1
|
IL-12/23p40 overproduction by dendritic cells leads to an increased Th1 and Th17 polarization in a model of Yersinia enterocolitica-induced reactive arthritis in TNFRp55-/- mice. PLoS One 2018; 13:e0193573. [PMID: 29494692 PMCID: PMC5832265 DOI: 10.1371/journal.pone.0193573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/14/2018] [Indexed: 12/25/2022] Open
Abstract
Dendritic cells (DCs) play critical functions in the initiation of immune responses. Understanding their role in reactive arthritis (ReA) will help delineate the pathogenesis of this arthropathy. In early studies, we detected IL-12/23p40 deregulation in Yersinia entercolitica (Ye)-induced ReA in TNFRp55-deficient (TNFRp55-/-) mice. In this study, we assessed the contribution of DCs in this overproduction. First, greater levels of IL-12/23p40, IFN-γand IL-17A were confirmed in supernatants of lipopolysaccharide (LPS)-stimulated TNFRp55-/-splenocytes obtained on arthritis onset (day 14 after Ye infection). Later, DCs were identified as a precise source of IL-12/23p40 since increased frequency of splenic IL-12/23p40+DCs was detected in TNFRp55-/- mice. After robust in vivo amplification of DCs by injection of Fms-like tyrosine kinase 3-Ligand (Flt3L)-transfected BL16 melanoma, DCs were purified. These cells recapitulated the higher production of IL-12/23p40 under TNFRp55deficiency. In agreement with these results, TNFRp55-/- DCs promoted Th1 and Th17 programs by co-culture with WT CD4+lymphocytes. A mechanistic study demonstrated that JNK and p38 MAPK pathways are involved in IL-12/23p40 overproduction in purified TNFRp55-/- DCs as well as in the JAWS II cell line. This deregulation was once again attributed to TNFRp55 deficiency since CAY10500, a specific inhibitor of this pathway, compromised TNF-mediated IL-12/23p40 control in LPS-stimulated WT DCs. Simultaneously, this inhibition reduced IL-10 production, suggesting its role mediating IL-12/23p40 regulation by TNFRp55 pathway. These results provide experimental data on the existence of a TNFRp55-mediated anti-inflammatory circuit in DCs. Moreover, these cells may be considered as a novel target in the treatment of ReA.
Collapse
|
2
|
Zhao Y, Tang H, Tan C, Zhao H, Liu Y. HLA-B27 Correlates with the Intracellular Elimination, Replication, and Trafficking of Salmonella Enteritidis Collected from Reactive Arthritis Patients. Med Sci Monit 2017; 23:5420-5429. [PMID: 29135969 PMCID: PMC5699175 DOI: 10.12659/msm.904681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The aim of this study was to explore the correlation between HLA-B27 and the intracellular elimination, replication, and trafficking of Salmonella enteritidis (S. enteritidis) collected from patients with reactive arthritis. MATERIAL AND METHODS Confocal microscopy, flow cytometry, and sandwich enzyme-linked immunosorbent assay (ELISA) were employed in this study to evaluate the localization of proteins of interest, to assess the intracellular trafficking of S. enteritidis, and to measure the production of cytokines of interest. RESULTS HLA-B27 was negatively associated with intracellular S. enteritidis elimination in healthy human monocytes/macrophages. In S. enteritidis infected monocytes/macrophages, HLA-27B was also negatively correlated with bacteria elimination but positively related to bacteria replication. S. enteritidis did not co-localize with NRAMP1 and LAMP1/2 in HLA-B27 cells. S. enteritidis did not co-exist with transferrin or dextran within HLA-B27 and A2 cells. CONCLUSIONS HLA-B27 is closely associated with the intracellular elimination and replication of S. enteritidis. Replicated bacteria in HLA-B27 monocytic cells were located within unique vacuoles rather than disturbing host endocytosis.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Honghu Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Chunyu Tan
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Hua Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
3
|
Carter JD, Hudson AP. Recent advances and future directions in understanding and treating Chlamydia-induced reactive arthritis. Expert Rev Clin Immunol 2016; 13:197-206. [PMID: 27627462 DOI: 10.1080/1744666x.2017.1233816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Reactive arthritis (ReA) is an inflammatory disease that can follow gastrointestinal or genitourinary infections. The primary etiologic agent for post-venereal ReA is the bacterium Chlamydia trachomatis; its relative, C pneumoniae, has also been implicated in disease induction although to a lesser degree. Studies have indicated that the arthritis is elicited by chlamydiae infecting synovial tissue in an unusual biologic state designated persistence. We review clinical aspects, host-pathogen interactions, and treatments for the disease. Areas covered: We briefly discuss both the historic and,more extensively, the current medical literature describing ReA, and we provide a discussion of the biology of the chlamydiae as it relates to elicitation of the disease. A summary of clinical aspects of Chlamydia-induced ReA is included to give context for approaches to treatment of the arthritis. Expert commentary: Basic research into the biology and host-pathogen interactions characteristic of C trachomatis has provided a wealth of information that underlies our current understanding of the pathogenic processes occurring in the ReA synovium. Importantly, a promising approach to cure of the disease is at hand. However, both basic and clinical research into Chlamydia-induced ReA has lagged over the last 5 years, including required studies relating to cure of the disease.
Collapse
Affiliation(s)
- John D Carter
- a Department of Internal Medicine, Division of Rheumatology , University of South Florida School of Medicine , Tampa , FL , USA
| | - Alan P Hudson
- b Department of Immunology and Microbiology , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
4
|
Eliçabe RJ, Genaro MSD. Immunopathogenesis of reactive arthritis: Role of the cytokines. World J Immunol 2014; 4:78-87. [DOI: 10.5411/wji.v4.i2.78] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/24/2014] [Accepted: 06/16/2014] [Indexed: 02/05/2023] Open
Abstract
Reactive arthritis (ReA), also known as sterile postinfectious arthritis, belongs to the group of related arthropathies known as spondyloarthritis (SpA). ReA can arise 1-4 wk after a gastrointestinal or genitourinary infection, but once arthritis develops, the microorganism is not found in the joint. The classical microbes associated with ReA development include Gram-negative aerobic or microaerophilic bacteria containing LPS in their outer membrane. The immunopathogenic mechanisms involved in ReA development are still unknown. A hypothesis suggested that the bacteria probably persist outside the joint, at sites such as gut mucosa or lymph nodes, and bacterial antigens might then be transported to the joints. On the other hand, an altered immune response and the unbalanced production of cytokines have been reported in subjects with ReA. Currently, there is increased evidence to suggest that both mechanisms would operate in the immunopathogenesis of ReA. In this review we highlight recent advances on the role of cytokines in the ReA. Particularly, we discuss the roles of some pro- and anti-inflammatory cytokines involved in the immunopathogenesis of ReA.
Collapse
|
5
|
Fan D, Ding N, Yang T, Wu S, Liu S, Liu L, Hu Y, Duan Z, Xia G, Xu S, Xu J, Ding C, Pan F. Single nucleotide polymorphisms of the interleukin-33 (IL-33) gene are associated with ankylosing spondylitis in Chinese individuals: a case–control pilot study. Scand J Rheumatol 2014; 43:374-9. [DOI: 10.3109/03009742.2014.882408] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- D Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University,
Hefei, Anhui, China
| | - N Ding
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University,
Hefei, Anhui, China
| | - T Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University,
Hefei, Anhui, China
| | - S Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University,
Hefei, Anhui, China
| | - S Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University,
Hefei, Anhui, China
| | - L Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University,
Hefei, Anhui, China
| | - Y Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University,
Hefei, Anhui, China
| | - Z Duan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University,
Hefei, Anhui, China
| | - G Xia
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University,
Hefei, Anhui, China
| | - S Xu
- Department of Rheumatism and Immunity, the First Affiliated Hospital of Anhui Medical University,
Hefei, Anhui, China
| | - J Xu
- Department of Rheumatism and Immunity, the First Affiliated Hospital of Anhui Medical University,
Hefei, Anhui, China
| | - C Ding
- Department of Rheumatism and Immunity, the First Affiliated Hospital of Anhui Medical University,
Hefei, Anhui, China
- Menzies Research Institute Tasmania, University of Tasmania,
Hobart, TAS, Australia
| | - F Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University,
Hefei, Anhui, China
| |
Collapse
|