1
|
Bekhet AH, Jahan AM, Bochkezanian V, Musselman KE, Elsareih AA, Gorgey AS. Effects of Electrical Stimulation Training on Body Composition Parameters After Spinal Cord Injury: A Systematic Review. Arch Phys Med Rehabil 2022; 103:1168-1178. [PMID: 34687676 DOI: 10.1016/j.apmr.2021.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/10/2021] [Accepted: 09/05/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To determine the effects of neuromuscular electrical stimulation (NMES) or functional electrical stimulation (FES), or both, training on different body composition parameters in individuals with spinal cord injury. DATA SOURCES Three independent reviewers searched PubMed, Web of Science, Scopus, Cochrane Central, and Virtual Health Library until March 2020. STUDY SELECTION Studies were included if they applied NMES/FES on the lower limb muscles after spinal cord injury, reported stimulation parameters (frequency, pulse duration, and amplitude of current), and body composition parameters, which included muscle cross-sectional area (CSA), fat-free mass, lean mass (LM), fat mass, visceral adipose tissue, and intramuscular fat. DATA SYNTHESIS A total of 46 studies were included in the final analysis with a total sample size of 414 subjects. NMES loading exercise and FES cycling exercise were commonly used for training. Increases in muscle CSA ranged from 5.7-75%, with an average of 26% (n=33). Fifteen studies reported changes (both increase and decrease) in LM or fat-free mas ranged from -4% to 35%, with an average of less than 5%. Changes in fat mass (n=10) were modest. The effect on ectopic adipose tissue is inconclusive, with 2 studies showing an average reduction in intramuscular fat by 9.9%. Stimulation parameters ranged from 200-1000 μs for pulse duration, 2-60 Hz for the frequency, and 10-200 mA in amplitude. Finally, increase in weekly training volumes after NMES loading exercise resulted in a remarkable increase in percentage changes in LM or muscle CSA. CONCLUSIONS NMES/FES is an effective rehabilitation strategy for muscle hypertrophy and increasing LM. Weekly training volumes are associated with muscle hypertrophy after NMES loading exercise. Furthermore, positive muscle adaptations occur despite the applied stimulation parameters. Finally, the included studies reported wide range of stimulation parameters without reporting rationale for such selection.
Collapse
Affiliation(s)
| | - Alhadi M Jahan
- School of Rehabilitation Sciences, University of Ottawa, Ottawa, Canada
| | - Vanesa Bochkezanian
- Department of Exercise and Health Sciences, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Kristin E Musselman
- KITE, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada; Department of Physical Therapy, Faculty of Medicine, University of Toronto, Toronto, Canada; Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Amr A Elsareih
- Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Ashraf S Gorgey
- Faculty of Physical Therapy, Cairo University, Giza, Egypt; Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, 1201 Broad Rock Boulevard, Richmond, VA; Virginia Commonwealth University, Department of Physical Medicine & Rehabilitation, Richmond, VA.
| |
Collapse
|
2
|
van der Scheer JW, Goosey-Tolfrey VL, Valentino SE, Davis GM, Ho CH. Functional electrical stimulation cycling exercise after spinal cord injury: a systematic review of health and fitness-related outcomes. J Neuroeng Rehabil 2021; 18:99. [PMID: 34118958 PMCID: PMC8196442 DOI: 10.1186/s12984-021-00882-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/19/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES The objective of this review was to summarize and appraise evidence on functional electrical stimulation (FES) cycling exercise after spinal cord injury (SCI), in order to inform the development of evidence-based clinical practice guidelines. METHODS PubMed, the Cochrane Central Register of Controlled Trials, EMBASE, SPORTDiscus, and CINAHL were searched up to April 2021 to identify FES cycling exercise intervention studies including adults with SCI. In order to capture the widest array of evidence available, any outcome measure employed in such studies was considered eligible. Two independent reviewers conducted study eligibility screening, data extraction, and quality appraisal using Cochranes' Risk of Bias or Downs and Black tools. Each study was designated as a Level 1, 2, 3 or 4 study, dependent on study design and quality appraisal scores. The certainty of the evidence for each outcome was assessed using GRADE ratings ('High', 'Moderate', 'Low', or 'Very low'). RESULTS Ninety-two studies met the eligibility criteria, comprising 999 adults with SCI representing all age, sex, time since injury, lesion level and lesion completeness strata. For muscle health (e.g., muscle mass, fiber type composition), significant improvements were found in 3 out of 4 Level 1-2 studies, and 27 out of 32 Level 3-4 studies (GRADE rating: 'High'). Although lacking Level 1-2 studies, significant improvements were also found in nearly all of 35 Level 3-4 studies on power output and aerobic fitness (e.g., peak power and oxygen uptake during an FES cycling test) (GRADE ratings: 'Low'). CONCLUSION Current evidence indicates that FES cycling exercise improves lower-body muscle health of adults with SCI, and may increase power output and aerobic fitness. The evidence summarized and appraised in this review can inform the development of the first international, evidence-based clinical practice guidelines for the use of FES cycling exercise in clinical and community settings of adults with SCI. Registration review protocol: CRD42018108940 (PROSPERO).
Collapse
Affiliation(s)
- Jan W van der Scheer
- Peter Harrison Centre for Disability Sport, School for Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
- The Healthcare Improvement Studies (THIS) Institute, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Clifford Allbutt Building, Cambridge, CB2 OAH, UK
| | - Victoria L Goosey-Tolfrey
- Peter Harrison Centre for Disability Sport, School for Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Sydney E Valentino
- Department of Kinesiology, McMaster University, Room IWC EG115, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada
| | - Glen M Davis
- Discipline of Exercise and Sport Sciences, Faculty of Medicine and Health, Sydney School of Health Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Chester H Ho
- Division of Physical Medicine & Rehabilitation, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
3
|
Effects of Electrical Stimulation on Risk Factors for Developing Pressure Ulcers in People with a Spinal Cord Injury: A Focused Review of Literature. Am J Phys Med Rehabil 2017; 95:535-52. [PMID: 27149579 DOI: 10.1097/phm.0000000000000501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pressure ulcers (PUs) are a common and serious problem for wheelchair users, such as individuals with a spinal cord injury (SCI), resulting in great discomfort, loss of quality of life, and significant medical care costs. Therefore, it is of utmost importance to prevent PUs. In this literature overview, the effects of electrical stimulation (ES) on the risk factors for developing PUs in people with an SCI are examined and synthesized from January 1980 to January 2015. Thirty-four relevant studies of PU prevention in SCI were identified. Four were randomized clinical trials, 24 were case series, 6 had other designs. Three types of ES modalities were identified. The methodological quality varied from poor to fairly strong, with a large variety in used ES parameters. Twenty-three studies were identified describing short-term effects of ES on interface pressure, oxygenation, and/or blood flow, and 24 studies described the long-term effects of ES on muscle volume, muscle strength, and histology. Whereas there is a lack of controlled studies on the effects of ES on PU incidence, which disallows definite conclusions, there is moderate evidence to suggest that ES-induced muscle activation has a positive influence on several risk factors for developing PUs in people with an SCI.
Collapse
|
4
|
Boughner KJ, Durfee WK. Preliminary design of an energy storing orthosis for providing gait to people with spinal cord injury. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:2581-4. [PMID: 25570518 DOI: 10.1109/embc.2014.6944150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A new design is proposed for an energy storing orthosis (ESO) that restores walking to people with spinal cord injury by combining functional electrical stimulation of the quadriceps muscle with a mechanical brace that uses elastic elements to store and transfer energy between hip and knee joints. The new ESO is a variation of a previous design and uses constant force springs for energy storage. Based on the detailed design and on dynamic simulations, the concept has demonstrated preliminary technical feasibility.
Collapse
|
5
|
Quintero HA, Farris RJ, Durfee WK, Goldfarb M. Feasibility of a hybrid-FES system for gait restoration in paraplegics. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:483-486. [PMID: 21096305 PMCID: PMC3377372 DOI: 10.1109/iembs.2010.5627088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This paper proposes a new configuration for a hybrid-FES gait restoration system, and presents a combination of simulation and experiment that support the feasibility of the proposed approach. Gait simulation results are presented that indicate the majority of load bearing and the majority of power for gait is provided by the legs (i.e., quadriceps muscle stimulation). Based on these simulations, experiments on healthy subjects indicate that the gait restoration approach should be capable of providing long periods of locomotion unimpeded by quadriceps muscle fatigue.
Collapse
|
6
|
Hamzaid NA, Davis G. Health and Fitness Benefits of Functional Electrical Stimulation-Evoked Leg Exercise for Spinal Cord–Injured Individuals. Top Spinal Cord Inj Rehabil 2009. [DOI: 10.1310/sci1404-88] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Duffell LD, Donaldson NDN, Perkins TA, Rushton DN, Hunt KJ, Kakebeeke TH, Newham DJ. Long-term intensive electrically stimulated cycling by spinal cord-injured people: Effect on muscle properties and their relation to power output. Muscle Nerve 2008; 38:1304-11. [DOI: 10.1002/mus.21060] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Sisto SA, Forrest GF, Faghri PD. Technology for mobility and quality of life in spinal cord injury. ACTA ACUST UNITED AC 2008; 27:56-68. [PMID: 18463021 DOI: 10.1109/emb.2007.907398] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sue Ann Sisto
- Division of Rehabilitation Sciences, School of Health Technology & Management, Stony Brook University, Stony Brook, NY 11790-8340, USA.
| | | | | |
Collapse
|
9
|
Bickel CS, Slade JM, Haddad F, Adams GR, Dudley GA. Acute molecular responses of skeletal muscle to resistance exercise in able-bodied and spinal cord-injured subjects. J Appl Physiol (1985) 2003; 94:2255-62. [PMID: 12611774 DOI: 10.1152/japplphysiol.00014.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spinal cord injury (SCI) results in muscle atrophy, which contributes to a number of health problems, such as cardiovascular deconditioning, metabolic derangement, and osteoporosis. Electromyostimulation (EMS) holds the promise of ameliorating SCI-related muscle atrophy and, therefore, improving general health. To date, EMS training of long-term SCI subjects has resulted in some muscle hypertrophy but has fallen short of normalizing muscle mass. The aim of this study was to compare the molecular responses of vastus lateralis muscles from able-bodied (AB) and SCI subjects after acute bouts of EMS-induced resistance exercise to determine whether SCI muscles displayed some impairment in response. Analysis included mRNA markers known to be responsive to increased loading in rodent muscles. Muscles of AB and SCI subjects were subjected to EMS-stimulated exercise in two 30-min bouts, separated by a 48-h rest. Needle biopsy samples were obtained 24 h after the second exercise bout. In both the AB and SCI muscles, significant changes were seen in insulin-like growth factor binding proteins 4 and 5, cyclin-dependent kinase inhibitor p21, and myogenin mRNA levels. In AB subjects, the mRNA for mechano-growth factor was also increased. Before exercise, the total RNA concentration of the SCI muscles was less than that of the AB subjects but not different postexercise. The results of this study indicate that acute bouts of resistance exercise stimulate molecular responses in the skeletal muscles of both AB and SCI subjects. The responses seen in the SCI muscles indicate that the systems that regulate these molecular responses are intact, even after extended periods of muscle unloading.
Collapse
Affiliation(s)
- C Scott Bickel
- Department of Exercise Science, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
10
|
Castro MJ, Apple DF, Staron RS, Campos GE, Dudley GA. Influence of complete spinal cord injury on skeletal muscle within 6 mo of injury. J Appl Physiol (1985) 1999; 86:350-8. [PMID: 9887150 DOI: 10.1152/jappl.1999.86.1.350] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the influence of spinal cord injury (SCI) on affected skeletal muscle. The right vastus lateralis muscle was biopsied in 12 patients as soon as they were clinically stable (average 6 wk after SCI), and 11 and 24 wk after injury. Samples were also taken from nine able-bodied controls at two time points 18 wk apart. Surface electrical stimulation (ES) was applied to the left quadriceps femoris muscle to assess fatigue at these same time intervals. Biopsies were analyzed for fiber type percent and cross-sectional area (CSA), fiber type-specific succinic dehydrogenase (SDH) and alpha-glycerophosphate dehydrogenase (GPDH) activities, and myosin heavy chain percent. Controls showed no change in any variable over time. Patients showed 27-56% atrophy (P = 0.000) of type I, IIa, and IIax+IIx fibers from 6 to 24 wk after injury, resulting in fiber CSA approximately one-third that of controls. Their fiber type specific SDH and GPDH activities increased (P </= 0.001) from 32 to 90% over the 18 wk, thereby approaching or surpassing control values. The relative CSA of type I fibers and percentage of myosin heavy chain type I did not change. There was apparent conversion among type II fiber subtypes; type IIa decreased and type IIax+IIx increased (P </= 0.012). Force loss during ES did not change over time for either group but was greater (P = 0.000) for SCI patients than for controls overall (27 vs. 9%). The results indicate that vastus lateralis muscle shows marked fiber atrophy, no change in the proportion of type I fibers, and a relative independence of metabolic enzyme levels from activation during the first 24 wk after clinically complete SCI. Over this time, quadriceps femoris muscle showed moderately greater force loss during ES in patients than in controls. It is suggested that the predominant response of mixed human skeletal muscle within 6 mo of SCI is loss of contractile protein. Therapeutic interventions could take advantage of this to increase muscle mass.
Collapse
Affiliation(s)
- M J Castro
- Department of Exercise Science, The University of Georgia, Athens 30602, USA
| | | | | | | | | |
Collapse
|
11
|
Phillips WT, Kiratli BJ, Sarkarati M, Weraarchakul G, Myers J, Franklin BA, Parkash I, Froelicher V. Effect of spinal cord injury on the heart and cardiovascular fitness. Curr Probl Cardiol 1998; 23:641-716. [PMID: 9830574 DOI: 10.1016/s0146-2806(98)80003-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of various FES protocols to encourage increases in physical activity and to augment physical fitness and reduce heart disease risk is a relatively new, but growing field of investigation. The evidence so far supports its use in improving potential health benefits for patients with SCI. Such benefits may include more efficient and safer cardiac function; greater stimulus for metabolic, cardiovascular, and pulmonary training adaptations; and greater stimulus for skeletal muscle training adaptations. In addition, the availability of relatively inexpensive commercial FES units to elicit muscular contractions, the ease of use of gel-less, reusable electrodes, and the increasing popularity of home and commercial upper body exercise equipment mean that such benefits are likely to be more accessible to the SCI population through increased convenience and decreased cost. The US Department of Health and Human Services has identified those with SCI as a "special population" whose health problems are accentuated, and so need to be specifically addressed. FES presents "a clear opportunity.... For health promotion and disease prevention efforts to improve the health prospects and functional independence of people with disabilities." As a corollary to this, the Centers for Disease Control and Prevention have recommended the development of techniques to prevent or ameliorate secondary disabilities in persons with a SCI. Patients with SCI have an increased susceptibility to cardiac morbidity and mortality in the acute and early stages of their injury. Most of these patients make an excellent adaptation except when confronted with infection or hypoxia. SCI by itself does not promote atherosclerosis; however, in association with multiple secondary conditions related to SCI, along with advancing age, patients with SCI are predisposed to relatively greater risk of heart disease. The epidemiologic significance of this is reflected in demographic studies that indicate an increasing number of SCI patients becoming aged. Currently 71,000 (40%) of the total 179,000 patients with SCI living in the United States are older than 40 years, and 45,000 have injuries sustained more than 20 years earlier. In addition, new injuries in the older population are increasing (currently 11% of all injuries), and some of these new patients with SCI already have pre-existing cardiac disease. Studies have demonstrated that improved lifestyle, physical activity, lipid management, and dietary restrictions can affect major risk factors for coronary artery disease. Therefore an aggressive cardiac prevention program is appropriate for patients with SCI as part of their rehabilitation. At a given submaximal workload, arm exercise is performed at a greater physiologic cost than is leg exercise. At maximal effort, however, physiologic responses are generally greater in leg exercise than arm exercise. Arm exercise is less efficient and less effective than lower body exercise in developing and maintaining both central and peripheral aspects of cardiovascular fitness. The situation is further compounded in SCI because of poor venous return as a result of lower-limb blood pooling, as a result of lack of sympathetic tone, and a diminished or absent venous "muscle pump" in the legs. This latter mechanism perhaps contributes the greatest diminution in the potential for aerobic performance in the SCI population. Obtaining a cardiopulmonary training effect in individuals with SCI is quite possible. Current studies indicate decreases in submaximal HR, respiratory quotient, minute ventilation, and oxygen uptake, with increases in maximal power output, oxygen uptake, minute ventilation, and lactic acid. Individuals with SCI have been shown to benefit from lower limb functional electrical stimulation (FES)-induced exercise. Studies have consistently reported increases in lower limb strength and cycle endurance performance with these protocols, as well as improvements in metabolic and
Collapse
Affiliation(s)
- W T Phillips
- Department of Physical Education, Arizona State University, Tempe, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Goldfarb M, Durfee WK. Design of a controlled-brake orthosis for FES-aided gait. IEEE TRANSACTIONS ON REHABILITATION ENGINEERING : A PUBLICATION OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY 1996; 4:13-24. [PMID: 8798068 DOI: 10.1109/86.486053] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Functional electrical stimulation (FES) is a means of restoring gait to individuals with spinal cord injury, but the performance of most FES-aided gait systems is hampered by the rapid muscle fatigue which results from stimulated muscle contraction and the inadequate control of joint torques necessary to produce desired limb trajectories. The controlled-brake orthosis (CBO) addresses these limitations by utilizing FES in combination with a long-leg brace that contains controllable friction brakes at the knees and hips. A laboratory version of the CBO utilizing computer-controlled magnetic particle brakes at the joints was designed and constructed, and preliminary results with a single spinal cord injury (SCI) subject have demonstrated reduced fatigue and more repeatable gait trajectories when compared to FES-aided gait without the brace. Significant work remains to demonstrate the efficacy of the concept across a wide range of SCI subjects and to design a system which meets appropriate user requirements of size, weight, cosmesis, ease of use and cost. The primary purpose of the paper is to detail the design of the CBO.
Collapse
Affiliation(s)
- M Goldfarb
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | |
Collapse
|
13
|
Abstract
Orthotics is changing more rapidly than ever before, largely resulting from improved understanding of the human requirements and the current state of technological abilities. Walking is always seen as a basic requirement for normal activity and as such it is in this area that most research and development effort is expended. This paper outlines some of the current developments in this interesting topic and includes seating and posture as these are often viewed as precursors to successful standing and then, possibly, gait.
Collapse
Affiliation(s)
- D J Pratt
- Orthotics and Disability Research Centre, Derbyshire Royal Infirmary, London, Derby, UK
| |
Collapse
|
14
|
Bremner LA, Sloan KE, Day RE, Scull ER, Ackland T. A clinical exercise system for paraplegics using functional electrical stimulation. PARAPLEGIA 1992; 30:647-55. [PMID: 1408342 DOI: 10.1038/sc.1992.128] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A low cost clinical exercise system was developed for the spinal cord injured, based on a bicycle ergometer and electrical stimulation. A pilot project was conducted, using the system, to examine the effects of stimulation induced cycling in long term paraplegics. The project comprised 2 phases of exercise, a strengthening phase involving a 12 week programme of electrical stimulation to the quadriceps and hamstrings and a 12 week cycling phase. Physiological, morphological and biochemical parameters were measured for each subject, at the beginning of the programme and following each phase. Results showed that a programme of stimulation induced lower limb exercise increased the exercise tolerance of all patients, as determined by a progressive increase in exercise time, cycling rate and exercise load. The enhanced exercise tolerance was a result of increases in local muscle strength and endurance. Increases in thigh muscle area and joint range of motion were recorded and all incomplete subjects reported an improvement in functional capabilities and general wellbeing.
Collapse
Affiliation(s)
- L A Bremner
- Department of Medical Physics, Royal Perth Hospital, Australia
| | | | | | | | | |
Collapse
|
15
|
Abstract
Functional electrical stimulation (FES) applications in the lower extremity are common in research laboratories, but clinical applications are minimal. This review summarizes current knowledge with respect to clinical application. When electrical stimulation is used in clinical applications for functional movement such as standing and walking, it is typically applied in an open-loop manner; a predetermined stimulus pattern is delivered regardless of the consequences of the actual movement. Few clinical applications of FES involve closed-loop control because of the numerous difficulties involved in its application. As with any volitional muscle contraction, electrically stimulated muscle contractions will exhibit fatigue. Although the dynamics of fatigue may differ, electrically stimulated muscle contractions cannot be continuously sustained, and if the duty cycle is too severe, even alternating periods of rest and contraction cannot be sustained at a constant force level. The exact nature of fatigue is highly specific to the past history of the individual muscle and to the individual subject. Despite their intricate detail, quantitative modeling studies have not yet been applied extensively to clinical applications. Present implantable systems are not yet a viable option for clinical application. It is not clear whether more success with surface or percutaneous systems must first be achieved to justify implantation or whether greater improvements in implantable technology and surgical protocols are needed before implantable systems will become practical. It is clear that almost any reasonably designed stimulation protocol will increase muscle bulk. The existence of other therapeutic benefits and their cost/benefit ratios remain to be fully established. It is possible to stand through bilateral stimulation of the quadriceps. Using surface electrodes, this technique is achievable in any physical therapy clinic having minimal expertise in neuromuscular stimulation. FES-aided standing must be conducted as a research project with a protocol approved by the local institutional review board, as there are currently no FDA-approved stimulation devices for standing. Multichannel FES systems are not currently available for clinical application in the United States. This may change if the "Parastep" system receives FDA approval. Percutaneous and implanted systems are years away from commercialization and clinical availability. Hybrid systems, based primarily on the reciprocating gait orthosis (RGO), are presently the only clinically available form of walking that includes some form of FES assistance. The costs and benefits of adding FES to the RGO and the long-term user acceptance rate for these systems remain to be determined.
Collapse
Affiliation(s)
- R J Jaeger
- Pritzker Institute of Medical Engineering, Illinois Institute of Technology, Chicago 60616
| |
Collapse
|