1
|
Jiang C, Wang W, Chen YL, Chen JH, Zhang ZW, Li J, Yang ZC, Li XC. Macrophage polarization and macrophage-related factor expression in hypertrophy of the ligamentum flavum. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:4476-4487. [PMID: 39375228 DOI: 10.1007/s00586-024-08513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/03/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE Owing to the unknow types of infiltrating macrophages and the corresponded factors, we aimed to investigate the specific types of infiltrating macrophages involved in HLF and the expression of macrophage-related factors. METHODS The ligamentum flavum was obtained from patients with lumbar spinal stenosis (HLF group; n = 15) and lumbar disc herniation (non-hypertrophic ligamentum flavum [NLF] group; n = 15). Ligamentum flavum specimens were paraffin embedded, followed by histological and immunohistochemical staining to identify the macrophage type and expression of macrophage-related factors. RESULTS The HLF group demonstrated CD206 marker expression, while the NLF group did not (P < 0.0001; n = 11). CD68 marker was expressed in both groups (P > 0.05; n = 11). CCR7 was not expressed in either group. The expression levels of the extracellular matrix proteins aggrecan (Agg), type I collagen (Coll1), and type II collagen (Coll2) were higher in the HLF group than in the NLF group (P < 0.0001; n = 11). The aging markers p21, p16, and p53 were expressed in the HLF group, but not in the NLF group (P < 0.0001; n = 11). The expression levels of the inflammatory factors TNF-α and IL-1β were higher in the HLF group than in the NLF group (P < 0.0001; n = 11). Similarly, the expression level of the fibrosis factor TGF-β1 was higher in the HLF group than in the NLF group (P < 0.0001; n = 11). CONCLUSIONS The infiltration of M2 macrophages may be involved in HLF, while involvement of M1 macrophages may only occur early in inflammation. The expression of extracellular matrix proteins and macrophage-related factors was increased. Aging may also be associated with HLF.
Collapse
Affiliation(s)
- Cheng Jiang
- Department of Orthopedic Surgery, Gaozhou People's Hospital, No.89 XiGuan Rd, Gaozhou, 525200, Guangdong, China
- Central Laboratory of Orthopedics, Gaozhou People's Hospital, XiGuan Rd, Gaozhou, 525200, China
| | - Wei Wang
- Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang, 524023, Guangdong, China
| | - Yong-Long Chen
- Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang, 524023, Guangdong, China
| | - Jiong-Hui Chen
- Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang, 524023, Guangdong, China
| | - Zhen-Wu Zhang
- Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang, 524023, Guangdong, China
| | - Jun Li
- Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang, 524023, Guangdong, China
| | - Zhi-Chao Yang
- Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang, 524023, Guangdong, China
| | - Xiao-Chuan Li
- Department of Orthopedic Surgery, Gaozhou People's Hospital, No.89 XiGuan Rd, Gaozhou, 525200, Guangdong, China.
- Central Laboratory of Orthopedics, Gaozhou People's Hospital, XiGuan Rd, Gaozhou, 525200, China.
| |
Collapse
|
2
|
Shi WQ, Li T, Liang R, Li B, Zhou X. Targeting scleral remodeling and myopia development in form deprivation myopia through inhibition of EFEMP1 expression. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166981. [PMID: 38101653 DOI: 10.1016/j.bbadis.2023.166981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
The role of extracellular matrix (ECM) remodeling in the axial elongation associated with myopia has not been fully elucidated, although it is considered a significant factor. EFEMP1, a regulator of ECM, has been associated with various pathological conditions. This study aimed to examine the involvement of EFEMP1 in scleral remodeling during form deprivation myopia. The results indicate a progressive increase in EFEMP1 expression following prolonged form deprivation treatment, followed by a subsequent decrease upon recovery. To gain a deeper understanding of the mechanism of EFEMP1, we conducted transcriptome sequencing on primary scleral fibroblasts that were subjected to lentivirus-mediated overexpression of EFEMP1. Validation was performed using lentivirus-induced overexpression and shRNA targeting EFEMP1 in combination with LY294002, a PI3K inhibitor. Our findings suggest that EFEMP1 may be involved in the development of FDM by regulating the expression of the PI3K/AKT/MMP2 axis. The AAV-mediated injection of shEFEMP1 under Tenon's capsule in guinea pigs was observed to effectively delay the progression of myopia and posterior scleral remodeling. In contrast, the AAV-mediated overexpression of EFEMP1 exacerbated the development of myopia and resulted in further thinning of collagen fibers in the posterior sclera. In summary, adjusting EFEMP1 concentrations could potentially serve as a viable approach to prevent and treat myopia by influencing the remodeling process of the posterior sclera.
Collapse
Affiliation(s)
- Wen-Qing Shi
- Department of Ophthalmology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Tao Li
- Department of Ophthalmology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Rongbin Liang
- Department of Ophthalmology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Bing Li
- Department of Ophthalmology, Jinshan Hospital, Fudan University, Shanghai, China; Department of Central Laboratory, Jinshan Hospital, Fudan University, Shanghai, China.
| | - Xiaodong Zhou
- Department of Ophthalmology, Jinshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Chatterjee M, Evans MK, Bell R, Nguyen PK, Kamalitdinov TB, Korntner S, Kuo CK, Dyment NA, Andarawis-Puri N. Histological and immunohistochemical guide to tendon tissue. J Orthop Res 2023; 41:2114-2132. [PMID: 37321983 DOI: 10.1002/jor.25645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Tendons are unique dense connective tissues with discrete zones having specific structure and function. They are juxtaposed with other tissues (e.g., bone, muscle, and fat) with different compositional, structural, and mechanical properties. Additionally, tendon properties change drastically with growth and development, disease, aging, and injury. Consequently, there are unique challenges to performing high quality histological assessment of this tissue. To address this need, histological assessment was one of the breakout session topics at the 2022 Orthopaedic Research Society (ORS) Tendon Conference hosted at the University of Pennsylvania. The purpose of the breakout session was to discuss needs from members of the ORS Tendon Section related to histological procedures, data presentation, knowledge dissemination, and guidelines for future work. Therefore, this review provides a brief overview of the outcomes of this discussion and provides a set of guidelines, based on the perspectives from our laboratories, for histological assessment to assist researchers in their quest to utilize these techniques to enhance the outcomes and interpretations of their studies.
Collapse
Affiliation(s)
- Monideepa Chatterjee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Mary K Evans
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca Bell
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| | - Phong K Nguyen
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Timur B Kamalitdinov
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stefanie Korntner
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Catherine K Kuo
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Nathaniel A Dyment
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nelly Andarawis-Puri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
- Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
4
|
Chatterjee M, Acosta A, Taub PJ, Andarawis-Puri N. Enhanced healing outcomes in MRL/MpJ mouse tissues conserved in insertion site following surgical repair. J Shoulder Elbow Surg 2022; 31:e593-e602. [PMID: 35598836 DOI: 10.1016/j.jse.2022.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Surgical repair of supraspinatus tendons (SSTs) has a high failure rate at the insertion site. A significant hurdle to therapeutic development is that effective intrinsic healing mechanisms are unknown. The MRL/MpJ (MRL) mouse exhibits tissue-specific enhanced healing; however, these tissues exhibit disparate properties from the complex SST. The extent of SST healing in the complex environment of the rotator cuff is unknown. We hypothesized that MRL mice would exhibit enhanced restoration of the structurally complex insertion site, resulting in functional improvements. METHODS B6 and MRL mice underwent SST detachment and immediate surgical repair. Mice were analyzed for gait assessment after either 2 or 6 weeks and were then killed humanely for immunohistologic analysis. RESULTS MRL SSTs demonstrated enhanced recovery of zonal architecture and bone structure compared with B6 SSTs. MRL SSTs exhibited decreased levels of type III collagen at 2 weeks and increased levels of type I procollagen at 6 weeks compared with B6 SSTs. MRL mice experienced initial gait deficits at 2 weeks that had recovered by 6 weeks. DISCUSSION The temporal balance of collagen in MRL mice suggests recovery toward naive composition. Initial gait deficits in MRL mice may provide a protective loading environment that is ultimately beneficial. The mechanisms of enhanced healing observed previously in MRL mice may be conserved in the complex SST, providing a platform to interrogate specific aspects of improved healing.
Collapse
Affiliation(s)
- Monideepa Chatterjee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ashley Acosta
- Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter J Taub
- Plastic and Reconstructive Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nelly Andarawis-Puri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA; Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
5
|
Mohindra R, Mohindra R, Agrawal DK, Thankam FG. Bioactive extracellular matrix fragments in tendon repair. Cell Tissue Res 2022; 390:131-140. [PMID: 36074173 DOI: 10.1007/s00441-022-03684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Tendinopathy is a common tendon disorder that causes pain, loss of strength and function, and local inflammation mainly characterized by hypoxia, collagen degradation, and extracellular matrix (ECM) disorganization. Generally, ECM degradation and remodeling is tightly regulated; however, hyperactivation of matrix metalloproteases (MMPs) contributes to excessive collagenolysis under pathologic conditions resulting in tendon ECM degradation. This review article focuses on the production, function, and signaling of matrikines for tendon regeneration following injury with insights into the expression, tissue compliance, and cell proliferation exhibited by various matrikines. Furthermore, the regenerative properties suggest translational significance of matrikines to improve the outcomes post-injury by assisting with tendon healing.
Collapse
Affiliation(s)
- Ritika Mohindra
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Rohit Mohindra
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
6
|
Eisner LE, Rosario R, Andarawis-Puri N, Arruda EM. The Role of the Non-Collagenous Extracellular Matrix in Tendon and Ligament Mechanical Behavior: A Review. J Biomech Eng 2022; 144:1128818. [PMID: 34802057 PMCID: PMC8719050 DOI: 10.1115/1.4053086] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 12/26/2022]
Abstract
Tendon is a connective tissue that transmits loads from muscle to bone, while ligament is a similar tissue that stabilizes joint articulation by connecting bone to bone. The 70-90% of tendon and ligament's extracellular matrix (ECM) is composed of a hierarchical collagen structure that provides resistance to deformation primarily in the fiber direction, and the remaining fraction consists of a variety of non-collagenous proteins, proteoglycans, and glycosaminoglycans (GAGs) whose mechanical roles are not well characterized. ECM constituents such as elastin, the proteoglycans decorin, biglycan, lumican, fibromodulin, lubricin, and aggrecan and their associated GAGs, and cartilage oligomeric matrix protein (COMP) have been suggested to contribute to tendon and ligament's characteristic quasi-static and viscoelastic mechanical behavior in tension, shear, and compression. The purpose of this review is to summarize existing literature regarding the contribution of the non-collagenous ECM to tendon and ligament mechanics, and to highlight key gaps in knowledge that future studies may address. Using insights from theoretical mechanics and biology, we discuss the role of the non-collagenous ECM in quasi-static and viscoelastic tensile, compressive, and shear behavior in the fiber direction and orthogonal to the fiber direction. We also address the efficacy of tools that are commonly used to assess these relationships, including enzymatic degradation, mouse knockout models, and computational models. Further work in this field will foster a better understanding of tendon and ligament damage and healing as well as inform strategies for tissue repair and regeneration.
Collapse
Affiliation(s)
- Lainie E Eisner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Ryan Rosario
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853
| | - Ellen M Arruda
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109; Professor Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109; Professor Program in Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
7
|
Xu X, Ha P, Yen E, Li C, Zheng Z. Small Leucine-Rich Proteoglycans in Tendon Wound Healing. Adv Wound Care (New Rochelle) 2022; 11:202-214. [PMID: 34978952 DOI: 10.1089/wound.2021.0069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Significance: Tendon injury possesses a high morbidity rate and is difficult to achieve a satisfying prognosis with currently available treatment strategies. Current approaches used for tendon healing always lead to the formation of fibrovascular scar tissue, which significantly compromises the biomechanics of the healed tendon. Moreover, the related functional deficiency deteriorates over time with an increased injury recurrence risk. Small leucine-rich proteoglycans (SLRPs) link and interact with collagen fibrils to regulate tendon structure and biomechanics, which can provide a new and promising method in the field of tendon injury management. Recent Advances: The effect of SLRPs on tendon development has been extensively investigated. SLRP deficiency impairs tendon collagen fibril structure and biomechanic properties, while administration of SLRPs generally benefits tendon wound healing and regains better mechanical properties. Critical Issues: Current knowledge on the role of SLRPs in tendon development and regeneration mostly comes from uninjured knockout mice, and mainly focuses on the morphology description of collagen fibril profile and mechanical properties. Little is known about the regulatory mechanism on the molecular level. Future Directions: This article reviews the current knowledge in this highly translational topic and provides an evidence-based conclusion, thereby encouraging in-depth investigations of SLRPs in tendons and the development of SLRP-based treatments for desired tendon healing.
Collapse
Affiliation(s)
- Xue Xu
- Department of Oral and Maxillofacial Plastic and Traumatic Surgery, Beijing Stomatological Hospital of Capital Medical University, Beijing, People's Republic of China
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Pin Ha
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Emily Yen
- Arcadia High School, Arcadia, California, USA
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhong Zheng
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
8
|
Tonti OR, Larson H, Lipp SN, Luetkemeyer CM, Makam M, Vargas D, Wilcox SM, Calve S. Tissue-specific parameters for the design of ECM-mimetic biomaterials. Acta Biomater 2021; 132:83-102. [PMID: 33878474 PMCID: PMC8434955 DOI: 10.1016/j.actbio.2021.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) is a complex network of biomolecules that mechanically and biochemically directs cell behavior and is crucial for maintaining tissue function and health. The heterogeneous organization and composition of the ECM varies within and between tissue types, directing mechanics, aiding in cell-cell communication, and facilitating tissue assembly and reassembly during development, injury and disease. As technologies like 3D printing rapidly advance, researchers are better able to recapitulate in vivo tissue properties in vitro; however, tissue-specific variations in ECM composition and organization are not given enough consideration. This is in part due to a lack of information regarding how the ECM of many tissues varies in both homeostatic and diseased states. To address this gap, we describe the components and organization of the ECM, and provide examples for different tissues at various states of disease. While many aspects of ECM biology remain unknown, our goal is to highlight the complexity of various tissues and inspire engineers to incorporate unique components of the native ECM into in vitro platform design and fabrication. Ultimately, we anticipate that the use of biomaterials that incorporate key tissue-specific ECM will lead to in vitro models that better emulate human pathologies. STATEMENT OF SIGNIFICANCE: Biomaterial development primarily emphasizes the engineering of new materials and therapies at the expense of identifying key parameters of the tissue that is being emulated. This can be partially attributed to the difficulty in defining the 3D composition, organization, and mechanics of the ECM within different tissues and how these material properties vary as a function of homeostasis and disease. In this review, we highlight a range of tissues throughout the body and describe how ECM content, cell diversity, and mechanical properties change in diseased tissues and influence cellular behavior. Accurately mimicking the tissue of interest in vitro by using ECM specific to the appropriate state of homeostasis or pathology in vivo will yield results more translatable to humans.
Collapse
Affiliation(s)
- Olivia R Tonti
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Hannah Larson
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah N Lipp
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Callan M Luetkemeyer
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Megan Makam
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Diego Vargas
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sean M Wilcox
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States.
| |
Collapse
|
9
|
Smith LR, Pichika R, Meza RC, Gillies AR, Baliki MN, Chambers HG, Lieber RL. Contribution of extracellular matrix components to the stiffness of skeletal muscle contractures in patients with cerebral palsy. Connect Tissue Res 2021; 62:287-298. [PMID: 31779492 PMCID: PMC7253322 DOI: 10.1080/03008207.2019.1694011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Joint contractures in children with cerebral palsy contain muscle tissue that is mechanically stiffer with higher collagen content than typically developing children. Interestingly, the correlation between collagen content and stiffness is weak. To date, no data are available on collagen types or other extracellular matrix proteins in these muscles, nor any information regarding their function. Thus, our purpose was to measure specific extracellular protein composition in cerebral palsy and typically developing human muscles along with structural aspects of extracellular matrix architecture to determine the extent to which these explain mechanical properties. Materials and Methods: Biopsies were collected from children with cerebral palsy undergoing muscle lengthening procedures and typically developing children undergoing anterior cruciate ligament reconstruction. Tissue was prepared for the determination of collagen types I, III, IV, and VI, proteoglycan, biglycan, decorin, hyaluronic acid/uronic acid and collagen crosslinking. Results: All collagen types increased in cerebral palsy along with pyridinoline crosslinks, total proteoglycan, and uronic acid. In all cases, type I or total collagen and total proteoglycan were positive predictors, while biglycan was a negative predictor of stiffness. Together these parameters accounted for a greater degree of variance within groups than across groups, demonstrating an altered relationship between extracellular matrix and stiffness with cerebral palsy. Further, stereological analysis revealed a significant increase in collagen fibrils organized in cables and an increased volume fraction of fibroblasts in CP muscle. Conclusions: These data demonstrate a novel adaptation of muscle extracellular matrix in children with cerebral palsy that includes alterations in extracellular matrix protein composition and structure related to mechanical function.
Collapse
Affiliation(s)
- Lucas R. Smith
- Departments of Neurobiology, Physiology, and Behavior and Physical Medicine and Rehabilitation, University of California, Davis, CA, 95616, USA
| | - Rajeswari Pichika
- Shirley Ryan AbilityLab and Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA
| | - Rachel C. Meza
- Department of Orthopaedic Surgery, University of California San Diego,La Jolla, CA, 92093-0863, USA,Department of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Allison R. Gillies
- Department of Orthopaedic Surgery, University of California San Diego,La Jolla, CA, 92093-0863, USA
| | - Marwan N. Baliki
- Shirley Ryan AbilityLab and Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA
| | - Henry G. Chambers
- Department of Orthopaedics, Rady Children’s Hospital, San Diego, CA, USA
| | - Richard L. Lieber
- Shirley Ryan AbilityLab and Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA,Department of Orthopaedic Surgery, University of California San Diego,La Jolla, CA, 92093-0863, USA,Hines V.A. Medical Center, Maywood, IL, USA
| |
Collapse
|
10
|
Zellers JA, Eekhoff JD, Tang SY, Hastings MK, Lake SP. Clinical complications of tendon tissue mechanics due to collagen cross-linking in diabetes. THE SCIENCE, ETIOLOGY AND MECHANOBIOLOGY OF DIABETES AND ITS COMPLICATIONS 2021:201-226. [DOI: 10.1016/b978-0-12-821070-3.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Han B, Li Q, Wang C, Patel P, Adams SM, Doyran B, Nia HT, Oftadeh R, Zhou S, Li CY, Liu XS, Lu XL, Enomoto-Iwamoto M, Qin L, Mauck RL, Iozzo RV, Birk DE, Han L. Decorin Regulates the Aggrecan Network Integrity and Biomechanical Functions of Cartilage Extracellular Matrix. ACS NANO 2019; 13:11320-11333. [PMID: 31550133 PMCID: PMC6892632 DOI: 10.1021/acsnano.9b04477] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Joint biomechanical functions rely on the integrity of cartilage extracellular matrix. Understanding the molecular activities that govern cartilage matrix assembly is critical for developing effective cartilage regeneration strategies. This study elucidated the role of decorin, a small leucine-rich proteoglycan, in the structure and biomechanical functions of cartilage. In decorin-null cartilage, we discovered a substantial reduction of aggrecan content, the major proteoglycan of cartilage matrix, and mild changes in collagen fibril nanostructure. This loss of aggrecan resulted in significantly impaired biomechanical properties of cartilage, including decreased modulus, elevated hydraulic permeability, and reduced energy dissipation capabilities. At the cellular level, we found that decorin functions to increase the retention of aggrecan in the neo-matrix of chondrocytes, rather than to directly influence the biosynthesis of aggrecan. At the molecular level, we demonstrated that decorin significantly increases the adhesion between aggrecan and aggrecan molecules and between aggrecan molecules and collagen II fibrils. We hypothesize that decorin plays a crucial structural role in mediating the matrix integrity and biomechanical functions of cartilage by providing physical linkages to increase the adhesion and assembly of aggrecan molecules at the nanoscale.
Collapse
Affiliation(s)
- Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Qing Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Pavan Patel
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Sheila M. Adams
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Basak Doyran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hadi T. Nia
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Ramin Oftadeh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Siyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Christopher Y. Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - X. Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - X. Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland 21201, United States
| | - Ling Qin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - David E. Birk
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
12
|
Ruehle MA, Li MTA, Cheng A, Krishnan L, Willett NJ, Guldberg RE. Decorin-supplemented collagen hydrogels for the co-delivery of bone morphogenetic protein-2 and microvascular fragments to a composite bone-muscle injury model with impaired vascularization. Acta Biomater 2019; 93:210-221. [PMID: 30685477 PMCID: PMC6759335 DOI: 10.1016/j.actbio.2019.01.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 12/25/2022]
Abstract
Traumatic musculoskeletal injuries that result in bone defects or fractures often affect both bone and the surrounding soft tissue. Clinically, these types of multi-tissue injuries have increased rates of complications and long-term disability. Vascular integrity is a key clinical indicator of injury severity, and revascularization of the injury site is a critical early step of the bone healing process. Our lab has previously established a pre-clinical model of composite bone-muscle injury that exhibits impaired bone healing; however, the vascularization response in this model had not yet been investigated. Here, the early revascularization of a bone defect following composite injury is shown to be impaired, and subsequently the therapeutic potential of combined vascularization and osteoinduction was investigated to overcome the impaired regeneration in composite injuries. A decorin (DCN)-supplemented collagen hydrogel was developed as a biomaterial delivery vehicle for the co-delivery microvascular fragments (MVF), which are multicellular segments of mature vasculature, and bone morphogenetic protein-2 (BMP-2), a potent osteoinductive growth factor. We hypothesized that collagen + DCN would increase BMP-2 retention over collagen alone due to DCN's ability to sequester TGF-ß growth factors. We further hypothesized that MVF would increase both early vascularization and subsequent BMP-2-mediated bone regeneration. Contrary to our hypothesis, BMP + MVF decreased the number of blood vessels relative to BMP alone and had no effect on bone healing. However, collagen + DCN was demonstrated to be a BMP-2 delivery vehicle capable of achieving bridging in the challenging composite defect model that is comparable to that achieved with a well-established alginate-based delivery system. STATEMENT OF SIGNIFICANCE: We have previously established a model of musculoskeletal trauma that exhibits impaired bone healing. For the first time, this work shows that the early revascularization response is also significantly, albeit modestly, impaired. A decorin-supplemented collagen hydrogel was used for the first time in vivo as a delivery vehicle for both a cell-based vascular therapeutic, MVF, and an osteoinductive growth factor, BMP-2. While MVF did not improve vascular volume or bone healing, collagen + DCN is a BMP-2 delivery vehicle capable of achieving bridging in the challenging composite defect model. Based on its support of robust angiogenesis in vitro, collagen + DCN may be extended for future use with other vascular therapeutics such as pre-formed vascular networks.
Collapse
Affiliation(s)
- Marissa A Ruehle
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Mon-Tzu Alice Li
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Albert Cheng
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Laxminarayanan Krishnan
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nick J Willett
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA; Department of Orthopedics, Emory University, Atlanta, GA, USA; Research Service, Atlanta VA Medical Center, Decatur, GA, USA
| | - Robert E Guldberg
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
13
|
Engebretson B, Mussett ZR, Sikavitsas VI. The effects of varying frequency and duration of mechanical stimulation on a tissue-engineered tendon construct. Connect Tissue Res 2018; 59:167-177. [PMID: 28459287 DOI: 10.1080/03008207.2017.1324431] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Decellularized, discarded human tissues, such as the human umbilical vein, have been widely utilized for tissue engineering applications, including tendon grafts. When recellularized, such natural scaffolds are cultured in 3D dynamic culture environments (bioreactor systems). For tendon tissue-engineered grafts, such systems often employ oscillatory mechanical stimulation in the form uniaxial tensile strain. The three main parameters of such stimulation are frequency, duration, and force. In this study we investigated the effects of changing the duration (0.5, 1, and 2 h/day) and frequency (0.5, 1, 2 cycles/min) of stimulation of a human umbilical vein seeded with mesenchymal stem cells cultured for up to 7 days. Strain of the construct was held constant at 2%. The highest proliferation rates were observed in the 0.5 h/day duration and 1 cycle/min frequency (203% increase) with a close second being 1 h/day and 1 cycle/min frequency (170% increase). Static cultures along with a 2 cycles/min frequency and a 2 h/day duration of stretching did not increase cellular proliferation significantly. Extracellular matrix quality and alignment of the construct fibers had a direct relation to cellularity and those groups with the highest cellularity improved the most. Gene expression indicated cellular activity consistent with tendon-like tissue remodeling. In addition, scleraxis, tenascin-C, and tenomodulin were upregulated in certain groups after 7 days, with osteoblast, chondrocyte, and adipocyte phenotypes depressed. The stimulation parameters investigated in this study indicated that slower frequencies and shorter durations were best for construct quality in early stage cultures.
Collapse
Affiliation(s)
- Brandon Engebretson
- a School of Chemical , Biological and Materials Engineering, University of Oklahoma , Norman , OK , USA
| | - Zachary R Mussett
- b Stephenson School of Biomedical Engineering , University of Oklahoma , Norman , OK , USA
| | - Vassilios I Sikavitsas
- a School of Chemical , Biological and Materials Engineering, University of Oklahoma , Norman , OK , USA.,b Stephenson School of Biomedical Engineering , University of Oklahoma , Norman , OK , USA
| |
Collapse
|
14
|
Fang F, Lake SP. Multiscale Mechanical Evaluation of Human Supraspinatus Tendon Under Shear Loading After Glycosaminoglycan Reduction. J Biomech Eng 2018; 139:2625661. [PMID: 28462418 DOI: 10.1115/1.4036602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs) are broadly distributed within many soft tissues and, among other roles, often contribute to mechanical properties. Although PGs, consisting of a core protein and glycosaminoglycan (GAG) sidechains, were once hypothesized to regulate stress/strain transfer between collagen fibrils and help support load in tendon, several studies have reported no changes to tensile mechanics after GAG depletion. Since GAGs are known to help sustain nontensile loading in other tissues, we hypothesized that GAGs might help support shear loading in human supraspinatus tendon (SST), a commonly injured tendon which functions in a complex multiaxial loading environment. Therefore, the objective of this study was to determine whether GAGs contribute to the response of SST to shear, specifically in terms of multiscale mechanical properties and mechanisms of microscale matrix deformation. Results showed that chondroitinase ABC (ChABC) treatment digested GAGs in SST while not disrupting collagen fibers. Peak and equilibrium shear stresses decreased only slightly after ChABC treatment and were not significantly different from pretreatment values. Reduced stress ratios were computed and shown to be slightly greater after ChABC treatment compared to phosphate-buffered saline (PBS) incubation without enzyme, suggesting that these relatively small changes in stress values were not due strictly to tissue swelling. Microscale deformations were also not different after ChABC treatment. This study demonstrates that GAGs possibly play a minor role in contributing to the mechanical behavior of SST in shear, but are not a key tissue constituent to regulate shear mechanics.
Collapse
Affiliation(s)
- Fei Fang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, MO 63130 e-mail:
| | - Spencer P Lake
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, MO 63130;Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, MO 63130;Department of Orthopaedic Surgery, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, MO 63130 e-mail:
| |
Collapse
|
15
|
Born to run: The paradox of biomechanical force in spondyloarthritis from an evolutionary perspective. Best Pract Res Clin Rheumatol 2017; 31:887-894. [DOI: 10.1016/j.berh.2018.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022]
|
16
|
Fang F, Lake SP. Experimental evaluation of multiscale tendon mechanics. J Orthop Res 2017; 35:1353-1365. [PMID: 27878999 DOI: 10.1002/jor.23488] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/16/2016] [Indexed: 02/04/2023]
Abstract
Tendon's primary function is a mechanical link between muscle and bone. The hierarchical structure of tendon and specific compositional constituents are believed to be critical for proper mechanical function. With increased appreciation for tendon importance and the development of various technological advances, this review paper summarizes recent experimental approaches that have been used to study multiscale tendon mechanics, includes an overview of studies that have evaluated the role of specific tissue constituents, and also proposes challenges/opportunities facing tendon study. Tendon has been demonstrated to have specific structural characteristics (e.g., multi-level hierarchy, crimp pattern, helix) and complex mechanical properties (e.g., non-linearity, anisotropy, viscoelasticity). Physical mechanisms including uncrimping, fiber sliding, and collagen reorganization have been shown to govern tendon mechanical responses under both static and dynamic loading. Several tendon constituents with relatively small quantities have been suggested to play a role in its mechanics, although some results are conflicting. Further research should be performed to understand the interplay and communication of tendon mechanical properties across levels of the hierarchical structure, and further show how each of these components contribute to tendon mechanics. The studies summarized and discussed in this review have helped elucidate important aspects of multiscale tendon mechanics, which is a prerequisite for analyzing stress/strain transfer between multiple scales and identifying key principles of mechanotransduction. This information could further facilitate interpreting the functional diversity of tendons from different species, different locations, and even different developmental stages, and then better understand and identify fundamental concepts related to tendon degeneration, disease, and healing. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1353-1365, 2017.
Collapse
Affiliation(s)
- Fei Fang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, Missouri, 63130
| | - Spencer P Lake
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, Missouri, 63130.,Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, Missouri, 63130.,Department of Orthopaedic Surgery, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, Missouri, 63130
| |
Collapse
|
17
|
Mehdizadeh A, Gardiner BS, Lavagnino M, Smith DW. Predicting tenocyte expression profiles and average molecular concentrations in Achilles tendon ECM from tissue strain and fiber damage. Biomech Model Mechanobiol 2017; 16:1329-1348. [DOI: 10.1007/s10237-017-0890-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 02/18/2017] [Indexed: 11/28/2022]
|
18
|
Wu Y, Wong YS, Fuh JYH. Degradation behaviors of geometric cues and mechanical properties in a 3D scaffold for tendon repair. J Biomed Mater Res A 2017; 105:1138-1149. [DOI: 10.1002/jbm.a.35966] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/04/2016] [Accepted: 11/23/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Yang Wu
- Department of Mechanical Engineering; National University of Singapore; Singapore 117576 Singapore
| | - Yoke San Wong
- Department of Mechanical Engineering; National University of Singapore; Singapore 117576 Singapore
| | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering; National University of Singapore; Singapore 117576 Singapore
- National University of Singapore (Suzhou) Research Institute; Suzhou Industrial Park Suzhou 215123 People's Republic of China
| |
Collapse
|
19
|
Connizzo BK, Grodzinsky AJ. Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology. J Biomech 2017; 54:11-18. [PMID: 28233551 DOI: 10.1016/j.jbiomech.2017.01.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/26/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
Tendons transmit load from muscle to bone by utilizing their unique static and viscoelastic tensile properties. These properties are highly dependent on the composition and structure of the tissue matrix, including the collagen I hierarchy, proteoglycans, and water. While the role of matrix constituents in the tensile response has been studied, their role in compression, particularly in matrix pressurization via regulation of fluid flow, is not well understood. Injured or diseased tendons and tendon regions that naturally experience compression are known to have alterations in glycosaminoglycan content, which could modulate fluid flow and ultimately mechanical function. While recent theoretical studies have predicted tendon mechanics using poroelastic theory, no experimental data have directly demonstrated such behavior. In this study, we use high-bandwidth AFM-based rheology to determine the dynamic response of tendons to compressive loading at the nanoscale and to determine the presence of poroelastic behavior. Tendons are found to have significant characteristic dynamic relaxation behavior occurring at both low and high frequencies. Classic poroelastic behavior is observed, although we hypothesize that the full dynamic response is caused by a combination of flow-dependent poroelasticity as well as flow-independent viscoelasticity. Tendons also demonstrate regional dependence in their dynamic response, particularly near the junction of tendon and bone, suggesting that the structural and compositional heterogeneity in tendon may be responsible for regional poroelastic behavior. Overall, these experiments provide the foundation for understanding fluid-flow-dependent poroelastic mechanics of tendon, and the methodology is valuable for assessing changes in tendon matrix compressive behavior at the nanoscale.
Collapse
Affiliation(s)
- Brianne K Connizzo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Alan J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
20
|
Fang F, Lake SP. Multiscale mechanical integrity of human supraspinatus tendon in shear after elastin depletion. J Mech Behav Biomed Mater 2016; 63:443-455. [PMID: 27472764 DOI: 10.1016/j.jmbbm.2016.06.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 01/28/2023]
Abstract
Human supraspinatus tendon (SST) exhibits region-specific nonlinear mechanical properties under tension, which have been attributed to its complex multiaxial physiological loading environment. However, the mechanical response and underlying multiscale mechanism regulating SST behavior under other loading scenarios are poorly understood. Furthermore, little is known about the contribution of elastin to tendon mechanics. We hypothesized that (1) SST exhibits region-specific shear mechanical properties, (2) fiber sliding is the predominant mode of local matrix deformation in SST in shear, and (3) elastin helps maintain SST mechanical integrity by facilitating force transfer among collagen fibers. Through the use of biomechanical testing and multiphoton microscopy, we measured the multiscale mechanical behavior of human SST in shear before and after elastase treatment. Three distinct SST regions showed similar stresses and microscale deformation. Collagen fiber reorganization and sliding were physical mechanisms observed as the SST response to shear loading. Measures of microscale deformation were highly variable, likely due to a high degree of extracellular matrix heterogeneity. After elastase treatment, tendon exhibited significantly decreased stresses under shear loading, particularly at low strains. These results show that elastin contributes to tendon mechanics in shear, further complementing our understanding of multiscale tendon structure-function relationships.
Collapse
Affiliation(s)
- Fei Fang
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, United States
| | - Spencer P Lake
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, United States; Department of Biomedical Engineering, Washington University in St. Louis, United States; Department of Orthopaedic Surgery, Washington University in St. Louis, United States.
| |
Collapse
|
21
|
Abstract
Tendon exhibits anisotropic, inhomogeneous and viscoelastic mechanical properties that are determined by its complicated hierarchical structure and varying amounts/organization of different tissue constituents. Although extensive research has been conducted to use modelling approaches to interpret tendon structure-function relationships in combination with experimental data, many issues remain unclear (i.e. the role of minor components such as decorin, aggrecan and elastin), and the integration of mechanical analysis across different length scales has not been well applied to explore stress or strain transfer from macro- to microscale. This review outlines mathematical and computational models that have been used to understand tendon mechanics at different scales of the hierarchical organization. Model representations at the molecular, fibril and tissue levels are discussed, including formulations that follow phenomenological and microstructural approaches (which include evaluations of crimp, helical structure and the interaction between collagen fibrils and proteoglycans). Multiscale modelling approaches incorporating tendon features are suggested to be an advantageous methodology to understand further the physiological mechanical response of tendon and corresponding adaptation of properties owing to unique in vivo loading environments.
Collapse
Affiliation(s)
- Fei Fang
- Department of Mechanical Engineering and Materials Science , Washington University in St Louis , St Louis, MO 63130 , USA
| | - Spencer P Lake
- Department of Mechanical Engineering and Materials Science, Washington University in St Louis, St Louis, MO 63130, USA; Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63130, USA; Department of Orthopaedic Surgery, Washington University in St Louis, St Louis, MO 63130, USA
| |
Collapse
|
22
|
Wang L, Zhang X, Xu C, Liu H, Qin J. Human induced pluripotent stem cell-derived cardiac tissue on a thin collagen membrane with natural microstructures. Biomater Sci 2016; 4:1655-1662. [DOI: 10.1039/c6bm00522e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We present a new strategy to produce a thin collagen membrane from porcine tendons and engineered cardiac tissues using hiPSC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Li Wang
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- PR China
| | - Xiaoqing Zhang
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- PR China
| | - Cong Xu
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- PR China
| | - Hui Liu
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- PR China
| | - Jianhua Qin
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- PR China
| |
Collapse
|
23
|
Wudebwe UNG, Bannerman A, Goldberg-Oppenheimer P, Paxton JZ, Williams RL, Grover LM. Exploiting cell-mediated contraction and adhesion to structure tissues in vitro. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140200. [PMID: 25533106 PMCID: PMC4275918 DOI: 10.1098/rstb.2014.0200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Progress in tissue engineering is now impacting beyond the field of regenerative medicine. Engineered tissues are now used as tools to evaluate the toxicity of compounds or even to enable the modelling of disease. While many of the materials that are used to facilitate tissue growth are designed to enable cell attachment, many researchers consider that the contraction and modification of these matrices by attached cells is not desirable and take measures to prevent this from occurring. Where substantial alignment of the molecules within tissues, however, is a feature of structure the process of contraction can be exploited to guide new matrix deposition. In this paper, we will demonstrate how we have used the cell contraction process to generate tissues with high levels of organization. The tissues that have been grown in the laboratory have been characterized using a suite of analytical techniques to demonstrate significant levels of matrix organization and mechanical behaviour analogous to natural tissues. This paper provides an overview of research that has been undertaken to determine how tissues have been grown in vitro with structuring from the molecular, right through to the macroscopic level.
Collapse
Affiliation(s)
- Uchena N G Wudebwe
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Alistair Bannerman
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Jennifer Z Paxton
- School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Richard L Williams
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
24
|
Fang F, Lake SP. Multiscale strain analysis of tendon subjected to shear and compression demonstrates strain attenuation, fiber sliding, and reorganization. J Orthop Res 2015; 33:1704-12. [PMID: 26036894 DOI: 10.1002/jor.22955] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/21/2015] [Indexed: 02/04/2023]
Abstract
The manner in which strains are passed down the hierarchical length scales of tendons dictates how cells within the collagen network regulate the tissue response to loading. How tendons deform in different hierarchical levels under shear and compression is unknown. The aims of this study were: (i) to evaluate whether specific regions of bovine deep digital flexor tendons exhibited different strain attenuation from macro to micro length scales, and (ii) to elucidate mechanisms responsible for tendon deformation under shear and compression. Samples from distal and proximal regions of flexor tendons were subjected to three-step incremental stress-relaxation tests. Images of tissue markers, photobleached lines on collagen fibers, and nuclei locations were collected before and after loading. Results showed that strain transfer was attenuated from tissue to local matrix under both shear and compression. Nuclear aspect ratios exhibited smaller changes for distal samples, suggesting that cells are more shielded from deformation in the distal region. Collagen fiber sliding was observed to contribute significantly in response to shear, while uncrimping and fiber reorganization were the predominant mechanisms under compression. This study provides insight into microscale mechanisms responsible for multiscale strain attenuation of tendons under non-tensile macroscale loading.
Collapse
Affiliation(s)
- Fei Fang
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri
| | - Spencer P Lake
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri.,Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri
| |
Collapse
|
25
|
Abstract
Synopsis Gluteal tendinopathy is now believed to be the primary local source of lateral hip pain, or greater trochanteric pain syndrome, previously referred to as trochanteric bursitis. This condition is prevalent, particularly among postmenopausal women, and has a considerable negative influence on quality of life. Improved prognosis and outcomes in the future for those with gluteal tendinopathy will be underpinned by advances in diagnostic testing, a clearer understanding of risk factors and comorbidities, and evidence-based management programs. High-quality studies that meet these requirements are still lacking. This clinical commentary provides direction to assist the clinician with assessment and management of the patient with gluteal tendinopathy, based on currently limited available evidence on this condition and the wider tendon literature and on the combined clinical experience of the authors. J Orthop Sports Phys Ther 2015;45(11):910-922. Epub 17 Sep 2015. doi:10.2519/jospt.2015.5829.
Collapse
|
26
|
Connizzo BK, Freedman BR, Fried JH, Sun M, Birk DE, Soslowsky LJ. Regulatory role of collagen V in establishing mechanical properties of tendons and ligaments is tissue dependent. J Orthop Res 2015; 33:882-8. [PMID: 25876927 PMCID: PMC4417070 DOI: 10.1002/jor.22893] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/10/2015] [Indexed: 02/04/2023]
Abstract
Patients with classic (type I) Ehlers-Danlos syndrome (EDS), characterized by heterozygous mutations in the Col5a1 and Col5a2 genes, exhibit connective tissue hyperelasticity and recurrent joint dislocations, indicating a potential regulatory role for collagen V in joint stabilizing soft tissues. This study asked whether the contribution of collagen V to the establishment of mechanical properties is tissue dependent. We mechanically tested four different tissues from wild type and targeted collagen V-null mice: the flexor digitorum longus (FDL) tendon, Achilles tendon (ACH), the anterior cruciate ligament (ACL), and the supraspinatus tendon (SST). Area was significantly reduced in the Col5a1(ΔTen/ΔTen) group in the FDL, ACH, and SST. Maximum load and stiffness were reduced in the Col5a1(ΔTen/ΔTen) group for all tissues. However, insertion site and midsubstance modulus were reduced only for the ACL and SST. This study provides evidence that the regulatory role of collagen V in extracellular matrix assembly is tissue dependent and that joint instability in classic EDS may be caused in part by insufficient mechanical properties of the tendons and ligaments surrounding each joint.
Collapse
Affiliation(s)
- Brianne K. Connizzo
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36 and Hamilton Walk, Philadelphia, PA, 19104-6081
| | - Benjamin R. Freedman
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36 and Hamilton Walk, Philadelphia, PA, 19104-6081
| | - Joanna H. Fried
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36 and Hamilton Walk, Philadelphia, PA, 19104-6081
| | - Mei Sun
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - David E. Birk
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36 and Hamilton Walk, Philadelphia, PA, 19104-6081,Correspondence to: Louis J. Soslowsky, 424 Stemmler Hall, 36 and Hamilton Walk, Philadelphia, PA, 19104-6081, T:215-898-8653, F:215-573-2133,
| |
Collapse
|
27
|
Sejersen MHJ, Frost P, Hansen TB, Deutch SR, Svendsen SW. Proteomics perspectives in rotator cuff research: a systematic review of gene expression and protein composition in human tendinopathy. PLoS One 2015; 10:e0119974. [PMID: 25879758 PMCID: PMC4400011 DOI: 10.1371/journal.pone.0119974] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/03/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Rotator cuff tendinopathy including tears is a cause of significant morbidity. The molecular pathogenesis of the disorder is largely unknown. This review aimed to present an overview of the literature on gene expression and protein composition in human rotator cuff tendinopathy and other tendinopathies, and to evaluate perspectives of proteomics--the comprehensive study of protein composition--in tendon research. MATERIALS AND METHODS We conducted a systematic search of the literature published between 1 January 1990 and 18 December 2012 in PubMed, Embase, and Web of Science. We included studies on objectively quantified differential gene expression and/or protein composition in human rotator cuff tendinopathy and other tendinopathies as compared to control tissue. RESULTS We identified 2199 studies, of which 54 were included; 25 studies focussed on rotator cuff or biceps tendinopathy. Most of the included studies quantified prespecified mRNA molecules and proteins using polymerase chain reactions and immunoassays, respectively. There was a tendency towards an increase of collagen I (11 of 15 studies) and III (13 of 14), metalloproteinase (MMP)-1 (6 of 12), -9 (7 of 7), -13 (4 of 7), tissue inhibitor of metalloproteinase (TIMP)-1 (4 of 7), and vascular endothelial growth factor (4 of 7), and a decrease in MMP-3 (10 of 12). Fourteen proteomics studies of tendon tissues/cells failed inclusion, mostly because they were conducted in animals or in vitro. CONCLUSIONS Based on methods, which only allowed simultaneous quantification of a limited number of prespecified mRNA molecules or proteins, several proteins appeared to be differentially expressed/represented in rotator cuff tendinopathy and other tendinopathies. No proteomics studies fulfilled our inclusion criteria, although proteomics technologies may be a way to identify protein profiles (including non-prespecified proteins) that characterise specific tendon disorders or stages of tendinopathy. Thus, our results suggested an untapped potential for proteomics in tendon research.
Collapse
Affiliation(s)
- Maria Hee Jung Sejersen
- Danish Ramazzini Centre, Department of Occupational Medicine, Regional Hospital West Jutland—University Research Clinic, Herning, Denmark
| | - Poul Frost
- Danish Ramazzini Centre, Department of Occupational Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Torben Bæk Hansen
- Research Unit for Orthopaedics, Holstebro Regional Hospital, Holstebro, Denmark
- Institute of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | | | - Susanne Wulff Svendsen
- Danish Ramazzini Centre, Department of Occupational Medicine, Regional Hospital West Jutland—University Research Clinic, Herning, Denmark
| |
Collapse
|
28
|
Böl M, Ehret AE, Leichsenring K, Ernst M. Tissue-scale anisotropy and compressibility of tendon in semi-confined compression tests. J Biomech 2015; 48:1092-8. [DOI: 10.1016/j.jbiomech.2015.01.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 01/22/2023]
|
29
|
Achilles tendons from decorin- and biglycan-null mouse models have inferior mechanical and structural properties predicted by an image-based empirical damage model. J Biomech 2015; 48:2110-5. [PMID: 25888014 DOI: 10.1016/j.jbiomech.2015.02.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/24/2015] [Accepted: 02/28/2015] [Indexed: 01/08/2023]
Abstract
Achilles tendons are a common source of pain and injury, and their pathology may originate from aberrant structure function relationships. Small leucine rich proteoglycans (SLRPs) influence mechanical and structural properties in a tendon-specific manner. However, their roles in the Achilles tendon have not been defined. The objective of this study was to evaluate the mechanical and structural differences observed in mouse Achilles tendons lacking class I SLRPs; either decorin or biglycan. In addition, empirical modeling techniques based on mechanical and image-based measures were employed. Achilles tendons from decorin-null (Dcn(-/-)) and biglycan-null (Bgn(-/-)) C57BL/6 female mice (N=102) were used. Each tendon underwent a dynamic mechanical testing protocol including simultaneous polarized light image capture to evaluate both structural and mechanical properties of each Achilles tendon. An empirical damage model was adapted for application to genetic variation and for use with image based structural properties to predict tendon dynamic mechanical properties. We found that Achilles tendons lacking decorin and biglycan had inferior mechanical and structural properties that were age dependent; and that simple empirical models, based on previously described damage models, were predictive of Achilles tendon dynamic modulus in both decorin- and biglycan-null mice.
Collapse
|
30
|
Berardi AC, Oliva F, Berardocco M, la Rovere M, Accorsi P, Maffulli N. Thyroid hormones increase collagen I and cartilage oligomeric matrix protein (COMP) expression in vitro human tenocytes. Muscles Ligaments Tendons J 2014; 4:285-291. [PMID: 25489544 PMCID: PMC4241417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
BACKGROUND we previously demonstrated the presence of high levels of thyroid hormones (THs) receptors isoforms in healthy tendons, their protective action during tenocyte apoptosis, and the capability to enhance tenocyte proliferation in vitro. In the present study we tested the ability of THs to influence ECM protein tenocyte secretion in an in vitro system. METHODS primary tenocyte-like cells were cultivated for 1, 7 and 14 days in the presence of T3 or T4 individually or in combination with ascorbic acid (AA). RESULTS THs (T3 or T4) in synergism with AA increase significantly the total collagen production after 14 days. THs in synergism with AA increase significantly the expression of collagen I,biglycan and COMP, after some days. CONCLUSION THs play a role on the extra cellular matrix of tendons, enhancing in vitro the production of several proteins such as collagen I, biglycan and COMP. THs receptors are active on human tenocytes, and can play a role in tendon ailments.
Collapse
Affiliation(s)
- Anna C. Berardi
- UOC Immunohematology and Transfusion Medicine Laboratories, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Francesco Oliva
- Department of Orthopedics and Traumatology, University of Rome “Tor Vergata”, School of Medicine, Rome, Italy
| | - Martina Berardocco
- UOC Immunohematology and Transfusion Medicine Laboratories, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Marina la Rovere
- UOC Immunohematology and Transfusion Medicine Laboratories, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Patrizia Accorsi
- UOC Immunohematology and Transfusion Medicine Laboratories, Spirito Santo Hospital, Pescara, Italy
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Salerno, Italy; and Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Institute of Health Sciences Education, Centre for Sports and Exercise, London, UK
| |
Collapse
|
31
|
Docking S, Samiric T, Scase E, Purdam C, Cook J. Relationship between compressive loading and ECM changes in tendons. Muscles Ligaments Tendons J 2013; 3:7-11. [PMID: 23885340 DOI: 10.11138/mltj/2013.3.1.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tendons are designed to absorb and transfer large amounts of tensile load. The well organised, strong yet flexible, extracellular matrix allows for this function. Many tendons are also subject to compressive loads, such as at the entheses, as the tendon wraps around bony protuberances or from internal compression during tensile loading or twisting. Tendinopathy, the clinical syndrome of pain and dysfunction in a tendon is usually the result of overload. However, it is not only the tensile overload that should be considered, as it has been shown that compressive loads change tendon structure and that combination loads can induce tendon pathology. This review summarises how load is detected by the tenocytes, how they respond to compressive load and the resulting extracellular matrix changes that occur. Understanding the effect of compression on tendon structure and function may provide directions for future matrix based interventions.
Collapse
Affiliation(s)
- Sean Docking
- School of Primary Health Care, Monash University, Peninsula Campus, Frankston, Australia
| | | | | | | | | |
Collapse
|
32
|
Buckley MR, Evans E, Satchel LN, Matuszewski PE, Chen YL, Elliott DM, Soslowsky LJ, Dodge GR. Distributions of types I, II and III collagen by region in the human supraspinatus tendon. Connect Tissue Res 2013; 54:374-9. [PMID: 24088220 PMCID: PMC6056177 DOI: 10.3109/03008207.2013.847096] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The mechanical properties of the human supraspinatus tendon (SST) are highly heterogeneous and may reflect an important adaptive response to its complex, multiaxial loading environment. However, these functional properties are associated with a location-dependent structure and composition that have not been fully elucidated. Therefore, the objective of this study was to determine the concentrations of types I, II and III collagen in six distinct regions of the SST and compare changes in collagen concentration across regions with local changes in mechanical properties. We hypothesized that type I collagen content would be high throughout the tendon, type II collagen would be restricted to regions of compressive loading and type III collagen content would be high in regions associated with damage. We further hypothesized that regions of high type III collagen content would correspond to regions with low tensile modulus and a low degree of collagen alignment. Although type III collagen content was not significantly higher in regions that are frequently damaged, all other hypotheses were supported by our results. In particular, type II collagen content was highest near the insertion while type III collagen was inversely correlated with tendon modulus and collagen alignment. The measured increase in type II collagen under the coracoacromial arch provides evidence of adaptation to compressive loading in the SST. Moreover, the structure-function relationship between type III collagen content and tendon mechanics established in this study demonstrates a mechanism for altered mechanical properties in pathological tendons and provides a guideline for identifying therapeutic targets and pathology-specific biomarkers.
Collapse
Affiliation(s)
- Mark R Buckley
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA
| | - Elisabeth Evans
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA
| | - Lauren N Satchel
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA
| | - Paul E Matuszewski
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA
| | - Yi-Ling Chen
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA
| | - Dawn M Elliott
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA
| | - George R Dodge
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA,Corresponding author: George R. Dodge, PhD, McKay Orthopaedic Research Laboratory Department of Orthopaedic Surgery University of Pennsylvania 424 Stemmler Hall 36th Street and Hamilton Walk Philadelphia, PA 19104-6081, Phone: 215-573-1514; Fax: 215-573-2133;
| |
Collapse
|
33
|
Buckley MR, Huffman GR, Iozzo RV, Birk DE, Soslowsky LJ. The location-specific role of proteoglycans in the flexor carpi ulnaris tendon. Connect Tissue Res 2013; 54:367-73. [PMID: 23941206 PMCID: PMC4406324 DOI: 10.3109/03008207.2013.832232] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tendons like the flexor carpi ulnaris (FCU) that contain region-specific distributions of proteoglycans (PGs) as a result of the heterogeneous, multi-axial loads they are subjected to in vivo provide valuable models for understanding structure-function relationships in connective tissues. However, the contributions of specific PGs to FCU tendon mechanical properties are unknown. Therefore, the objective of this study was to determine how the location-dependent, viscoelastic mechanical properties of the FCU tendon are impacted individually by PG-associated glycosaminoglycans (GAGs) and by two small leucine-rich proteoglycans (SLRPs), biglycan and decorin. Full length FCU tendons from biglycan- and decorin-null mice were compared to wild-type (WT) mice to evaluate the effects of specific SLRPs, while chondroitinase ABC digestion of isolated specimens removed from the tendon midsubstance was used to determine how chondroitin/dermatan sulfate (CS/DS) GAGs impact mechanics in mature FCU tendons. A novel combined genetic knockout/digestion technique also was employed to compare SLRP-null and WT tendons in the absence of CS/DS GAGs that may impact properties in the mature state. In all genotypes, mechanical properties in the FCU tendon midsubstance were not affected by GAG digestion. Full-length tendons exhibited complex, multi-axial deformation under tension that may be associated with their in vivo loading environment. Mechanical properties were adversely affected by the absence of biglycan, and a decreased modulus localized in the center of the tendon was measured. These results help elucidate the role that local alterations in PG levels may play in processes that adversely impact tendon functionality including injury and pathology.
Collapse
Affiliation(s)
- Mark R. Buckley
- Department of Orthopaedic Research, University of Pennsylvania, Philadelphia, PA
| | - George R. Huffman
- Department of Orthopaedic Research, University of Pennsylvania, Philadelphia, PA
| | - Renato V. Iozzo
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - David E. Birk
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
| | - Louis J. Soslowsky
- Department of Orthopaedic Research, University of Pennsylvania, Philadelphia, PA,Corresponding author: Louis J Soslowsky, PhD, McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104-6081, Phone: 215-898-8653; Fax: 2 215-573-2133;
| |
Collapse
|
34
|
Vanderploeg EJ, Wilson CG, Imler SM, Ling CHY, Levenston ME. Regional variations in the distribution and colocalization of extracellular matrix proteins in the juvenile bovine meniscus. J Anat 2012; 221:174-86. [PMID: 22703476 DOI: 10.1111/j.1469-7580.2012.01523.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A deeper understanding of the composition and organization of extracellular matrix molecules in native, healthy meniscus tissue is required to fully appreciate the degeneration that occurs in joint disease and the intricate environment in which an engineered meniscal graft would need to function. In this study, regional variations in the tissue-level and pericellular distributions of collagen types I, II and VI and the proteoglycans aggrecan, biglycan and decorin were examined in the juvenile bovine meniscus. The collagen networks were extensively, but not completely, colocalized, with tissue-level organization that varied with radial position across the meniscus. Type VI collagen exhibited close association with large bundles composed of type I and II collagen and, in contrast to type I and II collagen, was further concentrated in the pericellular matrix. Aggrecan was detected throughout the inner region of the meniscus but was restricted to the pericellular matrix and sheaths of collagen bundles in the middle and outer regions. The small proteoglycans biglycan and decorin exhibited regional variations in staining intensity but were consistently localized in the intra- and/or peri-cellular compartments. These results provide insight into the complex hierarchy of extracellular matrix organization in the meniscus and provide a framework for better understanding meniscal degeneration and disease progression and evaluating potential repair and regeneration strategies.
Collapse
Affiliation(s)
- Eric J Vanderploeg
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|