1
|
Jean-Louis M, Claudia CY, Jean-Marie R, Patrick C. Simulating pharmaceutical treatment effects on osteoporosis via a bone remodeling algorithm targeting hypermineralized sites. Med Eng Phys 2020; 76:56-68. [DOI: 10.1016/j.medengphy.2019.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/27/2019] [Accepted: 10/20/2019] [Indexed: 11/26/2022]
|
2
|
Inhibition of Dll4/Notch1 pathway promotes angiogenesis of Masquelet's induced membrane in rats. Exp Mol Med 2018; 50:1-15. [PMID: 29674611 PMCID: PMC5938037 DOI: 10.1038/s12276-018-0062-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/30/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
The Masquelet’s induced membrane technique for repairing bone defects has been demonstrated to be a promising treatment strategy. Previous studies have shown that the vessel density of induced membrane is decreased in the late stage of membrane formation, which consequently disrupts the bone healing process. However, relatively little is known about certain mechanisms of vessel degeneration in the induced membrane tissue and whether promotion of angiogenesis in induced membranes can improve bone regeneration. Here, we showed that the Delta-like ligand 4/ Notch homolog 1 (Dll4/Notch1) pathway was relatively activated in the late stage of induced membrane, especially at the subcutaneous site. Then, DAPT, a classical γ-secretase inhibitor, was applied to specifically inhibit Notch1 activation, followed by up-regulation of vascular endothelial growth factor receptor 2 (VEGFR2) and CD31 expression. DAPT-modified induced membranes were further confirmed to contribute to bone regeneration after autogenous bone grafting. Finally, in vitro experiments revealed that knocking down Notch1 contributed to the functional improvement of endothelial progenitor cells (EPCs) and that DAPT-treated induced membrane tissue was more favorable for angiogenesis of EPCs compared with the vehicle group. In conclusion, the present findings demonstrate that Dll4/Notch1 signaling is negatively associated with the vessel density of induced membrane. Pharmacological inhibition of Notch1 attenuated the vessel degeneration of induced membrane both in vitro and in vivo, which consequently improved bone formation at the bone defect site and graft resorption at the subcutaneous site. Repairs to serious bone injuries may be improved by blocking a signaling pathway that causes newly forming membranes to fail. Masquelet’s technique involves placing acrylic spacers in areas of bone damage, inducing the formation of vascularised membranes which encourage the body to accept bone grafts. However, sometimes Masquelet’s membranes do not form correctly, leading to weaknesses in bone repairs and potential graft rejection. In experiments on rats, Qian Tang from Wenzhou Medical University, China, and coworkers found that a particular signaling pathway, D114/Notch1, was upregulated around 6 weeks post-operation, reducing blood vessel density and limiting new vessel growth, weakening the membranes. The team inhibited this pathway using an existing therapy that prevents blood clots. This treatment improved bone repairs by promoting the formation and function of blood vessels in membranes.
Collapse
|
3
|
Ben Osman M, Diallo Garcia S, Krafft JM, Methivier C, Blanchard J, Yoshioka T, Kubo J, Costentin G. Control of calcium accessibility over hydroxyapatite by post-precipitation steps: influence on the catalytic reactivity toward alcohols. Phys Chem Chem Phys 2016; 18:27837-27847. [DOI: 10.1039/c6cp05294k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatites exhibit Ca2+ and POH surface acid sites, which relative accessibilities can be varied by synthesis to tune the catalytic reactivity toward alcohols.
Collapse
Affiliation(s)
- Manel Ben Osman
- Sorbonne Universités
- UPMC Univ Paris 06
- CNRS
- UMR 7197
- Laboratoire Réactivité de Surface
| | - Sarah Diallo Garcia
- Sorbonne Universités
- UPMC Univ Paris 06
- CNRS
- UMR 7197
- Laboratoire Réactivité de Surface
| | - Jean-Marc Krafft
- Sorbonne Universités
- UPMC Univ Paris 06
- CNRS
- UMR 7197
- Laboratoire Réactivité de Surface
| | - Christophe Methivier
- Sorbonne Universités
- UPMC Univ Paris 06
- CNRS
- UMR 7197
- Laboratoire Réactivité de Surface
| | - Juliette Blanchard
- Sorbonne Universités
- UPMC Univ Paris 06
- CNRS
- UMR 7197
- Laboratoire Réactivité de Surface
| | | | - Jun Kubo
- Central Research Center
- Sangi Co., Ltd
- Saitama 344-0001
- Japan
| | - Guylène Costentin
- Sorbonne Universités
- UPMC Univ Paris 06
- CNRS
- UMR 7197
- Laboratoire Réactivité de Surface
| |
Collapse
|
4
|
Diallo-Garcia S, Ben Osman M, Krafft JM, Boujday S, Guylène C. Discrimination of infrared fingerprints of bulk and surface POH and OH of hydroxyapatites. Catal Today 2014. [DOI: 10.1016/j.cattod.2013.11.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Tulli HM, Carlson CS, Jayo MJ, Fisher LW, Tracy RP, Mann KG. Immunohistochemical Method for the Simultaneous Demonstration of Three Proteins in EDTA Decalcified Paraffin Embedded Bone Sections. J Histotechnol 2013. [DOI: 10.1179/his.1992.15.2.93] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Gundberg CM, Lian JB, Booth SL. Vitamin K-dependent carboxylation of osteocalcin: friend or foe? Adv Nutr 2012; 3:149-57. [PMID: 22516722 PMCID: PMC3648715 DOI: 10.3945/an.112.001834] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteocalcin originates from osteoblastic synthesis and is deposited into bone or released into circulation, where it correlates with histological measures of bone formation. The presence of 3 vitamin K-dependent γ carboxyglutamic acid residues is critical for osteocalcin's structure, which appears to regulate the maturation of bone mineral. In humans, the percentage of the circulating osteocalcin that is not γ-carboxylated (percent ucOC) is used as a biomarker of vitamin K status. In contrast, when ucOC is not corrected for total osteocalcin, the interpretation of this measure is confounded by osteoblastic activity, independent of vitamin K. Observational studies using percent ucOC have led to the conclusion that vitamin K insufficiency leads to age-related bone loss. However, clinical trials do not provide overall support for the suggestion that vitamin K supplementation of the general population will reduce bone loss or fracture risk. More recently, results from in vitro and in vivo studies using animal models indicate that ucOC is an active hormone with a positive role in glucose metabolism. By inference, vitamin K, which decreases ucOC, would have a detrimental effect. However, in humans this hypothesis is not supported by the limited data available, nor is it supported by what has been established regarding osteocalcin chemistry. In summary, the specific function of osteocalcin in bone and glucose metabolism has yet to be elucidated.
Collapse
Affiliation(s)
- Caren M. Gundberg
- Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT,To whom correspondence should be addressed. E-mail:
| | - Jane B. Lian
- Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT
| | - Sarah L. Booth
- Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT
| |
Collapse
|
7
|
White C, Gardiner E, Eisman J. Tissue specific and vitamin D responsive gene expression in bone. Mol Biol Rep 1998; 25:45-61. [PMID: 9540066 DOI: 10.1023/a:1006820710966] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Studies of gene expression in bone have adopted a number of molecular approaches that seek to determine those cis and trans-acting factors responsible for the development and physiological regulation of this unique tissue. The majority of studies have been performed in vitro, focussing on the expression of genes such as osteocalcin, bone sialoprotein and type I collagen which demonstrate restricted or altered expression patterns in osteoblasts. These studies have demonstrated a large number of cis and trans acting factors that modulate the tissue specific and vitamin D responsive expression of these genes. These include the response elements and regions mediating basal and vitamin D dependent transcription of these genes as well as some of the transcription factors that bind to these regions and the nucleosomal organisation of these genes within a nuclear framework. In vivo studies, including the introduction of transgenes into transgenic mice, extend these in vitro observations within a physiological context. However, in part due to limitations in each approach, these in vitro and in vivo studies are yet to accurately define all the necessary cis and trans-acting factors required for tissue specific and vitamin D responsive gene expression. Advances have been made in identifying many cis-acting regions within the flanking regions of these genes that are responsible for their restricted expression patterns, but a vector incorporating all the necessary cis-acting regions capable of directing gene expression independent of integration site has not yet been described. Similarly, trans-acting factors that determine the developmental destiny of osteoblast progenitors and the restricted expression of these genes remain elusive and, despite advances in the understanding of protein-DNA interactions at vitamin D response elements contained within these genes, further intermediary factors that interact with the transcriptional machinery to modulate vitamin D responsiveness need to be identified.
Collapse
Affiliation(s)
- C White
- Bone & Mineral Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, Australia
| | | | | |
Collapse
|
8
|
Cheng SL, Zhang SF, Avioli LV. Expression of bone matrix proteins during dexamethasone-induced mineralization of human bone marrow stromal cells. J Cell Biochem 1996; 61:182-93. [PMID: 9173083 DOI: 10.1002/(sici)1097-4644(19960501)61:2<182::aid-jcb3>3.0.co;2-q] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glucocorticoids have been shown to induce the differentiation of bone marrow stromal osteoprogenitor cells into osteoblasts and the mineralization of the matrix. Since the expression of bone matrix proteins is closely related to the differentiation status of osteoblasts and because matrix proteins may play important roles in the mineralization process, we investigated the effects of dexamethasone (Dex) on the expression of bone matrix proteins in cultured normal human bone marrow stromal cells (HBMSC). Treatment of HBMSC with Dex for 23 days resulted in a significant increase in alkaline phosphatase activity with maximum values attained on day 20 at which time the cell matrix was mineralized. Northern blot analysis revealed an increase in the steady-state mRNA level of alkaline phosphatase over 4 weeks of Dex exposure period. The observed increase in the alkaline phosphatase mRNA was effective at a Dex concentration as low as 10(-10) M with maximum values achieved at 10(-8)M. In contrast, Dex decreased the steady-state mRNA levels of both bone sialoprotein (BSP) and osteopontin (OPN) over a 4 week observation period when compared to the corresponding control values. The relative BSP and OPN mRNA levels among the Dex treated cultures, however, showed a steady increase after more than 1 week exposure. The expression of osteocalcin mRNA which was decreased after 1 day Dex exposure was undetectable 4 days later. Neither control nor Dex-treated HBMSC secreted osteocalcin into the conditioned media in the absence of 1 ,25(OH)(2)D(3) during a 25-day observation period. The accumulated data indicate that Dex has profound and varied effects on the expression of matrix proteins produced by human bone marrow stromal cells. With the induced increment in alkaline phosphatase correlating with the mineralization effects of Dex, the observed concomitant decrease in osteopontin and bone sialoprotein mRNA levels and the associated decline of osteocalcin are consistent with the hypothesis that the regulation of the expression of these highly negatively charged proteins is essential in order to maximize the Dex-induced mineralization process conditioned by normal human bone marrow stromal osteoprogenitor cells.
Collapse
Affiliation(s)
- S L Cheng
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
9
|
Wenstrup RJ, Fowlkes JL, Witte DP, Florer JB. Discordant expression of osteoblast markers in MC3T3-E1 cells that synthesize a high turnover matrix. J Biol Chem 1996; 271:10271-6. [PMID: 8626594 DOI: 10.1074/jbc.271.17.10271] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To examine the autocrine effects that an organizing extracellular matrix has on osteoblast precursors, we created MC3T3-E1 cell lines that stably expressed pro-alpha1(I) collagen chains with a truncated triple helical domain. Cells that had incorporated the pro-alpha1(I) expression plasmid (pMG155) expressed shortened pro-alpha1(I) transcripts at high levels and efficiently secreted the expression gene products into culture media. Those cells lost over 30% of newly deposited collagenous matrix compared with virtually no loss in control cultures, and media from the abnormal cells had qualitative differences in matrix metalloprotinase production. Electron micrographs strongly suggested that type I collagen molecules containing the truncated pro-alpha1(I) chains dramatically interfered with collagen fibrillogenesis in newly forming osteoblast matrix. Abnormal collagen fibrillogenesis was also associated with altered characteristics of cellular differentiation in that abnormal cells displayed a delayed and attenuated increase in alkaline phosphatase activity. Surprisingly, synthesis of osteocalcin was more than 5-fold higher than control cultures. These findings demonstrate that osteoblasts require a normally structured collagenous matrix for up-regulation of alkaline phosphatase activity. However, in the presence of rapid turnover of osteoblast matrix, osteocalcin gene expression may be up-regulated in response to local signals by an unknown mechanism.
Collapse
Affiliation(s)
- R J Wenstrup
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
10
|
Blavier L, Delaissé JM. Matrix metalloproteinases are obligatory for the migration of preosteoclasts to the developing marrow cavity of primitive long bones. J Cell Sci 1995; 108 ( Pt 12):3649-59. [PMID: 8719871 DOI: 10.1242/jcs.108.12.3649] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A key event in bone resorption is the recruitment of osteoclasts to future resorption sites. We follow here the migration of preosteoclasts from the periosteum to the developing marrow cavity of fetal mouse metatarsals in culture, and investigate the role of proteinases and demineralization in this migration. Our approach consisted in testing inhibitors of proteinases and demineralization on the migration kinetics. Migration was monitored by histomorphometry and the (pre)osteoclasts were identified by their tartrate resistant acid phosphatase (TRAP) activity. At the time of explantation, TRAP+ cells (all mononucleated) are detected only in the periosteum, and the core of the diaphysis (future marrow cavity) consist of calcified cartilage. Upon culture, TRAP+ cells (differentiating progressively into multinucleated osteoclasts) migrate through a seam of osteoid and a very thin and discontinuous layer of mineral, invade the calcified cartilage and transform it into a “marrow' cavity; despite the passage of maturing osteoclasts, the osteoid develops into a bone collar. The migration of TRAP+ cells is completely prevented by matrix metalloproteinase (MMP) inhibitors, but not by a cysteine proteinase inhibitor, an inhibitor of carbonic anhydrase, or a bisphosphonate. The latter three drugs inhibit, however, the resorptive activity of mature osteoclasts at least as efficiently as do the MMP inhibitors, as assessed in cultures of calvariae and radii. Furthermore, in situ hybridizations reveal the expression of 2 MMPs, gelatinase B (MMP-9 or 92 kDa type IV collagenase) in (pre)osteoclasts, and interstitial collagenase (MMP-13) in hypertrophic chondrocytes. It is concluded that only MMPs appear obligatory for the migration of (pre)osteoclasts, and that this role is distinct from the one MMPs may play in the subosteoclastic resorption compartment. We propose that this new role of MMPs is a major component of the mechanism that determines where and when the osteoclasts will attack the bone.
Collapse
Affiliation(s)
- L Blavier
- Laboratoire de Chimie Physiologique (Connective Tissue Group), Université de Louvain, Bruxelles, Belgium
| | | |
Collapse
|
11
|
Yao KL, Todescan R, Sodek J. Temporal changes in matrix protein synthesis and mRNA expression during mineralized tissue formation by adult rat bone marrow cells in culture. J Bone Miner Res 1994; 9:231-40. [PMID: 8140936 DOI: 10.1002/jbmr.5650090212] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To characterize the bone-like tissue produced by rat bone marrow cells (RBMC) from young adult femurs, the synthesis of bone proteins and the expression of their mRNA were studied in vitro. RBMC plated at a density of 5 x 10(3) cells/cm2 and grown in the presence of 10(-8) M dexamethasone (Dex) and 10 mM beta-glycerophosphate (beta-GP) produced mineralized bone nodules, which were first evident at day 3 and increased markedly to day 13. However, in the absence of dexamethasone, few mineralized nodules were observed. The formation of mineralized nodules was reflected by the uptake of 45Ca, which also increased markedly to day 13. Analysis of bone protein expression by Northern and slot-blot hybridizations revealed an increase in mRNA levels of collagen type I (Col I), osteonectin/SPARC (ON), alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and osteocalcin (OC) during the formation of mineralized nodules. Whereas the Col I, ON, ALP, and OPN mRNAs were expressed before the formation of mineralized nodules was evident and were also expressed at various levels in the absence of Dex, the expression of BSP and OC mRNA was induced in the bone-forming cultures. The expression of BSP mRNA was correlated temporally with bone tissue formation, reaching maximal levels on day 16. In contrast, OC mRNA was expressed later and, following induction, increased over the 28 day culture period. Production of matrix proteins during the rapid formation of the bone tissue appeared to reflect the levels of the respective mRNAs. However, whereas some of the collagen and almost all of the SPARC were secreted into the culture medium, virtually all of the OPN and most of the BSP were extracted from the mineralized tissue matrix with EDTA. Some OPN and BSP were present in the medium, especially early in the culture, and a significant amount of BSP was also found associated with the collagenous tissue matrix. These studies point to the importance of Col I, ALP, OPN, and BSP, but not ON or OC, in the initial formation of bone tissue.
Collapse
Affiliation(s)
- K L Yao
- Medical Research Council Group in Periodontal Physiology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
12
|
Jenis LG, Waud CE, Stein GS, Lian JB, Baran DT. Effect of gallium nitrate in vitro and in normal rats. J Cell Biochem 1993; 52:330-6. [PMID: 8366144 DOI: 10.1002/jcb.240520309] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Gallium nitrate (GN) is an inhibitor of bone resorption and thereby may result in a change in coupled bone formation. In the present investigation the effects of GN on bone formation were studied in the rat osteosarcoma (ROS) 17/2.8 cell line and normal diploid rat osteoblasts (ROB) in vitro and the femur of rats treated in vivo, measuring mRNA levels for two osteoblast parameters, type I collagen, a marker of matrix formation, and osteocalcin, a bone specific protein and also histone H4, a marker of cell proliferation. GN, at 50 microM for 3 h, increased type I collagen mRNA levels by 132% in ROS 17/2.8 cells and by 122% in proliferating ROB cells. Osteocalcin (OC) mRNA levels were decreased by 61% in ROS 17/2.8 cells and by 97% in differentiated ROB cells. These changes occurred in the absence of any effects on cell proliferation. Seventy-day-old female rats were then treated with GN, 0.5 mg/kg/day, for 3 weeks. As previously reported, GN decreased serum calcium levels, but had no effect on lumbar or femoral bone density. In contrast to the in vitro effects, GN had no effect on type I collagen steady-state mRNA levels in the femur; however, it decreased OC steady-state mRNA levels in the femur by 58%. These results suggest that GN has similar in vitro effects in transformed and normal osteoblasts, while the collagen-stimulatory effects observed in vitro cannot be extrapolated to in vivo models. The consistent inhibition of osteocalcin in vitro and in vivo suggests a more specific target for GN that may relate to its effects in inhibiting bone resorption in normal rats.
Collapse
Affiliation(s)
- L G Jenis
- Department of Orthopedics, University of Massachusetts Medical Center, Worcester, Massachusetts 01655
| | | | | | | | | |
Collapse
|
13
|
Carlson CS, Tulli HM, Jayo MJ, Loeser RF, Tracy RP, Mann KG, Adams MR. Immunolocalization of noncollagenous bone matrix proteins in lumbar vertebrae from intact and surgically menopausal cynomolgus monkeys. J Bone Miner Res 1993; 8:71-81. [PMID: 8427050 DOI: 10.1002/jbmr.5650080110] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The noncollagenous matrix proteins, composing about 10% of the organic matrix of bone, are considered important for cell matrix organization and regulation of mineralization in bone. In the present study, seven of the major noncollagenous bone matrix proteins were localized immunohistochemically in serial sections of lumbar vertebrae from 24 (12 intact and 12 ovariectomized) adult female cynomolgus monkeys (Macaca fascicularis). Osteocalcin was the only protein restricted to bone cells and mineralized bone matrix. Bone sialoprotein was present in both bone and calcified cartilage, and all the other proteins were distributed in soft tissues as well as bone. Staining for both osteocalcin and bone sialoprotein was present diffusely throughout the bone matrix, but osteonectin, osteopontin, matrix gla protein, decorin, and biglycan staining was concentrated along bone surfaces. Osteoid was negative for osteocalcin and bone sialoprotein, but all other proteins had areas of positive immunostaining within osteoid. All proteins except biglycan exhibited strong immunostaining of a subset of active osteoblasts, suggesting that they may be markers of osteoblast maturity or state of activation. The pattern of immunostaining in intact and surgically menopausal monkeys was similar, except that staining for matrix proteins concentrated along bone surfaces appeared to be more widely distributed in the surgically menopausal monkeys, probably due to the higher rate of bone formation in these animals.
Collapse
Affiliation(s)
- C S Carlson
- Department of Comparative Medicine, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | | | | | | | | | | | | |
Collapse
|
14
|
Ritter NM, Farach-Carson MC, Butler WT. Evidence for the formation of a complex between osteopontin and osteocalcin. J Bone Miner Res 1992; 7:877-85. [PMID: 1442202 DOI: 10.1002/jbmr.5650070804] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We hypothesize that the mechanisms governing bone formation and remodeling involve the assembly of some of the components of the extracellular matrix into supramolecular complexes. We have examined the associations of osteopontin (OPN) with other proteins isolated from demineralized rat long bones. Three ligand binding techniques were used to demonstrate the formation of complexes between osteopontin and osteocalcin (OCN). Using gel overlay assays, the binding between soluble 125I-OPN and OCN immobilized in acrylamide gels was visualized. Competition for 125I-OPN-OCN complexes was demonstrated when unlabeled OCN-enriched bone extract was included in gel overlay solutions. Also, gel overlay assays showed 125I-OCN binding to OPN. Saturable binding was shown in solid-phase filter binding assays, which yielded an equilibrium binding constant of moderately high affinity (approximately 10(-8) M). Specificity of OPN-OCN complex formation was confirmed by measuring binding in the presence of unlabeled OPN and OCN versus a bone-localized serum protein, alpha 2HS-glycoprotein. Finally, the formation of soluble complexes were demonstrated in a modified Hummel-Dreyer gel filtration assay. These results indicate that OPN and OCN form complexes in vitro. The possible functions of OPN-OCN complexes in osteoclast recruitment and attachment are discussed.
Collapse
Affiliation(s)
- N M Ritter
- Department of Biological Chemistry, University of Texas Health Science Center, Houston
| | | | | |
Collapse
|
15
|
Chen JK, Shapiro HS, Wrana JL, Reimers S, Heersche JN, Sodek J. Localization of bone sialoprotein (BSP) expression to sites of mineralized tissue formation in fetal rat tissues by in situ hybridization. MATRIX (STUTTGART, GERMANY) 1991; 11:133-43. [PMID: 2072878 DOI: 10.1016/s0934-8832(11)80217-9] [Citation(s) in RCA: 189] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bone sialoprotein (BSP) is a major protein in the mineralized matrix of bone and dentine. To study the relationship between the expression of BSP and the formation of mineralized connective tissues, a cDNA probe to rat BSP was prepared for in situ hybridization analysis of developing fetal rat bones and teeth. When used for Northern hybridization analysis of rat bone marrow cells induced to differentiate into osteogenic cells by dexamethasone, the BSP cDNA revealed a specific induction of 1.6- and 2.0-kb mRNA species of BSP. In tissue sections a strong hybridization signal associated with osteoblasts was observed in areas of endochondral bone formation in the long bone metaphysis and condylar cartilage, and in the intramembranous bone of the calvaria and mandible. Hybridization reflecting a lower degree of expression was evident in cells of the transitional zone of mineralizing cartilage and in odontoblasts forming incisor dentine. Expression of BSP was also demonstrated in the hypertrophic cartilage cells in the long bone and condylar process. In contrast, expression of BSP could not be detected in the reserve or proliferative chondrocytes, fibroblasts and muscle cells. These studies demonstrate that the expression of BSP in bones and teeth is essentially restricted to cells directly involved in the formation of mineralizing connective tissue matrices, indicating that BSP has a specific role in biological mineralization and that it is a useful marker of bone formation.
Collapse
Affiliation(s)
- J K Chen
- Medical Research Council Group in Periodontal Physiology, Faculty of Dentistry, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Williams DC, Frolik CA. Physiological and pharmacological regulation of biological calcification. INTERNATIONAL REVIEW OF CYTOLOGY 1991; 126:195-292. [PMID: 2050499 DOI: 10.1016/s0074-7696(08)60685-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biological calcification is a highly regulated process which occurs in diverse species of microorganisms, plants, and animals. Calcification provides tissues with structural rigidity to function in support and protection, supplies the organism with a reservoir for physiologically important ions, and also serves in a variety of specialized functions. In the vertebrate skeleton, hydroxyapatite crystals are laid down on a backbone of type I collagen, with the process being controlled by a wide range of noncollagenous proteins present in the local surroundings. In bone, cells of the osteoblast lineage are responsible for the synthesis of the bone matrix and many of these regulatory proteins. Osteoclasts, on the other hand, are continually resorbing bone to both produce changes in bone shape and maintain skeletal integrity, and to establish the ionic environment needed by the organism. The proliferation, differentiation, and activity of these cells is regulated by a number of growth factors and hormones. While much has already been discovered over the past few years about the involvement of various regulators in the process of mineralization, the identification and functional characterization of these factors remains an area of intense investigation. As with any complex, biological system that is in a finely tuned equilibrium under normal conditions, problems can occur. An imbalance in the processes of formation and resorption can lead to calcification disorders, and the resultant diseases of the skeletal system have a major impact on human health. A number of pharmacological agents have been, and are being, investigated for their therapeutic potential to correct these defects.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D C Williams
- Department of Connective Tissue and Monoclonal Antibody Research, Eli Lilly and Company, Indianapolis, Indiana 46285
| | | |
Collapse
|