1
|
Cai J, Wang J, Sun C, Dai J, Zhang C. Biomaterials with Stiffness Gradient for Interface Tissue Engineering. Biomed Mater 2022; 17. [PMID: 35985317 DOI: 10.1088/1748-605x/ac8b4a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/19/2022] [Indexed: 11/11/2022]
Abstract
Interface tissue engineering is a rapidly growing field that aims to develop engineered tissue alternates with the goal of promoting integration between multiple tissue types. Engineering interface tissues is a complex process, which requires a specialized biomaterials with organized material composition, stiffness, cell types, and signaling molecules. Among these, stiffness-controllable substrates have been developed to investigate the effect of stiffness on cell behavior. Especially these substrates with graded stiffness are advantageous since they allow the differentiation of multiple cell phenotypes and subsequent tissue development. In this review, we highlight the various types of manufacturing techniques that can be leveraged to fabricate scaffolds with stiffness gradient, discuss methods to characterize them, and gradient biomaterials for controlling cellular behavior including attachment, migration, proliferation, and differentiation. We also address fundamentals of interface tissue organization, and stiffness gradient biomaterials for interface tissue regeneration. Potential challenges and future directions in this emerging field are also discussed.
Collapse
Affiliation(s)
- Jialun Cai
- Hunan University, #27 Tianma Road, Changsha, Hunan, 410082, CHINA
| | - Junjuan Wang
- Hangzhou Medical College, Binwen Road, Hangzhou, Zhejiang, 310053, CHINA
| | - Chenxuan Sun
- Hunan University, 27# Tianma Road, ChangSha, Hunan, 410000, CHINA
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology Chinese Academy of Sciences, No 1 West Beichen Road, Chaoyang District, Beijing, 100101, Beijing, 100101, CHINA
| | - Can Zhang
- Biomedical Engineering, Hunan University, #27 Tianma Road, Changsha, 410000, CHINA
| |
Collapse
|
2
|
He W, Reaume M, Hennenfent M, Lee BP, Rajachar R. Biomimetic hydrogels with spatial- and temporal-controlled chemical cues for tissue engineering. Biomater Sci 2020; 8:3248-3269. [PMID: 32490441 PMCID: PMC7323904 DOI: 10.1039/d0bm00263a] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomimetic hydrogels have emerged as the most useful tissue engineering scaffold materials. Their versatile chemistry can recapitulate multiple physical and chemical features to integrate cells, scaffolds, and signaling molecules for tissue regeneration. Due to their highly hydrophilic nature hydrogels can recreate nutrient-rich aqueous environments for cells. Soluble regulatory molecules can be incorporated to guide cell proliferation and differentiation. Importantly, the controlled dynamic parameters and spatial distribution of chemical cues in hydrogel scaffolds are critical for cell-cell communication, cell-scaffold interaction, and morphogenesis. Herein, we review biomimetic hydrogels that provide cells with spatiotemporally controlled chemical cues as tissue engineering scaffolds. Specifically, hydrogels with temporally controlled growth factor-release abilities, spatially controlled conjugated bioactive molecules/motifs, and targeting delivery and reload properties for tissue engineering applications are discussed in detail. Examples of hydrogels that possess clinically favorable properties, such as injectability, self-healing ability, stimulus-responsiveness, and pro-remodeling features, are also covered.
Collapse
Affiliation(s)
- Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
- FM Wound Care, LLC, Hancock, MI 49930, USA
| | - Max Reaume
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Maureen Hennenfent
- Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Rupak Rajachar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
3
|
Abstract
The field of bioprinting is rapidly evolving as researchers innovate and drive the field forward. This chapter provides a brief overview of the history of bioprinting from the first described printer system in the early 2000s to present-day relatively inexpensive commercially available units and considers the current state of the field and emerging trends, including selected applications and techniques.
Collapse
|
4
|
Vania V, Wang L, Tjakra M, Zhang T, Qiu J, Tan Y, Wang G. The interplay of signaling pathway in endothelial cells-matrix stiffness dependency with targeted-therapeutic drugs. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165645. [PMID: 31866415 DOI: 10.1016/j.bbadis.2019.165645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/17/2019] [Accepted: 12/14/2019] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases (CVDs) have been one of the major causes of human deaths in the world. The study of CVDs has focused on cell chemotaxis for decades. With the advances in mechanobiology, accumulating evidence has demonstrated the influence of mechanical stimuli on arterial pathophysiology and endothelial dysfunction that is a hallmark of atherosclerosis development. An increasing number of drugs have been exploited to decrease the stiffness of vascular tissue for CVDs therapy. However, the underlying mechanisms have yet to be explored. This review aims to summarize how matrix stiffness mediates atherogenesis through various important signaling pathways in endothelial cells and cellular mechanophenotype, including RhoA/Rho-associated protein kinase (ROCK), mitogen-activated protein kinase (MAPK), and Hippo pathways. We also highlight the roles of putative mechanosensitive non-coding RNAs in matrix stiffness-mediated atherogenesis. Finally, we describe the usage of tunable hydrogel and its future strategy to improve our knowledge underlying matrix stiffness-mediated CVDs mechanism.
Collapse
Affiliation(s)
- Vicki Vania
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lu Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Marco Tjakra
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tao Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
5
|
Kasak P, Danko M, Zavahir S, Mrlik M, Xiong Y, Yousaf AB, Lai WF, Krupa I, Tkac J, Rogach AL. Identification of Molecular Fluorophore as a Component of Carbon Dots able to Induce Gelation in a Fluorescent Multivalent-Metal-Ion-Free Alginate Hydrogel. Sci Rep 2019; 9:15080. [PMID: 31636324 PMCID: PMC6803645 DOI: 10.1038/s41598-019-51512-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 10/02/2019] [Indexed: 11/24/2022] Open
Abstract
We introduce a simple approach to fabricate fluorescent multivalent metal ion-free alginate hydrogels, which can be produced using carbon dots accessible from natural sources (citric acid and L-cysteine). Molecular fluorophore 5-oxo-2,3-dihydro-5H-[1,3]-thiazolo[3,2-a] pyridine-3,7-dicarboxylic acid (TPDCA), which is formed during the synthesis of carbon dots, is identified as a key segment for the crosslinking of hydrogels. The crosslinking happens through dynamic complexation of carboxylic acid groups of TPDCA and alginate cages along with sodium ions. The TPDCA derived hydrogels are investigated regarding to their thermal, rheological and optical properties, and found to exhibit characteristic fluorescence of this aggregated molecular fluorophore. Moreover, gradient hydrogels with tunable mechanical and optical properties and controlled release are obtained upon immersion of the hydrogel reactors in solutions of divalent metal ions (Ca2+, Cu2+, and Ni2+) with a higher affinity to alginate.
Collapse
Affiliation(s)
- Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Martin Danko
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41, Bratislava, Slovak Republic
| | - Sifani Zavahir
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Miroslav Mrlik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, 760 01, Zlín, Czech Republic
| | - Yuan Xiong
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Ammar Bin Yousaf
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Wing-Fu Lai
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Igor Krupa
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, SAR, Hong Kong.
| |
Collapse
|
6
|
Burke G, Barron V, Geever T, Geever L, Devine DM, Higginbotham CL. Evaluation of the materials properties, stability and cell response of a range of PEGDMA hydrogels for tissue engineering applications. J Mech Behav Biomed Mater 2019; 99:1-10. [PMID: 31319331 DOI: 10.1016/j.jmbbm.2019.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 05/16/2019] [Accepted: 07/06/2019] [Indexed: 01/12/2023]
Abstract
The main aim of this study was to examine the stability of a range of polyethyleneglycol dimethacrylate (PEGDMA) hydrogels over a 28-day period in simulated physiological solution. Upon optimisation of the ultraviolet (UV) curing conditions, the PEGDMA hydrogels were prepared using four different monomer concentrations (25, 50, 75 and 100 wt% PEGDMA) in water and cross-linked by photopolymerisation. Initial results revealed a correlation between monomer concentration and swelling behaviour, where a decrease in swelling was observed with increase in monomer content. On storage in physiological solutions at 37 °C, a decrease in the weight remaining of the hydrogels and the pH of the solutions was observed over a 28-day period. Using scanning electron microscopy, the surface topography of the hydrogels appeared to get smoother and in parallel changes in hydrophilicty were observed, with the biggest changes observed for the higher monomer concentrations where water contact angle values were seen to increase toward 90°. However, the mechanical properties remained relatively unaffected and there was no adverse effect on cell metabolic activity observed for cells grown in the presence of PEGDMA samples or using elution methods. Looking at the combination of mechanical chemical and thermal properties shown these results are an important finding for scaffolds intended for tissue engineering applications, where provision of mechanical support without the elicitation of an inflammatory response due to polymer degradation products is crucial for successful integration and neotissue formation during the first 28 days post implantation.
Collapse
Affiliation(s)
- Gavin Burke
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Co. Westmeath, Ireland
| | - Valerie Barron
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Co. Westmeath, Ireland
| | - Tess Geever
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Co. Westmeath, Ireland
| | - Luke Geever
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Co. Westmeath, Ireland
| | - Declan M Devine
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Co. Westmeath, Ireland.
| | - Clement L Higginbotham
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Co. Westmeath, Ireland.
| |
Collapse
|
7
|
Chen Z, Luo X, Zhao X, Yang M, Wen C. Label-free cell sorting strategies via biophysical and biochemical gradients. J Orthop Translat 2019; 17:55-63. [PMID: 31194093 PMCID: PMC6551360 DOI: 10.1016/j.jot.2019.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 01/08/2023] Open
Abstract
Isolating active mesenchymal stem cells from a heterogeneous population is an essential step that determines the efficacy of stem cell therapy such as for osteoarthritis. Nowadays, the gold standard of cell sorting, fluorescence-activated cell sorting, relies on labelling surface markers via antibody-antigen reaction. However, sorting stem cells with high stemness usually requires the labelling of multiple biomarkers. Moreover, the labelling process is costly, and the high operating pressure is harmful to cell functionality and viability. Although label-free cell sorting, based on physical characteristics, has gained increasing interest in the past decades, it has not shown the ability to eliminate stem cells with low stemness. Cell motility, as a novel sorting marker, is hence proposed for label-free sorting active stem cells. Accumulating evidence has demonstrated the feasibility in manipulating directional cell migration through patterning the biophysical, biochemical or both gradients of the extracellular matrix. However, applying those findings to label-free cell sorting has not been well discussed and studied. This review thus first provides a brief overview about the effect of biophysical and biochemical gradients of the extracellular matrix on cell migration. State-of-the-art fabrication techniques for generating such gradients of hydrogels are then introduced. Among current research, the authors suggest that hydrogels with dual-gradients of biochemistry and biophysics are potential tools for accurate label-free cell sorting with satisfactory selectivity and efficiency. TRANSLATIONAL POTENTIAL OF THIS ARTICLE The reviewed label-free cell sorting approaches enable us to isolate active cell for cytotherapy. The proposed system can be further modified for single-cell analysis and drug screening.
Collapse
Affiliation(s)
| | | | | | | | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
8
|
Abstract
Articular cartilage (AC) is a seemingly simple tissue that has only one type of constituting cell and no blood vessels and nerves. In the early days of tissue engineering, cartilage appeared to be an easy and promising target for reconstruction and this was especially motivating because of widespread AC pathologies such as osteoarthritis and frequent sports-induced injuries. However, AC has proven to be anything but simple. Recreating the varying properties of its zonal structure is a challenge that has not yet been fully answered. This caused the shift in tissue engineering strategies toward bioinspired or biomimetic approaches that attempt to mimic and simulate as much as possible the structure and function of the native tissues. Hydrogels, particularly gradient hydrogels, have shown great potential as components of the biomimetic engineering of the cartilaginous tissue.
Collapse
Affiliation(s)
- Ivana Gadjanski
- Belgrade Metropolitan University, Belgrade, Serbia
- BioSense Institute, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
9
|
Gadjanski I. Recent advances on gradient hydrogels in biomimetic cartilage tissue engineering. F1000Res 2017; 6:F1000 Faculty Rev-2158. [PMID: 29333257 PMCID: PMC5749123 DOI: 10.12688/f1000research.12391.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
Articular cartilage (AC) is a seemingly simple tissue that has only one type of constituting cell and no blood vessels and nerves. In the early days of tissue engineering, cartilage appeared to be an easy and promising target for reconstruction and this was especially motivating because of widespread AC pathologies such as osteoarthritis and frequent sports-induced injuries. However, AC has proven to be anything but simple. Recreating the varying properties of its zonal structure is a challenge that has not yet been fully answered. This caused the shift in tissue engineering strategies toward bioinspired or biomimetic approaches that attempt to mimic and simulate as much as possible the structure and function of the native tissues. Hydrogels, particularly gradient hydrogels, have shown great potential as components of the biomimetic engineering of the cartilaginous tissue.
Collapse
Affiliation(s)
- Ivana Gadjanski
- Belgrade Metropolitan University, Belgrade, Serbia
- BioSense Institute, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
10
|
Pradhan S, Keller KA, Sperduto JL, Slater JH. Fundamentals of Laser-Based Hydrogel Degradation and Applications in Cell and Tissue Engineering. Adv Healthc Mater 2017; 6:10.1002/adhm.201700681. [PMID: 29065249 PMCID: PMC5797692 DOI: 10.1002/adhm.201700681] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/13/2017] [Indexed: 12/24/2022]
Abstract
The cell and tissue engineering fields have profited immensely through the implementation of highly structured biomaterials. The development and implementation of advanced biofabrication techniques have established new avenues for generating biomimetic scaffolds for a multitude of cell and tissue engineering applications. Among these, laser-based degradation of biomaterials is implemented to achieve user-directed features and functionalities within biomimetic scaffolds. This review offers an overview of the physical mechanisms that govern laser-material interactions and specifically, laser-hydrogel interactions. The influences of both laser and material properties on efficient, high-resolution hydrogel degradation are discussed and the current application space in cell and tissue engineering is reviewed. This review aims to acquaint readers with the capability and uses of laser-based degradation of biomaterials, so that it may be easily and widely adopted.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark DE 19716, USA
| | - Keely A. Keller
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark DE 19716, USA
| | - John L. Sperduto
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark DE 19716, USA
| | - John H. Slater
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark DE 19716, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
| |
Collapse
|
11
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 486] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
12
|
Abstract
Recent research has demonstrated that tumor microenvironments play pivotal roles in tumor development and metastasis through various physical, chemical, and biological factors, including extracellular matrix (ECM) composition, matrix remodeling, oxygen tension, pH, cytokines, and matrix stiffness. An emerging trend in cancer research involves the creation of engineered three-dimensional tumor models using bioinspired hydrogels that accurately recapitulate the native tumor microenvironment. With recent advances in materials engineering, many researchers are developing engineered tumor models, which are promising platforms for the study of cancer biology and for screening of therapeutic agents for better clinical outcomes. In this review, we discuss the development and use of polymeric hydrogel materials to engineer native tumor ECMs for cancer research, focusing on emerging technologies in cancer engineering that aim to accelerate clinical outcomes.
Collapse
Affiliation(s)
- Kyung Min Park
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218;
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Daniel Lewis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218;
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218;
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
13
|
Liang J, Susan Sun X, Yang Z, Cao S. Anticancer Drug Camptothecin Test in 3D Hydrogel Networks with HeLa cells. Sci Rep 2017; 7:37626. [PMID: 28145436 PMCID: PMC5286418 DOI: 10.1038/srep37626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/20/2016] [Indexed: 11/09/2022] Open
Abstract
Development of a biomimetic 3D culture system for drug screening is necessary to fully understand the in vivo environment. Previously, a self-assembling peptide hydrogel has been reported; the hydrogel exhibited physiological properties superior to a 3D cell culture matrix. In this work, further research using H9e hydrogel with HeLa cells was carried out considering H9e hydrogel's interaction with camptothecin, a hydrophobic drug. According to AFM images, a PGworks solution triggered H9e hydrogel fiber aggregation and forms a 3D matrix suitable for cell culture. Dynamic rheological studies showed that camptothecin was encapsulated within the hydrogel network concurrently with peptide self-assembly without permanently destroying the hydrogel's architecture and remodeling ability. Fluorescence measurement indicated negligible interaction between the fluorophore part of camptothecin and the hydrogel, especially at concentration 0.25 and 0.5 wt%. Using a dialysis method, we found that H9e hydrogel could not significantly inhibit the diffusion of camptothecin encapsulated inside the hydrogel matrix. In the cell culture experiment, HeLa cells were simultaneously embedded in the H9e hydrogel with the initialization of hydrogelation. Most importantly, cell viability data after camptothecin treatment showed responses that were drug-dose dependent but unaffected by the H9e hydrogel concentration, indicating that the hydrogel did not inhibit the drug.
Collapse
Affiliation(s)
- Jun Liang
- College of Packaging and Printing Engineering, Tianjin University of Science and Technology, Tianjin, China
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, United States of America
| | - Xiuzhi Susan Sun
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, United States of America
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, Kansas, United States of America
| | - Zhilong Yang
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Shuai Cao
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
14
|
Santo VE, Babo P, Amador M, Correia C, Cunha B, Coutinho DF, Neves NM, Mano JF, Reis RL, Gomes ME. Engineering Enriched Microenvironments with Gradients of Platelet Lysate in Hydrogel Fibers. Biomacromolecules 2016; 17:1985-97. [DOI: 10.1021/acs.biomac.6b00150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vítor E. Santo
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Pedro Babo
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Miguel Amador
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Cláudia Correia
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Bárbara Cunha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Daniela F. Coutinho
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Nuno M. Neves
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - João F. Mano
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Rui L. Reis
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| | - Manuela E. Gomes
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4710-243Braga/Guimarães , Portugal
| |
Collapse
|
15
|
Oh SH, An DB, Kim TH, Lee JH. Wide-range stiffness gradient PVA/HA hydrogel to investigate stem cell differentiation behavior. Acta Biomater 2016; 35:23-31. [PMID: 26883774 DOI: 10.1016/j.actbio.2016.02.016] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/30/2015] [Accepted: 02/10/2016] [Indexed: 01/26/2023]
Abstract
Although stiffness-controllable substrates have been developed to investigate the effect of stiffness on cell behavior and function, the use of separate substrates with different degrees of stiffness, substrates with a narrow range stiffness gradient, toxicity of residues, different surface composition, complex fabrication procedures/devices, and low cell adhesion are still considered as hurdles of conventional techniques. In this study, a cylindrical polyvinyl alcohol (PVA)/hyaluronic acid (HA) hydrogel with a wide-range stiffness gradient (between ∼20kPa and ∼200kPa) and cell adhesiveness was prepared by a liquid nitrogen (LN2)-contacting gradual freezing-thawing method that does not use any additives or specific devices to produce the stiffness gradient hydrogel. From an in vitro cell culture using the stiffness gradient PVA/HA hydrogel, it was observed that human bone marrow mesenchymal stem cells have favorable stiffness ranges for induction of differentiation into specific cell types (∼20kPa for nerve cell, ∼40kPa for muscle cell, ∼80kPa for chondrocyte, and ∼190kPa for osteoblast). The PVA/HA hydrogel with a wide range of stiffness spectrum can be a useful tool for basic studies related with the stem cell differentiation, cell reprogramming, cell migration, and tissue regeneration in terms of substrate stiffness. STATEMENT OF SIGNIFICANCE It is postulated that the stiffness of the extracellular matrix influences cell behavior. To prove this concept, various techniques to prepare substrates with a stiffness gradient have been developed. However, the narrow ranges of stiffness gradient and complex fabrication procedures/devices are still remained as limitations. Herein, we develop a substrate (hydrogel) with a wide-range stiffness gradient using a gradual freezing-thawing method which does not need specific devices to produce a stiffness gradient hydrogel. From cell culture experiments using the hydrogel, it is observed that human bone marrow mesenchymal stem cells have favorable stiffness ranges for induction of differentiation into specific cell types (∼20kPa for nerve, ∼40kPa for muscle, ∼80kPa for cartilage, and ∼190kPa for bone in our hydrogel system).
Collapse
|
16
|
Wang B, Benitez AJ, Lossada F, Merindol R, Walther A. Bioinspired Mechanical Gradients in Cellulose Nanofibril/Polymer Nanopapers. Angew Chem Int Ed Engl 2016; 55:5966-70. [PMID: 27061218 DOI: 10.1002/anie.201511512] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/29/2016] [Indexed: 12/12/2022]
Abstract
Mechanical gradients are important as tough joints, for strain field engineering in printable electronics, for actuators, and for biological studies, yet they are difficult to prepare and quantitatively characterize. We demonstrate the additive fabrication of gradient bioinspired nanocomposites based on stiff, renewable cellulose nanofibrils that are bottom-up toughened via a tailor-made copolymer. Direct filament writing of different nanocomposite hydrogels in patterns, and subsequent healing of the filaments into continuous films while drying leads to a variety of linear, parabolic and striped bulk gradients. In situ digital image correlation under tensile deformation reveals important differences in the strain fields regarding asymmetry and step heights of the patterns. We envisage that merging top-down and bottom-up structuring of nanocellulose hybrids opens avenues for aperiodic and multiscale, bioinspired nanocomposites with optimized combinations of stiffness and toughness.
Collapse
Affiliation(s)
- Baochun Wang
- DWI-, Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Alejandro J Benitez
- DWI-, Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Francisco Lossada
- DWI-, Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Remi Merindol
- DWI-, Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Andreas Walther
- DWI-, Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany.
| |
Collapse
|
17
|
Wang B, Benitez AJ, Lossada F, Merindol R, Walther A. Bioinspired Mechanical Gradients in Cellulose Nanofibril/Polymer Nanopapers. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511512] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Baochun Wang
- DWI— Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Alejandro J. Benitez
- DWI— Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Francisco Lossada
- DWI— Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Remi Merindol
- DWI— Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Andreas Walther
- DWI— Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| |
Collapse
|
18
|
Li Y, Huang G, Li M, Wang L, Elson EL, Lu TJ, Genin GM, Xu F. An approach to quantifying 3D responses of cells to extreme strain. Sci Rep 2016; 6:19550. [PMID: 26887698 PMCID: PMC4757889 DOI: 10.1038/srep19550] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/18/2015] [Indexed: 12/25/2022] Open
Abstract
The tissues of hollow organs can routinely stretch up to 2.5 times their length. Although significant pathology can arise if relatively large stretches are sustained, the responses of cells are not known at these levels of sustained strain. A key challenge is presenting cells with a realistic and well-defined three-dimensional (3D) culture environment that can sustain such strains. Here, we describe an in vitro system called microscale, magnetically-actuated synthetic tissues (micro-MASTs) to quantify these responses for cells within a 3D hydrogel matrix. Cellular strain-threshold and saturation behaviors were observed in hydrogel matrix, including strain-dependent proliferation, spreading, polarization, and differentiation, and matrix adhesion retained at strains sufficient for apoptosis. More broadly, the system shows promise for defining and controlling the effects of mechanical environment upon a broad range of cells.
Collapse
Affiliation(s)
- Yuhui Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.,Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.,Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Moxiao Li
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lin Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.,Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an 710049, China.,Department of Biochemistry and Molecular Biophysics, Saint Louis, Missouri 63110, USA
| | - Elliot L Elson
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an 710049, China.,Department of Biochemistry and Molecular Biophysics, Saint Louis, Missouri 63110, USA.,Department of Mechanical Engineering and Materials Science, Washington University, Saint Louis, Missouri 63130, USA
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.,Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an 710049, China.,Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.,Department of Mechanical Engineering and Materials Science, Washington University, Saint Louis, Missouri 63130, USA
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.,Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
19
|
Xiao X, Zhu WW, Yuan H, Li WW, Li Q, Yu HQ. Biosynthesis of FeS nanoparticles from contaminant degradation in one single system. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.09.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Wang L, Li Y, Chen B, Liu S, Li M, Zheng L, Wang P, Lu TJ, Xu F. Patterning Cellular Alignment through Stretching Hydrogels with Programmable Strain Gradients. ACS APPLIED MATERIALS & INTERFACES 2015; 7:15088-15097. [PMID: 26079936 DOI: 10.1021/acsami.5b04450] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The graded mechanical properties (e.g., stiffness and stress/strain) of excellular matrix play an important role in guiding cellular alignment, as vital in tissue reconstruction with proper functions. Though various methods have been developed to engineer a graded mechanical environment to study its effect on cellular behaviors, most of them failed to distinguish stiffness effect from stress/strain effect during mechanical loading. Here, we construct a mechanical environment with programmable strain gradients by using a hydrogel of a linear elastic property. When seeding cells on such hydrogels, we demonstrate that the pattern of cellular alignment can be rather precisely tailored by substrate strains. The experiment is in consistency with a theoritical prediction when assuming that focal adhesions (FAs) would drive a cell to reorient to the directions where they are most stable. A fundamental theory has also been developed and is excellent in agreement with the complete temporal alignment of cells. This work not only provides important insights into the cellular response to the local mechanical microenvironment but can also be utilized to engineer patterned cellular alignment that can be critical in tissue remodeling and regenerative medicine applications.
Collapse
Affiliation(s)
| | | | - Bin Chen
- ∥Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | | | | | | | - Pengfei Wang
- §Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, People's Republic of China
| | | | | |
Collapse
|