC and could be associated with poorer outcomes. LEVEL OF EVIDENCE 2b Laryngoscope, 122:0000-0000, 2019 Laryngoscope, 130:E598-E604, 2020.
Collapse
Affiliation(s)
- Michael C Jin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford
| | - Jeremy P Harris
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford.,Palo Alto Veterans Affairs Health Care System, Palo Alto, California
| | - Aaron N Sabolch
- The Center for Health Research and the Department of Radiation Oncology, Kaiser Permanente, Portland, Oregon, U.S.A
| | - Michael Gensheimer
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford
| | - Beth M Beadle
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford
| | - Erqi L Pollom
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford.,Palo Alto Veterans Affairs Health Care System, Palo Alto, California
| |
Collapse
|
13
|
Abstract
In pediatric brain tumors, the intensification of chemotherapy has allowed for a reduction in radiotherapy (RT) volume to an involved field approach, particularly in patients with medulloblastoma. For patients with low-grade gliomas, the trend has remained to delay RT with chemotherapy; however, when RT is used, typically smaller clinical target volume margins are used. For patients with extracranial tumors, intensive chemotherapy to address systemic disease with local control is considered standard. Proton beam therapy shows significant promise in addressing both short-term and long-term toxicities in both central nervous system (CNS) and non-CNS pediatric tumors.
Collapse
Affiliation(s)
- Sujith Baliga
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Francis H. Burr Proton Therapy Center, 30 Fruit Street, Boston, MA 02114, USA
| | - Torunn I Yock
- Francis H. Burr Proton Therapy Center, 30 Fruit Street, Boston, MA 02114, USA; Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
14
|
Aljabab S, Tseng YD, Ermoian RP, Lo SS, Halasz LM. Commentary: The Promise of Proton Therapy for Central Nervous System Malignancies. Neurosurgery 2019; 84:E262-E263. [DOI: 10.1093/neuros/nyy459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/30/2018] [Indexed: 11/13/2022] Open
|
15
|
Haas-Kogan D, Indelicato D, Paganetti H, Esiashvili N, Mahajan A, Yock T, Flampouri S, MacDonald S, Fouladi M, Stephen K, Kalapurakal J, Terezakis S, Kooy H, Grosshans D, Makrigiorgos M, Mishra K, Poussaint TY, Cohen K, Fitzgerald T, Gondi V, Liu A, Michalski J, Mirkovic D, Mohan R, Perkins S, Wong K, Vikram B, Buchsbaum J, Kun L. National Cancer Institute Workshop on Proton Therapy for Children: Considerations Regarding Brainstem Injury. Int J Radiat Oncol Biol Phys 2019; 101:152-168. [PMID: 29619963 DOI: 10.1016/j.ijrobp.2018.01.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/21/2017] [Accepted: 01/01/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE Proton therapy can allow for superior avoidance of normal tissues. A widespread consensus has been reached that proton therapy should be used for patients with curable pediatric brain tumor to avoid critical central nervous system structures. Brainstem necrosis is a potentially devastating, but rare, complication of radiation. Recent reports of brainstem necrosis after proton therapy have raised concerns over the potential biological differences among radiation modalities. We have summarized findings from the National Cancer Institute Workshop on Proton Therapy for Children convened in May 2016 to examine brainstem injury. METHODS AND MATERIALS Twenty-seven physicians, physicists, and researchers from 17 institutions with expertise met to discuss this issue. The definition of brainstem injury, imaging of this entity, clinical experience with photons and photons, and potential biological differences among these radiation modalities were thoroughly discussed and reviewed. The 3 largest US pediatric proton therapy centers collectively summarized the incidence of symptomatic brainstem injury and physics details (planning, dosimetry, delivery) for 671 children with focal posterior fossa tumors treated with protons from 2006 to 2016. RESULTS The average rate of symptomatic brainstem toxicity from the 3 largest US pediatric proton centers was 2.38%. The actuarial rate of grade ≥2 brainstem toxicity was successfully reduced from 12.7% to 0% at 1 center after adopting modified radiation guidelines. Guidelines for treatment planning and current consensus brainstem constraints for proton therapy are presented. The current knowledge regarding linear energy transfer (LET) and its relationship to relative biological effectiveness (RBE) are defined. We review the current state of LET-based planning. CONCLUSIONS Brainstem injury is a rare complication of radiation therapy for both photons and protons. Substantial dosimetric data have been collected for brainstem injury after proton therapy, and established guidelines to allow for safe delivery of proton radiation have been defined. Increased capability exists to incorporate LET optimization; however, further research is needed to fully explore the capabilities of LET- and RBE-based planning.
Collapse
Affiliation(s)
- Daphne Haas-Kogan
- Department of Radiation Oncology, Harvard Medical School and Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, Massachusetts
| | - Daniel Indelicato
- Department of Radiation Oncology, University of Florida, Jacksonville, Florida
| | - Harald Paganetti
- Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Natia Esiashvili
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Anita Mahajan
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas; Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Torunn Yock
- Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Stella Flampouri
- Department of Radiation Oncology, University of Florida, Jacksonville, Florida
| | - Shannon MacDonald
- Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Maryam Fouladi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kry Stephen
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John Kalapurakal
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Stephanie Terezakis
- Department of Radiation Oncology, Johns Hopkins Medical Institute, Baltimore, Maryland
| | - Hanne Kooy
- Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - David Grosshans
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mike Makrigiorgos
- Department of Radiation Oncology, Harvard Medical School and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kavita Mishra
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Tina Young Poussaint
- Department of Radiology, Harvard Medical School and Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, Massachusetts
| | - Kenneth Cohen
- Department of Pediatrics, Johns Hopkins Medical Institute, Baltimore, Maryland
| | - Thomas Fitzgerald
- Department of Radiation Oncology, UMass Memorial Medical Center, Worcester, Massachusetts
| | - Vinai Gondi
- Northwestern Medicine Chicago Proton Center, Chicago, Illinois
| | - Arthur Liu
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jeff Michalski
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Dragan Mirkovic
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Radhe Mohan
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephanie Perkins
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Kenneth Wong
- Children's Hospital of Angeles and University of Southern California Keck School of Medicine, Los Angles, California
| | - Bhadrasain Vikram
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Jeff Buchsbaum
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Larry Kun
- Department of Radiation Oncology, University of Texas Southwestern Medical School, Dallas, Texas.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The advent of proton beam therapy (PBT) has initiated a paradigm shift in the field of pediatric radiation oncology, with increasing promise to alleviate both short-term and long-term toxicities. Given the dramatic rise in proton therapy centers in the United States, a discussion of the quality of evidence supporting its use in pediatric cancers is warranted. RECENT FINDINGS Proton radiotherapy appears to decrease the incidence and severity of late effects with the strongest evidence in pediatric brain tumor cohorts that shows benefits in neurocognitive, hearing, and endocrine outcomes. However, emerging data has shown that more conservative brainstem dose limits with protons compared with photons are required to limit brainstem toxicity; these modified recommendations have been incorporated into national cooperative group studies. Decreased toxicity in tumors outside of the CNS for PBT have also been reported in sarcomas, Hodgkin disease and neuroblastoma. Similarly, QoL outcomes are improved in brain tumor and other cohorts of patients treated with PBT. SUMMARY The collective findings demonstrate improved understanding and refinement of PBT in pediatric cancers. Data on QOL, toxicity and disease outcomes with PBT should continue to be collected and reported in order to understand the full extent of the risks and benefits associated with PBT.
Collapse
|
17
|
Schuemann J, Bassler N, Inaniwa T. Computational models and tools. Med Phys 2018; 45:e1073-e1085. [PMID: 30421814 DOI: 10.1002/mp.12521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 06/21/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022] Open
Abstract
In this chapter, we describe two different methods, analytical (pencil beam) algorithms and Monte Carlo simulations, used to obtain the intended dose distributions in patients and evaluate their strengths and shortcomings. We discuss the difference between the prescribed physical dose and the biologically effective dose, the relative biological effectiveness (RBE) between ions and photons and the dependence of RBE on the linear energy transfer (LET). Lastly, we show how LET- or RBE-based optimization can be used to improve treatment plans and explore how the availability of multimodality ion beam facilities can be used to design a tumor-specific optimal treatment.
Collapse
Affiliation(s)
- Jan Schuemann
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Niels Bassler
- Medical Radiation Physics, Dept. of Physics, Stockholm University, Sweden
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, QST, Chiba, Japan
| |
Collapse
|
18
|
Chow EJ, Antal Z, Constine LS, Gardner R, Wallace WH, Weil BR, Yeh JM, Fox E. New Agents, Emerging Late Effects, and the Development of Precision Survivorship. J Clin Oncol 2018; 36:2231-2240. [PMID: 29874142 PMCID: PMC6053298 DOI: 10.1200/jco.2017.76.4647] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Incremental improvements in the treatment of children and adolescents with cancer have led to 5-year survival rates reaching nearly 85%. In the past decade, impressive progress has been made in understanding the biology of many pediatric cancers. With that understanding, multiple new agents have become available that offer the promise of more-effective and less-toxic treatment. These include agents that target various cell surface antigens and engage the adaptive immune system, as well as those that interfere with key signaling pathways involved in tumor development and growth. For local control, surgery and radiation techniques also have evolved, becoming less invasive or featuring new techniques and particles that more precisely target the tumor and limit the dose to normal tissue. Nevertheless, targeted agents, like conventional chemotherapy, radiotherapy, and surgery, may have off-target effects and deserve long-term follow-up of their safety and efficacy. These include injury to the endocrine, cardiovascular, and immunologic systems. New radiation and surgical techniques that theoretically reduce morbidity and improve long-term quality of life must also be validated with actual patient outcomes. Finally, with advances in genomics, information on host susceptibility to late effects is beginning to emerge. Such knowledge, coupled with improved metrics that better describe the spectrum of potential late effects across the entire lifespan, can lead to the development of decision models that project the potential long-term health outcomes associated with various treatment and follow-up strategies. These developments will help extend the current focus on precision medicine to precision survivorship, where clinicians, patients, and families will have a better grasp of the potential risks, benefits, and tradeoffs associated with the growing number of cancer treatment options.
Collapse
Affiliation(s)
- Eric J Chow
- Eric J. Chow and Rebecca Gardner, Fred Hutchinson Cancer Research Center, Seattle Children's Hospital, and University of Washington, Seattle, WA; Zoltan Antal, Weill Cornell Medical College, New York Presbyterian Hospital, and Memorial Sloan Kettering Cancer Center, New York; Louis S. Constine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY; W. Hamish Wallace, Royal Hospital for Sick Children, University of Edinburgh, Edinburgh, United Kingdom; Brent R. Weil and Jennifer M. Yeh, Boston Children's Hospital, Harvard Medical School, Boston, MA; and Elizabeth Fox, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Zoltan Antal
- Eric J. Chow and Rebecca Gardner, Fred Hutchinson Cancer Research Center, Seattle Children's Hospital, and University of Washington, Seattle, WA; Zoltan Antal, Weill Cornell Medical College, New York Presbyterian Hospital, and Memorial Sloan Kettering Cancer Center, New York; Louis S. Constine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY; W. Hamish Wallace, Royal Hospital for Sick Children, University of Edinburgh, Edinburgh, United Kingdom; Brent R. Weil and Jennifer M. Yeh, Boston Children's Hospital, Harvard Medical School, Boston, MA; and Elizabeth Fox, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Louis S Constine
- Eric J. Chow and Rebecca Gardner, Fred Hutchinson Cancer Research Center, Seattle Children's Hospital, and University of Washington, Seattle, WA; Zoltan Antal, Weill Cornell Medical College, New York Presbyterian Hospital, and Memorial Sloan Kettering Cancer Center, New York; Louis S. Constine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY; W. Hamish Wallace, Royal Hospital for Sick Children, University of Edinburgh, Edinburgh, United Kingdom; Brent R. Weil and Jennifer M. Yeh, Boston Children's Hospital, Harvard Medical School, Boston, MA; and Elizabeth Fox, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Rebecca Gardner
- Eric J. Chow and Rebecca Gardner, Fred Hutchinson Cancer Research Center, Seattle Children's Hospital, and University of Washington, Seattle, WA; Zoltan Antal, Weill Cornell Medical College, New York Presbyterian Hospital, and Memorial Sloan Kettering Cancer Center, New York; Louis S. Constine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY; W. Hamish Wallace, Royal Hospital for Sick Children, University of Edinburgh, Edinburgh, United Kingdom; Brent R. Weil and Jennifer M. Yeh, Boston Children's Hospital, Harvard Medical School, Boston, MA; and Elizabeth Fox, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - W Hamish Wallace
- Eric J. Chow and Rebecca Gardner, Fred Hutchinson Cancer Research Center, Seattle Children's Hospital, and University of Washington, Seattle, WA; Zoltan Antal, Weill Cornell Medical College, New York Presbyterian Hospital, and Memorial Sloan Kettering Cancer Center, New York; Louis S. Constine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY; W. Hamish Wallace, Royal Hospital for Sick Children, University of Edinburgh, Edinburgh, United Kingdom; Brent R. Weil and Jennifer M. Yeh, Boston Children's Hospital, Harvard Medical School, Boston, MA; and Elizabeth Fox, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Brent R Weil
- Eric J. Chow and Rebecca Gardner, Fred Hutchinson Cancer Research Center, Seattle Children's Hospital, and University of Washington, Seattle, WA; Zoltan Antal, Weill Cornell Medical College, New York Presbyterian Hospital, and Memorial Sloan Kettering Cancer Center, New York; Louis S. Constine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY; W. Hamish Wallace, Royal Hospital for Sick Children, University of Edinburgh, Edinburgh, United Kingdom; Brent R. Weil and Jennifer M. Yeh, Boston Children's Hospital, Harvard Medical School, Boston, MA; and Elizabeth Fox, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Jennifer M Yeh
- Eric J. Chow and Rebecca Gardner, Fred Hutchinson Cancer Research Center, Seattle Children's Hospital, and University of Washington, Seattle, WA; Zoltan Antal, Weill Cornell Medical College, New York Presbyterian Hospital, and Memorial Sloan Kettering Cancer Center, New York; Louis S. Constine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY; W. Hamish Wallace, Royal Hospital for Sick Children, University of Edinburgh, Edinburgh, United Kingdom; Brent R. Weil and Jennifer M. Yeh, Boston Children's Hospital, Harvard Medical School, Boston, MA; and Elizabeth Fox, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth Fox
- Eric J. Chow and Rebecca Gardner, Fred Hutchinson Cancer Research Center, Seattle Children's Hospital, and University of Washington, Seattle, WA; Zoltan Antal, Weill Cornell Medical College, New York Presbyterian Hospital, and Memorial Sloan Kettering Cancer Center, New York; Louis S. Constine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY; W. Hamish Wallace, Royal Hospital for Sick Children, University of Edinburgh, Edinburgh, United Kingdom; Brent R. Weil and Jennifer M. Yeh, Boston Children's Hospital, Harvard Medical School, Boston, MA; and Elizabeth Fox, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
19
|
Gentile MS, Yeap BY, Paganetti H, Goebel CP, Gaudet DE, Gallotto SL, Weyman EA, Morgan ML, MacDonald SM, Giantsoudi D, Adams J, Tarbell NJ, Kooy H, Yock TI. Brainstem Injury in Pediatric Patients With Posterior Fossa Tumors Treated With Proton Beam Therapy and Associated Dosimetric Factors. Int J Radiat Oncol Biol Phys 2018; 100:719-729. [DOI: 10.1016/j.ijrobp.2017.11.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/13/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
|
20
|
Fjæra LF, Li Z, Ytre-Hauge KS, Muren LP, Indelicato DJ, Lassen-Ramshad Y, Engeseth GM, Brydøy M, Mairani A, Flampouri S, Dahl O, Stokkevåg CH. Linear energy transfer distributions in the brainstem depending on tumour location in intensity-modulated proton therapy of paediatric cancer. Acta Oncol 2017; 56:763-768. [PMID: 28423966 DOI: 10.1080/0284186x.2017.1314007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND For tumours near organs at risk, there is concern about unintended increase in biological dose from elevated linear energy transfer (LET) at the distal end of treatment fields. The objective of this study was therefore to investigate how different paediatric posterior fossa tumour locations impact LET and biological dose to the brainstem during intensity-modulated proton therapy (IMPT). MATERIAL AND METHODS Multiple IMPT plans were generated for four different simulated tumour locations relative to the brainstem for a five-year-old male patient. A prescribed dose of 59.4 Gy(RBE) was applied to the planning target volumes (PTVs). Plans with two lateral and one posterior non-coplanar fields were created, along with plans with modified field arrangements. The dose-averaged LET (LETd) and the physical dose × RBELET (D × RBELET), where RBELET=1+c × LETd, were calculated using the FLUKA Monte Carlo code. A scaling parameter c was applied to make the RBELET represent variations in the biological effect due to LET. RESULTS High LETd values surrounded parts of the PTV and encompassed portions of the brainstem. Mean LETd values in the brainstem were 3.2-6.6 keV/μm. The highest absolute brainstem LETd values were seen with the tumour located most distant from the brainstem, whereas lower and more homogeneous LETd values were seen when the tumour invaded the brainstem. In contrast, the highest mean D × RBELET values were found in the latter case (54.0 Gy(RBE)), while the case with largest distance between tumour and brainstem had a mean D × RBELET of 1.8 Gy(RBE). CONCLUSIONS Using IMPT to treat posterior fossa tumours may result in high LETd values within the brainstem, particularly if the tumour volume is separated from the brainstem. However, the D × RBELET was greater for tumours that approached or invaded the brainstem. Changing field angles showed a reduction of LETd and D × RBELET in the brainstem.
Collapse
Affiliation(s)
- Lars Fredrik Fjæra
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Zuofeng Li
- Department of Radiation Oncology, University of Florida, Jacksonville, FL, USA
| | | | - Ludvig P. Muren
- Department of Medical Physics, Aarhus University/Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Grete May Engeseth
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Marianne Brydøy
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Andrea Mairani
- Medical Physics Unit, CNAO Foundation, Pavia, Italy
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
| | - Stella Flampouri
- Department of Radiation Oncology, University of Florida, Jacksonville, FL, USA
| | - Olav Dahl
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Camilla H. Stokkevåg
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
21
|
Leeman JE, Romesser PB, Zhou Y, McBride S, Riaz N, Sherman E, Cohen MA, Cahlon O, Lee N. Proton therapy for head and neck cancer: expanding the therapeutic window. Lancet Oncol 2017; 18:e254-e265. [DOI: 10.1016/s1470-2045(17)30179-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 12/25/2022]
|
22
|
Tensaouti F, Ducassou A, Chaltiel L, Bolle S, Muracciole X, Coche-Dequeant B, Alapetite C, Bernier V, Claude L, Supiot S, Huchet A, Kerr C, le Prisé E, Laprie A. Patterns of failure after radiotherapy for pediatric patients with intracranial ependymoma. Radiother Oncol 2017; 122:362-367. [DOI: 10.1016/j.radonc.2016.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/22/2016] [Accepted: 12/25/2016] [Indexed: 12/20/2022]
|
23
|
Yock TI, Tarbell NJ, Yeap BY, Ebb DH, Weyman E, Eaton BR, Sherry NA, Jones RM, MacDonald SM, Pulsifer MB, Lavally B, Abrams AN, Huang MS, Marcus KJ. Proton beam therapy for medulloblastoma - Author's reply. Lancet Oncol 2016; 17:e174-5. [PMID: 27301036 DOI: 10.1016/s1470-2045(16)30061-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Torunn I Yock
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.
| | - Nancy J Tarbell
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Beow Y Yeap
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - David H Ebb
- Department of Pediatric Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth Weyman
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Bree R Eaton
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Nicole A Sherry
- Department of Pediatric Endocrinology, Massachusetts General Hospital, Boston, MA, USA
| | - Robin M Jones
- Department of Pediatric Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Shannon M MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Beverly Lavally
- Department of Pediatric Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Annah N Abrams
- Department of Child Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Mary S Huang
- Department of Pediatric Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Karen J Marcus
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
24
|
Sørensen BS, Horsman MR, Alsner J, Overgaard J, Durante M, Scholz M, Friedrich T, Bassler N. Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model. Acta Oncol 2015; 54:1623-30. [PMID: 26271798 DOI: 10.3109/0284186x.2015.1069890] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The aim of the present study was to compare the biological effectiveness of carbon ions relative to x-rays between tumor control, acute skin reaction and late RIF of CDF1 mice. MATERIAL AND METHODS CDF1 mice with a C3H mouse mammary carcinoma implanted subcutaneously on the foot of the right hind limb were irradiated with single fractions of either photons, or (12)C ions using a 30-mm spread-out Bragg peak. The endpoint of the study was local control (no tumor recurrence within 90 days). For the acute skin reaction, non-tumor bearing CDF1 mice were irradiated with a comparable radiation scheme, and monitored for acute skin damage between Day 7 and 40. Late RIF was assessed in the irradiated mice. RESULTS The TCD50 (dose producing tumor control in 50% of mice) values with 95% confidence interval were 29.7 (25.4-34.8) Gy for C ions and 43.9 (39.2-49.2) Gy for photons, with a corresponding Relative biological effectiveness (RBE) value of 1.48 (1.28-1.72). For acute skin damage the MDD50 (dose to produce moist desquamation in 50% of mice) values with 95% confidence interval were 26.3 (23.0-30.1) Gy for C ions and 35.8 (32.9-39.0) Gy for photons, resulting in a RBE of 1.36 (1.20-1.54). For late radiation-induced fibrosis the FD50 (dose to produce severe fibrosis in 50% of mice) values with 95% confidence interval were 26.5 (23.1-30.3) Gy for carbon ions and 39.8 (37.8-41.8) Gy for photons, with a RBE of 1.50 (1.33-1.69). CONCLUSION The observed RBE values were very similar for tumor response, acute skin damage and late RIF when irradiated with large doses of high- linear energy transfer (LET) carbon ions. This study adds information to the variation in biological effectiveness in different tumor and normal tissue models.
Collapse
Affiliation(s)
- Brita S Sørensen
- a Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Michael R Horsman
- a Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Jan Alsner
- a Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Jens Overgaard
- a Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Marco Durante
- b GSI Helmholtzzentrum für Schwerionenforschung (GSI), Department of Biophysics , Darmstadt , Germany
| | - Michael Scholz
- b GSI Helmholtzzentrum für Schwerionenforschung (GSI), Department of Biophysics , Darmstadt , Germany
| | - Thomas Friedrich
- b GSI Helmholtzzentrum für Schwerionenforschung (GSI), Department of Biophysics , Darmstadt , Germany
| | - Niels Bassler
- c Department of Physics , Aarhus University , Aarhus , Denmark
| |
Collapse
|
25
|
Abstract
Radiation therapy (RT) plays a critical role in the local tumor control of benign and low-grade central nervous system tumors in children but is not without the risk of long-term treatment-related sequelae. Proton therapy (PRT) is an advanced RT modality with a unique dose-deposition pattern that allows for treatment of a target volume with reduced scatter dose delivered to normal tissues compared with conventional photon RT and is now increasingly utilized in children with the hope of mitigating radiation-induced late effects. This article reviews the current literature evaluating the use of PRT in benign and low-grade pediatric central nervous system tumors such as low-grade glioma, craniopharyngioma, and ependymoma. Multiple dosimetric studies support the use of PRT by demonstrating the ability of PRT to better spare critical structures important for cognitive development, endocrine function, and hearing preservation and to reduce the total body dose associated with second malignancy risk. Early clinical data demonstrate that PRT is well tolerated with rates of local tumor control comparable to conventional photon RT series, and long-term clinical data are awaited.
Collapse
|