1
|
Yao H, Xu H, Wu M, Lei W, Li L, Liu D, Wang Z, Ran H, Ma H, Zhou X. Targeted long-term noninvasive treatment of choroidal neovascularization by biodegradable nanoparticles. Acta Biomater 2023; 166:536-551. [PMID: 37196903 DOI: 10.1016/j.actbio.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Choroidal neovascularization (CNV) is the main cause of vision loss in patients with wet age-related macular degeneration (AMD). Currently, treatment of these conditions requires repeated intravitreal injections, which may lead to complications such as infection and hemorrhage. So, we have developed a noninvasive method for treating CNV with nanoparticles, namely, Angiopoietin1-anti CD105-PLGA nanoparticles (AAP NPs), which targets the CNV to enhance drug accumulation at the site. These nanoparticles, with PLGA as a carrier, can slowly release encapsulated Angiopoietin 1 (Ang 1) and target the choroidal neovascularization marker CD105 to enhance drug accumulation, increases vascular endothelial cadherin (VE-cadherin) expression between vascular endothelial cells, effectively reduce neovascularization leakage and inhibit Angiopoietin 2(Ang 2) secretion by endothelial cells. In a rat model of laser-induced CNV, intravenous injection of AAP NPs exerted a good therapeutic effect in reducing CNV leakage and area. In short, these synthetic AAP NPs provide an effective alternative treatment for AMD and meet the urgent need for noninvasive treatment in neovascular ophthalmopathy. STATEMENT OF SIGNIFICANCE: This work describes the synthesis, injection-mediated delivery, in vitro and in vivo efficacy of targeted nanoparticles with encapsulated Ang1; via these nanoparticles, the drug can be targeted to choroidal neovascularization lesions for continuous treatment. The release of Ang1 can effectively reduce neovascularization leakage, maintain vascular stability, and inhibit Ang2 secretion and inflammation. This study provides a new approach for the treatment of wet age-related macular degeneration.
Collapse
Affiliation(s)
- Hao Yao
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400012, China; Chongqing Key Laboratory of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Huan Xu
- Chongqing Key Laboratory of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Mingxing Wu
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400012, China
| | - Wulong Lei
- Chongqing Key Laboratory of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Lanjiao Li
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400012, China; Chongqing Key Laboratory of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Danning Liu
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400012, China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Huafeng Ma
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400012, China.
| | - Xiyuan Zhou
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400012, China; Chongqing Key Laboratory of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China.
| |
Collapse
|
2
|
Bechinger P, Serrano Sponton L, Grützner V, Musyanovych A, Jussen D, Krenzlin H, Eldahaby D, Riede N, Kempski O, Ringel F, Alessandri B. In-vivo time course of organ uptake and blood-brain-barrier permeation of poly(L-lactide) and poly(perfluorodecyl acrylate) nanoparticles with different surface properties in unharmed and brain-traumatized rats. Front Neurol 2023; 14:994877. [PMID: 36814997 PMCID: PMC9939480 DOI: 10.3389/fneur.2023.994877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Background Traumatic brain injury (TBI) has a dramatic impact on mortality and quality of life and the development of effective treatment strategies is of great socio-economic relevance. A growing interest exists in using polymeric nanoparticles (NPs) as carriers across the blood-brain barrier (BBB) for potentially effective drugs in TBI. However, the effect of NP material and type of surfactant on their distribution within organs, the amount of the administrated dose that reaches the brain parenchyma in areas with intact and opened BBB after trauma, and a possible elicited inflammatory response are still to be clarified. Methods The organ distribution, BBB permeation and eventual inflammatory activation of polysorbate-80 (Tw80) and sodiumdodecylsulfate (SDS) stabilized poly(L-lactide) (PLLA) and poly(perfluorodecyl acrylate) (PFDL) nanoparticles were evaluated in rats after intravenous administration. The NP uptake into the brain was assessed under intact conditions and after controlled cortical impact (CCI). Results A significantly higher NP uptake at 4 and 24 h after injection was observed in the liver and spleen, followed by the brain and kidney, with minimal concentrations in the lungs and heart for all NPs. A significant increase of NP uptake at 4 and 24 h after CCI was observed within the traumatized hemisphere, especially in the perilesional area, but NPs were still found in areas away from the injury site and the contralateral hemisphere. NPs were internalized in brain capillary endothelial cells, neurons, astrocytes, and microglia. Immunohistochemical staining against GFAP, Iba1, TNFα, and IL1β demonstrated no glial activation or neuroinflammatory changes. Conclusions Tw80 and SDS coated biodegradable PLLA and non-biodegradable PFDL NPs reach the brain parenchyma with and without compromised BBB by TBI, even though a high amount of NPs are retained in the liver and spleen. No inflammatory reaction is elicited by these NPs within 24 h after injection. Thus, these NPs could be considered as potentially effective carriers or markers of newly developed drugs with low or even no BBB permeation.
Collapse
Affiliation(s)
- Patrick Bechinger
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany,Department of Anesthesiology, Helios Dr. Horst Schmidt Clinic, Wiesbaden, Germany
| | - Lucas Serrano Sponton
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany,Department of Neurosurgery, Sana Clinic Offenbach, Offenbach, Germany,*Correspondence: Lucas Serrano Sponton ✉
| | - Verena Grützner
- Fraunhofer Institute for Microengineering and Microsystems, Mainz, Germany
| | - Anna Musyanovych
- Fraunhofer Institute for Microengineering and Microsystems, Mainz, Germany
| | - Daniel Jussen
- Department of Neurosurgery, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Harald Krenzlin
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Daniela Eldahaby
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany,San Paolo Medical School, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nicole Riede
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Oliver Kempski
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Beat Alessandri
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| |
Collapse
|
3
|
Richter LR, Wan Q, Wen D, Zhang Y, Yu J, Kang JK, Zhu C, McKinnon EL, Gu Z, Qiang L, Pajvani UB. Targeted Delivery of Notch Inhibitor Attenuates Obesity-Induced Glucose Intolerance and Liver Fibrosis. ACS NANO 2020; 14:6878-6886. [PMID: 32441510 PMCID: PMC7444843 DOI: 10.1021/acsnano.0c01007] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
As the prevalence of obesity-induced type 2 diabetes mellitus (T2DM) and nonalcoholic steatohepatitis (NASH) continue to increase, the need for pharmacologic therapies becomes urgent. However, endeavors to identify and develop novel therapeutic strategies for these chronic conditions are balanced by the need for safety, impeding clinical translation. One shared pathology of these two diseases is a maladaptive reactivation of the Notch signaling pathway in liver. Notch antagonism with γ-secretase inhibitors effectively suppresses hepatic glucose production and reduces liver fibrosis in NASH, but its extrahepatic side effects, particularly goblet cell metaplasia, limit therapeutic utility. To overcome this barrier, we developed a nanoparticle-mediated delivery system to target γ-secretase inhibitor to liver (GSI NPs). GSI NP application reduced hepatic glucose production in diet-induced obese mice and reduced hepatic fibrosis and inflammation in mice fed a NASH-provoking diet, without apparent gastrointestinal toxicity. By changing the delivery method, these results provide proof-of-concept for the repurposing of a previously intolerable medication to address unmet needs in the clinical landscape for obesity-induced T2DM and NASH.
Collapse
Affiliation(s)
| | | | - Di Wen
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, Jonsson Comprehensive Cancer Center and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, California 90095, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yuqi Zhang
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | | | | | - Changyu Zhu
- Department of Medicine, Columbia University, New York, New York 10032, United States
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Elizabeth L McKinnon
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, Jonsson Comprehensive Cancer Center and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, California 90095, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | | | | |
Collapse
|
4
|
Zhang E, Zhukova V, Semyonkin A, Osipova N, Malinovskaya Y, Maksimenko O, Chernikov V, Sokolov M, Grigartzik L, Sabel BA, Gelperina S, Henrich-Noack P. Release kinetics of fluorescent dyes from PLGA nanoparticles in retinal blood vessels: In vivo monitoring and ex vivo localization. Eur J Pharm Biopharm 2020; 150:131-142. [PMID: 32151727 DOI: 10.1016/j.ejpb.2020.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 11/30/2022]
Abstract
PLGA (poly(lactic-co-glycolic acid))-based nanoparticles (NPs) are promising drug carrier systems because of their excellent biocompatibility and ability for sustained drug release. However, it is not well understood how the kinetics of such drug delivery system perform in the retinal blood circulation as imaged in vivo and in real time. To answer this question, PLGA NPs were loaded either with lipophilic carbocyanine perchlorate (DiI) or hydrophilic Rhodamine 123 (Rho123) and coated with poloxamer 188 (P188): PLGA-DiI/P188 and PLGA-Rho123/P188. All particles had narrow size distributions around 130 nm, spherical shape and negative potential. Subsequently, we performed in vivo real-time imaging of retinal blood vessels, combined with ex vivo microscopy to monitor the kinetics and to detect location of those two fluorescent markers. We found that DiI signals were long lasting, detectable >90 min in blood vessels after intravenous injection as visible by homogeneous labelling of the vessel wall as well as by spots in the lumen of blood vessels. In contrast, Rho123 signals mostly disappeared after 15 min post intravenous injection in such compartment. To explore how PLGA NP-loaded cargoes are released in the retina in vivo, we thereafter monitored the Cyanine5.5 amine (Cy5.5) covalently linked PLGA polymer (Cy5.5-PLGA) in parallel to DiI and Rho123. The Cy5.5 signal from PLGA polymer was detectable in the retina vessels >90 min for both, the Cy5.5-PLGA-DiI/P188 and Cy5.5-PLGA-Rho123/P188 groups. Microscopy of the ex vivo retina tissue revealed partial level of colocalization of PLGA with DiI but no colocalization between PLGA and Rho123 at 2 h post injection. This indicates that at least a fraction of the lipophilic DiI was preserved within NPs, whereas no hydrophilic Rho123 was associated with NPs at that time point. In conclusion, the properties of PLGA carrier-cargo system in the blood circulation of the retina might be strongly influenced by the combination of factors, including the individual properties of loaded compounds and blood milieu. Thus, it is unlikely that a single nanoparticle formulation will be identified that is universally effective for the delivery of different compounds.
Collapse
Affiliation(s)
- Enqi Zhang
- Institute of Medical Psychology, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Vasilisa Zhukova
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia; Drugs Technology LLC, Moscow Region, Khimki, Russia
| | - Aleksey Semyonkin
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia; I. M. Sechenov First Moscow State Medical University, Moscow, Russia; Drugs Technology LLC, Moscow Region, Khimki, Russia
| | - Nadezhda Osipova
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia; Drugs Technology LLC, Moscow Region, Khimki, Russia
| | - Yulia Malinovskaya
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia; Drugs Technology LLC, Moscow Region, Khimki, Russia; M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Olga Maksimenko
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia; Drugs Technology LLC, Moscow Region, Khimki, Russia
| | | | - Maxim Sokolov
- Institute of Medical Psychology, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Lisa Grigartzik
- Institute of Medical Psychology, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Svetlana Gelperina
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia; Drugs Technology LLC, Moscow Region, Khimki, Russia
| | - Petra Henrich-Noack
- Institute of Medical Psychology, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Clinic of Neurology with Institute of Translational Neurology, University Clinic Muenster, Mendel Str. 7, 49148 Muenster, Germany
| |
Collapse
|
5
|
Saito E, Kuo R, Kramer KR, Gohel N, Giles DA, Moore BB, Miller SD, Shea LD. Design of biodegradable nanoparticles to modulate phenotypes of antigen-presenting cells for antigen-specific treatment of autoimmune disease. Biomaterials 2019; 222:119432. [PMID: 31480002 DOI: 10.1016/j.biomaterials.2019.119432] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/18/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
Current therapeutic options for autoimmune diseases, such as multiple sclerosis (MS), often require lifelong treatment with immunosuppressive drugs, yet strategies for antigen-specific immunomodulation are emerging. Biodegradable particles loaded with disease-specific antigen, either alone or with immunomodulators, have been reported to ameliorate disease. Herein, we hypothesized that the carrier could impact polarization of the immune cells that associate with particles and the subsequent disease progression. Single injection of three polymeric carriers, 50:50 poly (DL-lactide-co-glycolide) (PLG) with two molecular weights (Low, High) and poly (DL-lactide) (PLA), loaded with the disease-specific antigen, proteolipid protein (PLP139-151), were investigated for the ability to attenuate clinical scores in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. At a low particle dose, mice treated with PLA-based particles had significantly lower clinical scores at the chronic stage of the disease over 200 days post immunization, while neither PLG-based particles nor OVA control particles reduced the clinical scores. Compared to PLG-based particles, PLA-based particles were largely associated with Kupffer cells and liver sinusoidal endothelial cells, which had a reduced co-stimulatory molecule expression that correlated with a reduction of CD4+ T-cell populations in the central nervous system. Delivery of PLA-based particles encapsulated with higher levels of PLP139-151 at a reduced dose were able to completely ameliorate EAE over 200 days along with inhibition of Th1 and Th17 polarization. Collectively, our study demonstrates that the carrier properties and antigen loading determine phenotypes of immune cells in the peripheral organs, influencing the amelioration of both acute and chronic stages of autoimmunity.
Collapse
Affiliation(s)
- Eiji Saito
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert Kuo
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kevin R Kramer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nishant Gohel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David A Giles
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Bethany B Moore
- Department of Immunology, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL, 60208, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
6
|
Saito E, Kuo R, Pearson RM, Gohel N, Cheung B, King NJC, Miller SD, Shea LD. Designing drug-free biodegradable nanoparticles to modulate inflammatory monocytes and neutrophils for ameliorating inflammation. J Control Release 2019; 300:185-196. [PMID: 30822435 DOI: 10.1016/j.jconrel.2019.02.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022]
Abstract
Inflammation associated with autoimmune diseases and chronic injury is an initiating event that leads to tissue degeneration and dysfunction. Inflammatory monocytes and neutrophils systemically circulate and enter inflamed tissue, and pharmaceutical based targeting of these cells has not substantially improved outcomes and has had side effects. Herein, we investigated the design of drug-free biodegradable nanoparticles, notably without any active pharmaceutical ingredient or targeting ligand, that target circulating inflammatory monocytes and neutrophils in the vasculature to inhibit them from migrating into inflamed tissue. Nanoparticles were formed from 50:50 poly(DL-lactide-co-glycolide) (PLG) with two molecular weights (Low, High) and poly(DL-lactide) (PLA) (termed PLG-L, PLG-H, and PDLA, respectively) and were analyzed for their association with monocytes and neutrophils and their impact on disease course along with immune cell trafficking. For particles injected intravenously for 6 consecutive days to mice with experimental autoimmune encephalomyelitis (EAE), PLG-H particles had significantly lower EAE clinical scores than PBS control, while PLG-L and PDLA particles had modest or negligible effect on EAE onset. In vivo and in vitro data suggests that PLG-H particles had high association with immune cells, with preferential association with blood neutrophils relative to other particles. PLG-H particles restrained immune cells from the central nervous system (CNS), with increased accumulation in the spleen, which was not observed for mice receiving PDLA or control treatments. These results demonstrate that the particle composition influences the association with inflammatory monocytes and neutrophils in the vasculature, with the potential to redirect trafficking and ameliorate inflammation.
Collapse
Affiliation(s)
- Eiji Saito
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert Kuo
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA
| | - Nishant Gohel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brandon Cheung
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas J C King
- The Discipline of Pathology, School of Medical Science, Bosch Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL 60208, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Halasz K, Kelly SJ, Iqbal MT, Pathak Y, Sutariya V. Utilization of Apatinib-Loaded Nanoparticles for the Treatment of Ocular Neovascularization. Curr Drug Deliv 2018; 16:153-163. [DOI: 10.2174/1567201815666181017095708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022]
Abstract
Background:
The current treatment of ocular neovascularization requires frequent intravitreal
injections of anti-vascular endothelial growth factor (VEGF) agents that cause severe side effects.
Objective:
The purpose of this study is to prepare and characterize a novel nanoscale delivery system of
apatinib for ocular neovascularization.
</P><P>
Methods: The optimized formulation showed a particle size of 135.04 nm, polydispersity index (PDI)
of 0.28 ± 0.07, encapsulation efficiency (EE) of 65.92%, zeta potential (ZP) of -23.70 ± 8.69 mV, and
pH of 6.49 ± 0.20. In vitro release was carried out to demonstrate a 3.13-fold increase in the
sustainability of apatinib-loaded nanoparticles versus free apatinib solution.
</P><P>
Result: Cell viability and VEGFA and VEGFR2 expression were analyzed in animal retinal pigment
epithelial (ARPE-19) cells.
The results confirmed the hypothesis that apatinib nanoparticles decreased toxicity (1.36 ±
0.74 fold) and efficient VEGF inhibition (3.51 ± 0.02 fold) via VEGFR2 mediation.
Collapse
Affiliation(s)
- Kathleen Halasz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, United States
| | - Shannon J. Kelly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, United States
| | - Muhammad Tajwar Iqbal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, United States
| | - Yashwant Pathak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, United States
| | - Vijaykumar Sutariya
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, United States
| |
Collapse
|
8
|
Cornu R, Rougier N, Pellequer Y, Lamprecht A, Hamon P, Li R, Beduneau A, Martin H. Interspecies differences in the cytochrome P450 activity of hepatocytes exposed to PLGA and silica nanoparticles: an in vitro and in vivo investigation. NANOSCALE 2018; 10:5171-5181. [PMID: 29492498 DOI: 10.1039/c8nr00226f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanomedicines represent a promising approach in the treatment and diagnosis of numerous disorders. The majority of the injected dose of nanoparticles (NPs) is sequestrated in the liver. Despite this hepatic tropism, the interaction of NPs with the detoxification function of the liver remains unclear. The present study consists of evaluating the impact of biodegradable poly(lactide-co-glycolide) (PLGA) and silica NPs on cytochrome P450 (CYP) activities. The effects of NPs were evaluated in vitro on human and rat hepatocytes in primary cultures and in vivo by intravenous injections in healthy rats. More than the physicochemical properties, the composition of NPs (organic, inorganic) dramatically influenced the detoxification function of the liver. Silica NPs modulated the CYP activity both in rat and human hepatocytes, in contrast to PLGA NPs. A CYP isoform-dependent effect was reported and the modulation of the metabolic hepatic activity was species-dependent. Human hepatocytes were sensitive to an exposure to PLGA NPs, whereas no marked effect was detected in rat hepatocytes. The in vitro data obtained in rat hepatocytes were correlated with the in vivo data. This study emphasizes the interest to set up relevant in vitro models using human hepatic cells to evaluate the hepatotoxicity of nanomedicines.
Collapse
Affiliation(s)
- Raphaël Cornu
- PEPITE EA4267, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Cayre F, Mura S, Andreiuk B, Sobot D, Gouazou S, Desmaële D, Klymchenko AS, Couvreur P. In Vivo FRET Imaging to Predict the Risk Associated with Hepatic Accumulation of Squalene-Based Prodrug Nanoparticles. Adv Healthc Mater 2018; 7. [PMID: 29195020 DOI: 10.1002/adhm.201700830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/05/2017] [Indexed: 12/23/2022]
Abstract
Förster resonance energy transfer (FRET) is used here for the first time to monitor the in vivo fate of nanoparticles made of the squalene-gemcitabine prodrug and two novel derivatives of squalene with the cyanine dyes 5.5 and 7.5, which behave as efficient FRET pair in the NIR region. Following intravenous administration, nanoparticles initially accumulate in the liver, then they show loss of their integrity within 2 h and clearance of the squalene bioconjugates is observed within 24 h. Such awareness is a key prerequisite before introduction into clinical settings.
Collapse
Affiliation(s)
- Fanny Cayre
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| | - Simona Mura
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| | - Bohdan Andreiuk
- Laboratoire de Biophotonique et Pharmacologie; UMR CNRS 7213; University of Strasbourg; 74 route du Rhin 67401 Illkirch Cedex France
- Organic Chemistry Department; Chemistry Faculty; Taras Shevchenko National University of Kyiv; 01601 Kyiv Ukraine
| | - Dunja Sobot
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| | - Sandrine Gouazou
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| | - Didier Desmaële
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| | - Andrey S. Klymchenko
- Laboratoire de Biophotonique et Pharmacologie; UMR CNRS 7213; University of Strasbourg; 74 route du Rhin 67401 Illkirch Cedex France
| | - Patrick Couvreur
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| |
Collapse
|
10
|
Shalgunov V, Zaytseva-Zotova D, Zintchenko A, Levada T, Shilov Y, Andreyev D, Dzhumashev D, Metelkin E, Urusova A, Demin O, McDonnell K, Troiano G, Zale S, Safarovа E. Comprehensive study of the drug delivery properties of poly(l-lactide)-poly(ethylene glycol) nanoparticles in rats and tumor-bearing mice. J Control Release 2017; 261:31-42. [PMID: 28611009 DOI: 10.1016/j.jconrel.2017.06.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/03/2017] [Accepted: 06/09/2017] [Indexed: 11/26/2022]
Abstract
Nanoparticles made of polylactide-poly(ethylene glycol) block-copolymer (PLA-PEG) are promising vehicles for drug delivery due to their biodegradability and controllable payload release. However, published data on the drug delivery properties of PLA-PEG nanoparticles are heterogeneous in terms of nanoparticle characteristics and mostly refer to low injected doses (a few mg nanoparticles per kg body weight). We have performed a comprehensive study of the biodistribution of nanoparticle formulations based on PLA-PEG nanoparticles of ~100nm size at injected doses of 30 to 140mg/kg body weight in healthy rats and nude tumor-bearing mice. Nanoparticle formulations differed by surface PEG coverage and by release kinetics of the encapsulated model active pharmaceutical ingredient (API). Increase in PEG coverage prolonged nanoparticle circulation half-life up to ~20h in rats and ~10h in mice and decreased retention in liver, spleen and lungs. Circulation half-life of the encapsulated API grew monotonously as the release rate slowed down. Plasma and tissue pharmacokinetics was dose-linear for inactive nanoparticles, but markedly dose-dependent for the model therapeutic formulation, presumably because of the toxic effects of released API. A mathematical model of API distribution calibrated on the data for inactive nanoparticles and conventional API form correctly predicted the distribution of the model therapeutic formulation at the lowest investigated dose, but for higher doses the toxic action of the released API had to be explicitly modelled. Our results provide a coherent illustration of the ability of controllable-release PLA-PEG nanoparticles to serve as an effective drug delivery platform to alter API biodistribution. They also underscore the importance of physiological effects of released drug in determining the biodistribution of therapeutic drug formulations at doses approaching tolerability limits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Oleg Demin
- Institute for Systems Biology, Moscow, Russia
| | | | | | | | | |
Collapse
|
11
|
Ma J, Li R, Liu Y, Qu G, Liu J, Guo W, Song H, Li X, Liu Y, Xia T, Yan B, Liu S. Carbon Nanotubes Disrupt Iron Homeostasis and Induce Anemia of Inflammation through Inflammatory Pathway as a Secondary Effect Distant to Their Portal-of-Entry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603830. [PMID: 28195425 DOI: 10.1002/smll.201603830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/26/2016] [Indexed: 06/06/2023]
Abstract
Although numerous toxicological studies have been performed on carbon nanotubes (CNTs), a few studies have investigated their secondary and indirect effects beyond the primary target tissues/organs. Here, a cascade of events are investigated: the initiating event and the subsequent key events necessary for the development of phenotypes, namely CNT-induced pro-inflammatory effects on iron homeostasis and red blood cell formation, which are linked to anemia of inflammation (AI). A panel of CNTs are prepared including pristine multiwall CNTs (P-MWCNTs), aminated MWCNTs (MWCNTs-NH2 ), polyethylene glycol MWCNTs (MWCNTs-PEG), polyethyleneimine MWCNTs (MWCNTs-PEI), and carboxylated MWCNTs (MWCNTs-COOH). It has been demonstrated that all CNT materials provoke inflammatory cytokine interleukin-6 (IL-6) production and stimulate hepcidin induction, associated with disordered iron homeostasis, irrespective of exposure routes including intratracheal, intravenous, and intraperitoneal administration. Meanwhile, PEG and COOH modifications can ameliorate the activation of IL-6-hepcidin signaling. Long-term exposure of MWCNTs results in AI and extramedullary erythropoiesis. Thus, an adverse outcome pathway is identified: MWCNT exposure leads to inflammation, hepatic hepcidin induction, and disordered iron metabolism. Together, the combined data depict the hazardous secondary toxicity of CNTs in incurring anemia through inflammatory pathway. This study will also open a new avenue for future investigations on CNT-induced indirect and secondary adverse effects.
Collapse
Affiliation(s)
- Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ruibin Li
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Yin Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jing Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenli Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Haoyang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xinghong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yajun Liu
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Tian Xia
- Beijing Jishuitan Hospital, Peking University Health Science Center, Beijing, 100035, China
| | - Bing Yan
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
12
|
McCarthy DA, Nazem AA, McNeilan J, Shakerley NL, Clark RR, Idelchik MD, Yigit M, Melendez JA. Featured Article: Nanoenhanced matrix metalloproteinase-responsive delivery vehicles for disease resolution and imaging. Exp Biol Med (Maywood) 2016; 241:2023-2032. [PMID: 27474175 DOI: 10.1177/1535370216662534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The wide array of proteases, including matrix metalloproteinases, produced in response to many pathogenic insults, confers a unique proteolytic signature which is often disease specific and provides a potential therapeutic target for drug delivery. Here we propose the use of collagen-based nanoenhanced matrix metalloproteinase-responsive delivery vehicles that display matrix metalloproteinase-specific degradation in diverse in vitro models of proteolysis. We demonstrate that collagen particles comprised of protease substrates (primarily collagen) can be made of uniform size and loaded efficiently with assorted cargo including fluorescently labeled mesoporous silica, magnetic nanoparticles, proteins and antioxidants. We also demonstrate that pathologic concentrations of proteases produced in situ or in vitro display protease-specific cargo release. Additionally, we show that the collagen-based particles display bright fluorescence when loaded with a fluorophore, and have the potential to be used as vehicles for targeted delivery of drugs or imaging agents to regions of high proteolytic activity.
Collapse
Affiliation(s)
- Donald A McCarthy
- 1 SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Ahmad A Nazem
- 1 SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - James McNeilan
- 1 SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Nicole L Shakerley
- 1 SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Ryan R Clark
- 1 SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - María D Idelchik
- 1 SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | | | - J Andrés Melendez
- 1 SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| |
Collapse
|
13
|
Khan AM, Ahmad FJ, Panda AK, Talegaonkar S. Investigation of imatinib loaded surface decorated biodegradable nanocarriers against glioblastoma cell lines: Intracellular uptake and cytotoxicity studies. Int J Pharm 2016; 507:61-71. [DOI: 10.1016/j.ijpharm.2016.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 11/30/2022]
|
14
|
Silva AL, Soema PC, Slütter B, Ossendorp F, Jiskoot W. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Hum Vaccin Immunother 2016; 12:1056-69. [PMID: 26752261 PMCID: PMC4962933 DOI: 10.1080/21645515.2015.1117714] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Among the emerging subunit vaccines are recombinant protein- and synthetic peptide-based vaccine formulations. However, proteins and peptides have a low intrinsic immunogenicity. A common strategy to overcome this is to co-deliver (an) antigen(s) with (an) immune modulator(s) by co-encapsulating them in a particulate delivery system, such as poly(lactic-co-glycolic acid) (PLGA) particles. Particulate PLGA formulations offer many advantages for antigen delivery as they are biocompatible and biodegradable; can protect the antigens from degradation and clearance; allow for co-encapsulation of antigens and immune modulators; can be targeted to antigen presenting cells; and their particulate nature can increase uptake and cross-presentation by mimicking the size and shape of an invading pathogen. In this review we discuss the pros and cons of using PLGA particulate formulations for subunit vaccine delivery and provide an overview of formulation parameters that influence their adjuvanticity and the ensuing immune response.
Collapse
Affiliation(s)
- A L Silva
- a Division of Drug Delivery Technology , Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands
| | - P C Soema
- b Intravacc (Institute for Translational Vaccinology) , Bilthoven , The Netherlands
| | - B Slütter
- a Division of Drug Delivery Technology , Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands.,c Cluster BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands
| | - F Ossendorp
- d Department of Immunohematology and Blood Transfusion , Leiden University Medical Center , Leiden , The Netherlands
| | - W Jiskoot
- a Division of Drug Delivery Technology , Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands
| |
Collapse
|
15
|
Chiarelli PA, Kievit FM, Zhang M, Ellenbogen RG. Bionanotechnology and the future of glioma. Surg Neurol Int 2015; 6:S45-58. [PMID: 25722933 PMCID: PMC4338483 DOI: 10.4103/2152-7806.151334] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 01/01/2023] Open
Abstract
Designer nanoscaled materials have the potential to revolutionize diagnosis and treatment for glioma. This review summarizes current progress in nanoparticle-based therapies for glioma treatment including targeting, drug delivery, gene delivery, and direct tumor ablation. Preclinical and current human clinical trials are discussed. Although progress in the field has been significant over the past decade, many successful strategies demonstrated in the laboratory have yet to be implemented in human clinical trials. Looking forward, we provide examples of combined treatment strategies, which harness the potential for nanoparticles to interact with their biochemical environment, and simultaneously with externally applied photons or magnetic fields. We present our notion of the "ideal" nanoparticle for glioma, a concept that may soon be realized.
Collapse
Affiliation(s)
- Peter A Chiarelli
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| | - Forrest M Kievit
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| | - Miqin Zhang
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA ; Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
16
|
Poly-(lactic-co-glycolic-acid)-based particulate vaccines: Particle uptake by dendritic cells is a key parameter for immune activation. Vaccine 2015; 33:847-54. [DOI: 10.1016/j.vaccine.2014.12.059] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 11/22/2022]
|
17
|
Manoukian MAC, Ott SV, Rajadas J, Inayathullah M. Polymeric Nanoparticles to Combat Squamous Cell Carcinomas in Patients with Dystrophic Epidermolysis Bullosa. ACTA ACUST UNITED AC 2014; 4:15-24. [PMID: 25506404 DOI: 10.2174/1877912304666140708184013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skin cancer is the leading cause of malignancy in the United States, with Basal Cell Carcinoma, Squamous Cell Carcinoma , and Melanoma being the three most common diagnoses, respectively. Squamous Cell Carcinoma (SCC) is a particular concern for patients suffering from Dystrophic Epidermolysis Bullosa (DEB), a disease that affects the production and function of collagen VII, a protein that forms the anchoring fibrils which bind the epidermis to the dermis. Patients with DEB suffer from chronic blistering and wounds that have impaired healing capabilities, often leading to the development of SCC and eventual mortality. Nanomedicine is playing an increasing role in the delivery of effective therapeutics to combat a wide range of diseases, including the imaging and treatment of SCC. In this review, we discuss the role of nanoparticles in the treatment of SCC with an emphasis on PLGA nanoparticles and SCCs found in patients suffering from DEB, and address recent patents that are pertinent to the development of novel nanomedical therapeutics.
Collapse
Affiliation(s)
- Martin A C Manoukian
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA - 94305, USA.,Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, CA - 94304, USA
| | - Susanne V Ott
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, CA - 94304, USA
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, CA - 94304, USA
| | - Mohammed Inayathullah
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, CA - 94304, USA
| |
Collapse
|