1
|
Acevedo-Monroy SE, Rocha-Ramírez LM, Martínez Gómez D, Basurto-Alcántara FJ, Medina-Contreras Ó, Hernández-Chiñas U, Quiñones-Peña MA, García-Sosa DI, Ramírez-Lezama J, Rodríguez-García JA, González-Villalobos E, Castro-Luna R, Martínez-Cristóbal L, Eslava-Campos CA. Polyvalent Bacterial Lysate with Potential Use to Treatment and Control of Recurrent Urinary Tract Infections. Int J Mol Sci 2024; 25:6157. [PMID: 38892345 PMCID: PMC11173243 DOI: 10.3390/ijms25116157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Overuse of antimicrobials has greatly contributed to the increase in the emergence of multidrug-resistant bacteria, a situation that hinders the control and treatment of infectious diseases. This is the case with urinary tract infections (UTIs), which represent a substantial percentage of worldwide public health problems, thus the need to look for alternatives for their control and treatment. Previous studies have shown the usefulness of autologous bacterial lysates as an alternative for the treatment and control of UTIs. However, a limitation is the high cost of producing individual immunogens. At the same time, an important aspect of vaccines is their immunogenic amplitude, which is the reason why they must be constituted of diverse antigenic components. In the case of UTIs, the etiology of the disease is associated with different bacteria, and even Escherichia coli, the main causal agent of the disease, is made up of several antigenic variants. In this work, we present results on the study of a bacterial lysate composed of 10 serotypes of Escherichia coli and by Klebsiella pneumoniae, Klebsiella aerogenes, Enterococcus faecalis, Proteus mirabilis, Citrobacter freundii, and Staphylococcus haemolyticus. The safety of the compound was tested on cells in culture and in an animal model, and its immunogenic capacity by analysing in vitro human and murine macrophages (cell line J774 A1). The results show that the polyvalent lysate did not cause damage to the cells in culture or alterations in the animal model used. The immunostimulatory activity assay showed that it activates the secretion of TNF-α and IL-6 in human macrophages and TNF-α in murine cells. The obtained results suggest that the polyvalent lysate evaluated can be an alternative for the treatment and control of chronic urinary tract infections, which will reduce the use of antimicrobials.
Collapse
Affiliation(s)
- Salvador Eduardo Acevedo-Monroy
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (U.H.-C.); (M.A.Q.-P.); (D.I.G.-S.); (J.A.R.-G.)
- Laboratorio de Microbiología Molecular Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad #3000, Colonia, C.U., Coyoacán, Ciudad de México 04510, Mexico
| | - Luz María Rocha-Ramírez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez. Secretaría de Salud, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico;
| | - Daniel Martínez Gómez
- Departamento de Producción Agrícola y Animal, Laboratorio de Microbiología Agropecuaria, Universidad Autónoma Metropolitana Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, Alcaldía Coyoacán, C.P., Ciudad de México 04960, Mexico;
| | - Francisco Javier Basurto-Alcántara
- Laboratorio de Vacunología y Constatación, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad #3000, Colonia, C.U., Coyoacán, Ciudad de México 04510, Mexico;
| | - Óscar Medina-Contreras
- Unidad de Investigación Epidemiológica en Endocrinología y Nutrición, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col. Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico;
| | - Ulises Hernández-Chiñas
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (U.H.-C.); (M.A.Q.-P.); (D.I.G.-S.); (J.A.R.-G.)
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas; Departamento de Salud Pública, División de Investigación Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| | - María Alejandra Quiñones-Peña
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (U.H.-C.); (M.A.Q.-P.); (D.I.G.-S.); (J.A.R.-G.)
- Department of Health & Biomedical Science College of Health Professions, Biomedical Science, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Daniela Itzel García-Sosa
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (U.H.-C.); (M.A.Q.-P.); (D.I.G.-S.); (J.A.R.-G.)
| | - José Ramírez-Lezama
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - José Alejandro Rodríguez-García
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (U.H.-C.); (M.A.Q.-P.); (D.I.G.-S.); (J.A.R.-G.)
| | - Edgar González-Villalobos
- Laboratorio de Epidemiología Molecular, Departamento de Salud Pública División de Investigación Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad #3000, Colonia, C.U., Coyoacán, Ciudad de México 04510, Mexico;
| | - Raúl Castro-Luna
- Bioterio, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico; (R.C.-L.); (L.M.-C.)
| | - Leonel Martínez-Cristóbal
- Bioterio, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico; (R.C.-L.); (L.M.-C.)
| | - Carlos Alberto Eslava-Campos
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (U.H.-C.); (M.A.Q.-P.); (D.I.G.-S.); (J.A.R.-G.)
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas; Departamento de Salud Pública, División de Investigación Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| |
Collapse
|
2
|
Koya SF, Ganesh S, Selvaraj S, Wirtz VJ, Galea S, Rockers PC. Determinants of private-sector antibiotic consumption in India: findings from a quasi-experimental fixed-effects regression analysis using cross-sectional time-series data, 2011-2019. Sci Rep 2024; 14:5052. [PMID: 38424115 PMCID: PMC10904839 DOI: 10.1038/s41598-024-54250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/10/2024] [Indexed: 03/02/2024] Open
Abstract
The consumption of antibiotics varies between and within countries. However, our understanding of the key drivers of antibiotic consumption is largely limited to observational studies. Using Indian data that showed substantial differences between states and changes over years, we conducted a quasi-experimental fixed-effects regression study to examine the determinants of private-sector antibiotic consumption. Antibiotic consumption decreased by 10.2 antibiotic doses per 1000 persons per year for every ₹1000 (US$12.9) increase in per-capita gross domestic product. Antibiotic consumption decreased by 46.4 doses per 1000 population per year for every 1% increase in girls' enrollment rate in tertiary education. The biggest determinant of private sector antibiotic use was government spending on health-antibiotic use decreased by 461.4 doses per 1000 population per year for every US$12.9 increase in per-capita government health spending. Economic progress, social progress, and increased public investment in health can reduce private-sector antibiotic use.
Collapse
Affiliation(s)
| | - Senthil Ganesh
- Public Health Foundation of India, New Delhi, Delhi, India
| | | | | | - Sandro Galea
- School of Public Health, Boston University, Boston, MA, USA
| | | |
Collapse
|
3
|
Niu D, Wu Y, Lian J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:341. [PMID: 37691066 PMCID: PMC10493228 DOI: 10.1038/s41392-023-01561-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/02/2023] [Accepted: 07/09/2023] [Indexed: 09/12/2023] Open
Abstract
CircRNAs are a class of single-stranded RNAs with covalently linked head-to-tail topology. In the decades since its initial discovery, their biogenesis, regulation, and function have rapidly disclosed, permitting a better understanding and adoption of them as new tools for medical applications. With the development of biotechnology and molecular medicine, artificial circRNAs have been engineered as a novel class of vaccines for disease treatment and prevention. Unlike the linear mRNA vaccine which applications were limited by its instability, inefficiency, and innate immunogenicity, circRNA vaccine which incorporate internal ribosome entry sites (IRESs) and open reading frame (ORF) provides an improved approach to RNA-based vaccination with safety, stability, simplicity of manufacture, and scalability. However, circRNA vaccines are at an early stage, and their optimization, delivery and applications require further development and evaluation. In this review, we comprehensively describe circRNA vaccine, including their history and superiority. We also summarize and discuss the current methodological research for circRNA vaccine preparation, including their design, synthesis, and purification. Finally, we highlight the delivery options of circRNA vaccine and its potential applications in diseases treatment and prevention. Considering their unique high stability, low immunogenicity, protein/peptide-coding capacity and special closed-loop construction, circRNA vaccine, and circRNA-based therapeutic platforms may have superior application prospects in a broad range of diseases.
Collapse
Affiliation(s)
- Dun Niu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Yaran Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Jiqin Lian
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
| |
Collapse
|
4
|
Mullins LP, Mason E, Winter K, Sadarangani M. Vaccination is an integral strategy to combat antimicrobial resistance. PLoS Pathog 2023; 19:e1011379. [PMID: 37319164 DOI: 10.1371/journal.ppat.1011379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Affiliation(s)
- Liam P Mullins
- Experimental Medicine Program, Department of Medicine, University of British Columbia, Vancouver, Canada
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Emily Mason
- Experimental Medicine Program, Department of Medicine, University of British Columbia, Vancouver, Canada
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Kaitlin Winter
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Vairo C, Villar Vidal M, Maria Hernandez R, Igartua M, Villullas S. Colistin- and amikacin-loaded lipid-based drug delivery systems for resistant gram-negative lung and wound bacterial infections. Int J Pharm 2023; 635:122739. [PMID: 36801363 DOI: 10.1016/j.ijpharm.2023.122739] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Antimicrobial resistance (AMR) is a global health issue, which needs to be tackled without further delay. The World Health Organization(WHO) has classified three gram-negative bacteria, Pseudomonas aeruginosa, Klebsiella pneumonia and Acinetobacter baumannii, as the principal responsible for AMR, mainly causing difficult to treat nosocomial lung and wound infections. In this regard, the need for colistin and amikacin, the re-emerged antibiotics of choice for resistant gram-negative infections, will be examined as well as their associated toxicity. Thus, current but ineffective clinical strategies designed to prevent toxicity related to colistin and amikacin will be reported, highlighting the importance of lipid-based drug delivery systems (LBDDSs), such as liposomes, solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), as efficient delivery strategies for reducing antibiotic toxicity. This review reveals that colistin- and amikacin-NLCs are promising carriers with greater potential than liposomes and SLNs to safely tackle AMR, especially for lung and wound infections.
Collapse
Affiliation(s)
- Claudia Vairo
- BioKeralty Research Institute AIE, Albert Einstein, 25-E3, 01510 Miñano, Spain; NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | | | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Silvia Villullas
- BioKeralty Research Institute AIE, Albert Einstein, 25-E3, 01510 Miñano, Spain.
| |
Collapse
|
6
|
Kember M, Grandy S, Raudonis R, Cheng Z. Non-Canonical Host Intracellular Niche Links to New Antimicrobial Resistance Mechanism. Pathogens 2022; 11:pathogens11020220. [PMID: 35215166 PMCID: PMC8876822 DOI: 10.3390/pathogens11020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
Globally, infectious diseases are one of the leading causes of death among people of all ages. The development of antimicrobials to treat infectious diseases has been one of the most significant advances in medical history. Alarmingly, antimicrobial resistance is a widespread phenomenon that will, without intervention, make currently treatable infections once again deadly. In an era of widespread antimicrobial resistance, there is a constant and pressing need to develop new antibacterial drugs. Unraveling the underlying resistance mechanisms is critical to fight this crisis. In this review, we summarize some emerging evidence of the non-canonical intracellular life cycle of two priority antimicrobial-resistant bacterial pathogens: Pseudomonas aeruginosa and Staphylococcus aureus. The bacterial factors that modulate this unique intracellular niche and its implications in contributing to resistance are discussed. We then briefly discuss some recent research that focused on the promises of boosting host immunity as a combination therapy with antimicrobials to eradicate these two particular pathogens. Finally, we summarize the importance of various strategies, including surveillance and vaccines, in mitigating the impacts of antimicrobial resistance in general.
Collapse
|
7
|
Pérez‐Rodríguez S, García‐Aznar JM, Gonzalo‐Asensio J. Microfluidic devices for studying bacterial taxis, drug testing and biofilm formation. Microb Biotechnol 2022; 15:395-414. [PMID: 33645897 PMCID: PMC8867988 DOI: 10.1111/1751-7915.13775] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
Some bacteria have coevolved to establish symbiotic or pathogenic relationships with plants, animals or humans. With human association, the bacteria can cause a variety of diseases. Thus, understanding bacterial phenotypes at the single-cell level is essential to develop beneficial applications. Traditional microbiological techniques have provided great knowledge about these organisms; however, they have also shown limitations, such as difficulties in culturing some bacteria, the heterogeneity of bacterial populations or difficulties in recreating some physical or biological conditions. Microfluidics is an emerging technique that complements current biological assays. Since microfluidics works with micrometric volumes, it allows fine-tuning control of the test conditions. Moreover, it allows the recruitment of three-dimensional (3D) conditions, in which several processes can be integrated and gradients can be generated, thus imitating physiological 3D environments. Here, we review some key microfluidic-based studies describing the effects of different microenvironmental conditions on bacterial response, biofilm formation and antimicrobial resistance. For this aim, we present different studies classified into six groups according to the design of the microfluidic device: (i) linear channels, (ii) mixing channels, (iii) multiple floors, (iv) porous devices, (v) topographic devices and (vi) droplet microfluidics. Hence, we highlight the potential and possibilities of using microfluidic-based technology to study bacterial phenotypes in comparison with traditional methodologies.
Collapse
Affiliation(s)
- Sandra Pérez‐Rodríguez
- Aragón Institute of Engineering Research (I3A)Department of Mechanical EngineeringUniversity of ZaragozaZaragoza50018Spain
- Multiscale in Mechanical and Biological Engineering (M2BE)IIS‐AragónZaragozaSpain
- Grupo de Genética de MicobacteriasDepartment of Microbiology, Faculty of MedicineUniversity of ZaragozaIIS AragónZaragoza50009Spain
| | - José Manuel García‐Aznar
- Aragón Institute of Engineering Research (I3A)Department of Mechanical EngineeringUniversity of ZaragozaZaragoza50018Spain
- Multiscale in Mechanical and Biological Engineering (M2BE)IIS‐AragónZaragozaSpain
| | - Jesús Gonzalo‐Asensio
- Grupo de Genética de MicobacteriasDepartment of Microbiology, Faculty of MedicineUniversity of ZaragozaIIS AragónZaragoza50009Spain
- CIBER Enfermedades RespiratoriasInstituto de Salud Carlos IIIMadrid28029Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI)Zaragoza50018Spain
| |
Collapse
|
8
|
Pachaiappan R, Rajendran S, Show PL, Manavalan K, Naushad M. Metal/metal oxide nanocomposites for bactericidal effect: A review. CHEMOSPHERE 2021; 272:128607. [PMID: 33097236 DOI: 10.1016/j.chemosphere.2020.128607] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/13/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Many microbial species causing infectious disease all over the world became a social burden and creating threat among community. These microbes possess long lifetime, enhancing mortality and morbidity rate in affected organisms. In this condition, the treatment was ineffective and more chances of spreading of infection into other organisms. Hence, it is necessary to initiate infection control efforts and prevention activities against multidrug resistant microbes, to reduce the death rate of people. Seriously concerning towards this problem progress was shown in developing significant drugs with least side effects. Emergence of nanoparticles and its novelty showed effective role in targeting and destructing microbes well. Further, many research works have shown nanocomposites developed from nanoparticles coupled with other nanoparticles, polymers, carbon material acted as an exotic substance against microbes causing severe loss. However, metal and metal oxide nanocomposites have gained interest due to its small size and enhancing the surface contact with bacteria, producing damage to it. The bactericidal mechanism of metal and metal oxide nanocomposites involve in the production of reactive oxygen species which includes superoxide radical anions, hydrogen peroxide anions and hydrogen peroxide which interact with the cell wall of bacteria causing damage to the cell membrane in turn inhibiting the further growth of cell with leakage of internal cellular components, leading to death of bacteria. This review provides the detailed view on antibacterial activity of metal and metal oxide nanocomposite which possessed novelty due to its physiochemical changes.
Collapse
Affiliation(s)
- Rekha Pachaiappan
- Department of Sustainable Energy Management, Stella Maris College, Chennai, 600086, Tamilnadu, India.
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad deIngeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia.
| | - Kovendhan Manavalan
- Department of Nuclear Physics, University of Madras, Gunidy Campus, Chennai, 600 025, Tamilnadu, India
| | - Mu Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Yonsei Frontier Lab, Yonsei University, Seoul, Korea
| |
Collapse
|
9
|
Nayerhoda R, Park D, Jones C, Bou Ghanem EN, Pfeifer BA. Extended Polysaccharide Analysis within the Liposomal Encapsulation of Polysaccharides System. MATERIALS 2020; 13:ma13153320. [PMID: 32722578 PMCID: PMC7436327 DOI: 10.3390/ma13153320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 01/15/2023]
Abstract
The Liposomal Encapsulation of Polysaccharides (LEPS) dual antigen vaccine carrier system was assessed across two distinct polysaccharides for encapsulation efficiency, subsequent liposomal surface adornment with protein, adjuvant addition, and size and charge metrics. The polysaccharides derive from two different serotypes of Streptococcus pneumoniae and have traditionally served as the active ingredients of vaccines against pneumococcal disease. The LEPS system was designed to mimic glycoconjugate vaccines that covalently couple polysaccharides to protein carriers; however, the LEPS system uses a noncovalent co-localization mechanism through protein liposomal surface attachment. In an effort to more thoroughly characterize the LEPS system across individual vaccine components and thus support broader future utility, polysaccharides from S. pneumoniae serotypes 3 and 4 were systematically compared within the LEPS framework both pre- and post-surface protein attachment. For both polysaccharides, ≥85% encapsulation efficiency was achieved prior to protein surface attachment. Upon protein attachment with either a model protein (GFP) or a pneumococcal disease antigen (PncO), polysaccharide encapsulation was maintained at ≥61% encapsulation efficiency. Final LEPS carriers were also evaluated with and without alum as an included adjuvant, with encapsulation efficiency maintained at ≥30%, while protein surface attachment efficiency was maintained at ≥~50%. Finally, similar trends and distributions were observed across the different polysaccharides when assessed for liposomal zeta potential and size.
Collapse
Affiliation(s)
- Roozbeh Nayerhoda
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA;
| | - Dongwon Park
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA;
| | - Charles Jones
- Abcombi Biosciences Inc., 1576 Sweet Home Road, Amherst, NY 14260, USA;
| | - Elsa N. Bou Ghanem
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA;
| | - Blaine A. Pfeifer
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA;
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA;
- Correspondence:
| |
Collapse
|
10
|
Sunarno S, Rukminiati Y, Saraswati RD. ST534: the new sequence type of Corynebacterium diphtheriae causing diphtheria in Jakarta and surrounding areas, Indonesia. Turk J Med Sci 2020; 50:267-270. [PMID: 31769641 PMCID: PMC7080344 DOI: 10.3906/sag-1909-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/25/2019] [Indexed: 11/28/2022] Open
Abstract
Background/aim The aim of this study was to find out characteristics and patterns of the spread of Corynebacterium diphtheriae isolated from Jakarta and the surrounding areas, using the whole genome sequencing (WGS) technique and multilocus sequence typing (MLST) approach. Materials and methods The study samples consisted of 86 C. diphtheriae isolates, which were isolated from diphtheria patients and close contacts of patients. The DNA sequencing was carried out using the WGS technique. Data conversion applied the U-gene software. Molecular typing was conducted through the MLST approach, then followed by online data analysis. Results The results showed that as many as 43 (50%) of all samples examined were new types with the same allele profile, namely 9-1-13-4-3-3-4. New sequence type C. diphtheriae is registered in the MLST global database as ST534 based on the allele profile. The tox gene analysis in 43 isolates with ST534 indicated that there were three mutation positions, all of which were silent mutations. Conclusion The main cause of diphtheria in Jakarta and the surrounding areas is a new sequence type of C. diphtheriae registered as ST534.
Collapse
Affiliation(s)
- Sunarno Sunarno
- Center for Research and Development of Biomedical and Basic Health Technology, National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Yuni Rukminiati
- Center for Research and Development of Biomedical and Basic Health Technology, National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Ratih Dian Saraswati
- Center for Research and Development of Biomedical and Basic Health Technology, National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| |
Collapse
|
11
|
Keshari S, Kumar M, Balasubramaniam A, Chang TW, Tong Y, Huang CM. Prospects of acne vaccines targeting secreted virulence factors of Cutibacterium acnes. Expert Rev Vaccines 2019; 18:433-437. [DOI: 10.1080/14760584.2019.1593830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sunita Keshari
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Manish Kumar
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Arun Balasubramaniam
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Ting-Wei Chang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Yun Tong
- Department of Dermatology, School of Medicine, University of California, San Diego, CA, USA
| | - Chun-Ming Huang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
- Department of Dermatology, School of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
12
|
Abstract
There is a growing appreciation for the role of vaccines in confronting the problem of antimicrobial resistance (AMR). Vaccines can reduce the prevalence of resistance by reducing the need for antimicrobial use and can reduce its impact by reducing the total number of cases. By reducing the number of pathogens that may be responsible for a particular clinical syndrome, vaccines can permit the use of narrower-spectrum antibiotics for empirical therapy. These effects may be amplified by herd immunity, extending protection to unvaccinated persons in the population. Because much selection for resistance is due to selection on bystander members of the normal flora, vaccination can reduce pressure for resistance even in pathogens not included in the vaccine. Some vaccines have had disproportionate effects on drug-resistant lineages within the target species, a benefit that could be more deliberately exploited in vaccine design. We describe the effects of current vaccines in controlling AMR, survey some vaccines in development with the potential to do so further, and discuss strategies to amplify these benefits. We conclude with a discussion of research and policy priorities to more fully enlist vaccines in the battle against AMR.
Collapse
|
13
|
Cheng G, Dai M, Ahmed S, Hao H, Wang X, Yuan Z. Antimicrobial Drugs in Fighting against Antimicrobial Resistance. Front Microbiol 2016; 7:470. [PMID: 27092125 PMCID: PMC4824775 DOI: 10.3389/fmicb.2016.00470] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/21/2016] [Indexed: 01/18/2023] Open
Abstract
The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i.e., mutation and horizontal gene transfer of resistance determinants), the community level resistance (i.e., bilofilms and persisters) is also an issue causing antimicrobial therapy difficulties. Therefore, anti-resistance and antibiofilm strategies have currently become research hotspot to combat antimicrobial resistance. Although metallic nanoparticles can both kill bacteria and inhibit biofilm formation, the toxicity is still a big challenge for their clinical applications. In conclusion, rational use of the existing antimicrobials and combinational use of new strategies fighting against antimicrobial resistance are powerful warranties to preserve potent antimicrobial drugs for both humans and animals.
Collapse
Affiliation(s)
- Guyue Cheng
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Menghong Dai
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Saeed Ahmed
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University Wuhan, China
| | - Haihong Hao
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Xu Wang
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Zonghui Yuan
- Ministry of Agriculture Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and Ministry of Agriculture Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
14
|
Rutebemberwa E, Mpeka B, Pariyo G, Peterson S, Mworozi E, Bwanga F, Källander K. High prevalence of antibiotic resistance in nasopharyngeal bacterial isolates from healthy children in rural Uganda: A cross-sectional study. Ups J Med Sci 2015; 120:249-56. [PMID: 26305429 PMCID: PMC4816885 DOI: 10.3109/03009734.2015.1072606] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In Uganda, the main causes of death in children under 5 years of age are malaria and pneumonia--often due to delayed diagnosis and treatment. In preparation for a community case management intervention for pneumonia and malaria, the bacterial composition of the nasopharyngeal flora and its in vitro resistance were determined in children aged five or under to establish baseline resistance to commonly used antibiotics. METHODS In a population-based survey in April 2008, nasopharyngeal specimens were collected from 152 randomly selected healthy children under 5 years of age in the Iganga/Mayuge Health and Demographic Surveillance Site (HDSS). Medical history and prior treatment were recorded. Demographic characteristics and risk factors for carriage of resistant strains were obtained from the HDSS census. Bacteria were isolated and analysed for antibiotic susceptibility using disk diffusion and E test. RESULTS Streptococcus pneumoniae (S. pneumoniae) carriage was 58.6%, and, while most (80.9%) isolates had intermediate resistance to penicillin, none was highly resistant. Whereas no isolate was resistant to erythromycin, 98.9% were resistant to trimethoprim-sulphamethoxazole (co-trimoxazole). CONCLUSIONS In vitro resistance in S. pneumoniae to co-trimoxazole treatment was high, and the majority of isolates had intermediate resistance to penicillin. To inform treatment policies on the clinical efficacy of current treatment protocols for pneumonia in health facilities and at the community level, routine surveillance of resistance in pneumonia pathogens is needed as well as research on treatment efficacy in cases with resistant strains. Improved clinical algorithms and diagnostics for pneumonia should be developed.
Collapse
Affiliation(s)
| | | | - George Pariyo
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | | | - Edison Mworozi
- Department of Paediatrics and Child Health, Makerere University Medical School, Kampala, Uganda
| | - Freddie Bwanga
- Department of Microbiology, Makerere University Faculty of Medicine, Kampala, Uganda, and
| | - Karin Källander
- Correspondence: Karin Källander, Division of Global Health, Tomteboda vägen 18A, Karolinska Institutet, SE-171 77 Stockholm, Sweden. E-mail:
| |
Collapse
|
15
|
Baquero F, Lanza VF, Cantón R, Coque TM. Public health evolutionary biology of antimicrobial resistance: priorities for intervention. Evol Appl 2014; 8:223-39. [PMID: 25861381 PMCID: PMC4380917 DOI: 10.1111/eva.12235] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/12/2014] [Indexed: 12/19/2022] Open
Abstract
The three main processes shaping the evolutionary ecology of antibiotic resistance (AbR) involve the emergence, invasion and occupation by antibiotic-resistant genes of significant environments for human health. The process of emergence in complex bacterial populations is a high-frequency, continuous swarming of ephemeral combinatory genetic and epigenetic explorations inside cells and among cells, populations and communities, expanding in different environments (migration), creating the stochastic variation required for evolutionary progress. Invasion refers to the process by which AbR significantly increases in frequency in a given (invaded) environment, led by external invaders local multiplication and spread, or by endogenous conversion. Conversion occurs because of the spread of AbR genes from an exogenous resistant clone into an established (endogenous) bacterial clone(s) colonizing the environment; and/or because of dissemination of particular resistant genetic variants that emerged within an endogenous clonal population. Occupation of a given environment by a resistant variant means a permanent establishment of this organism in this environment, even in the absence of antibiotic selection. Specific interventions on emergence influence invasion, those acting on invasion also influence occupation and interventions on occupation determine emergence. Such interventions should be simultaneously applied, as they are not simple solutions to the complex problem of AbR.
Collapse
Affiliation(s)
- Fernando Baquero
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| | - Val F Lanza
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| | - Rafael Cantón
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III Madrid, Spain
| | - Teresa M Coque
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| |
Collapse
|