1
|
Sharma D, Dhiman A, Thakur A, Kumar S, Saini R. Functional oligosaccharides as a promising food ingredient: a gleam into health apprehensions and techno-functional advantages. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2024. [DOI: 10.1007/s11694-024-02986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
|
2
|
Cano-Gonzalez CN, Contreras-Esquivel JC, Rodríguez-Herrera R, Aguirre-Loredo RY, Soriano-Melgar LDAA. Transformation of agricultural wastes into functional oligosaccharides using enzymes and emerging technologies. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1771-1780. [PMID: 38693046 DOI: 10.1002/pca.3365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/03/2024]
Abstract
INTRODUCTION Pectin-oligosaccharides (POS) serve diverse purposes as a food ingredient, antimicrobial and biostimulant in plants, and their functionality is linked to the degree of esterification. Grape and broccoli wastes emerge as environmentally friendly alternatives to obtaining pectin, serving as a sustainable source to producing POS. For example, microwaves have proven to be an effective and sustainable method to extract polysaccharides from plant matrices. OBJECTIVE This work aims to use grape and broccoli wastes as alternative sources for obtaining pectin by microwave-assisted extraction and biotransformation into POS, which possess biological properties. MATERIAL AND METHODS The extraction conditions were identified at a power of 400 W, 300 s for the extraction of pectin from grape pomace and broccoli waste. Biotransformation of pectins into POS, using commercial enzyme preparations (Viscozyme L and Pectinase). Characterisation was carried out by Fourier-transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. RESULTS Physicochemical analysis indicated grape pomace and broccoli waste pectins had galacturonic acid content of 63.81 ± 1.67 and 40.83 ± 2.85 mg 100 mg-1, low degree of esterification of 34.89% and 16.22%, respectively. Biotransformation of pectins into POS resulted in a 20% hydrolysis rate. The main enzymatic activity was polygalacturonase for the degradation of the main structure of the pectin. CONCLUSION Production of POS from agro-industrial wastes by emerging technologies, such as the combined use of microwave-assisted extraction and enzymatic processes, represents an alternative method for the generation of bioactive compounds with distinctive properties suitable for different applications of interest.
Collapse
Affiliation(s)
- Carlos N Cano-Gonzalez
- Procesos de Polimerizacion, Centro de Investigación en Química Aplicada, Saltillo, Coahuila de Zaragoza, Mexico
| | | | - Raúl Rodríguez-Herrera
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila de Zaragoza, Mexico
| | - Rocio Yaneli Aguirre-Loredo
- Procesos de Polimerizacion, Centro de Investigación en Química Aplicada, Saltillo, Coahuila de Zaragoza, Mexico
- Investigadoras e Investigadores por México, CONAHCyT, Av. Insurgentes sur, Mexico City, 03940, Mexico
| | - Lluvia de Abril Alexandra Soriano-Melgar
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila de Zaragoza, Mexico
- Investigadoras e Investigadores por México, CONAHCyT, Av. Insurgentes sur, Mexico City, 03940, Mexico
| |
Collapse
|
3
|
Vásquez P, Stucken K, Garcia-Martin A, Ladero M, Bolivar JM, Bernal C. Enzymatic production, physicochemical characterization, and prebiotic potential of pectin oligosaccharides from pisco grape pomace. Int J Biol Macromol 2024; 281:136302. [PMID: 39370085 DOI: 10.1016/j.ijbiomac.2024.136302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
The prebiotic capacity of Pectin Oligosaccharides (POS) is influenced by structural factors such as molecular size, composition, and degree of esterification, which affect their interaction with the gut microbiota. While existing literature has predominantly examined POS derived from apple and citrus pectins, the extrapolation of these findings to other pectin sources remains complex due to variations in their composition. This study focused on obtaining POS with prebiotic potential from pisco grape pomace through controlled enzymatic hydrolysis, resulting in three molecular size fractions: <3 kDa, 3-10 kDa, and > 10 kDa. The POS fractions were analyzed using FTIR, HPSEC, HPLC, and MALDI-TOF-MS techniques to characterize their physical-chemical properties. Each fraction presented distinct compositions, with the <3 kDa fraction showing a higher concentration of galacturonic acid and glucose, while the >10 kDa fraction was also composed of rhamnose and arabinose. Notably, the <3 kDa fraction supported greater biomass growth of the probiotic strain Lactobacillus casei ATCC 393 compared to the other fractions. In contrast, the non-probiotic strain Escherichia coli ATCC 25922 achieved the lowest biomass with this fraction. Consequently, the <3 kDa POS fraction exhibited the highest prebiotic index. This fraction, composed of oligomers from the rhamnogalacturonan region and arabino-oligosaccharides with a degree of polymerization between two and five, highlights its potential for further research and applications. Therefore, investigating other sources and optimizing extraction conditions could lead to developing novel prebiotic formulations that supply specific probiotic strains for a symbiotic product.
Collapse
Affiliation(s)
- Pamela Vásquez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Chile; Laboratorio de Catálisis y Biocatálisis, Departamento de Química, Universidad de La Serena, Chile
| | - Karina Stucken
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Chile
| | - Alberto Garcia-Martin
- FQPIMA group, Chemical and Materials Engineering Department, Faculty of Chemistry, Complutense University of Madrid, Madrid 28040, Spain
| | - Miguel Ladero
- FQPIMA group, Chemical and Materials Engineering Department, Faculty of Chemistry, Complutense University of Madrid, Madrid 28040, Spain
| | - Juan M Bolivar
- FQPIMA group, Chemical and Materials Engineering Department, Faculty of Chemistry, Complutense University of Madrid, Madrid 28040, Spain
| | - Claudia Bernal
- Laboratorio de Catálisis y Biocatálisis, Departamento de Química, Universidad de La Serena, Chile.
| |
Collapse
|
4
|
Iatcu OC, Hamamah S, Covasa M. Harnessing Prebiotics to Improve Type 2 Diabetes Outcomes. Nutrients 2024; 16:3447. [PMID: 39458444 PMCID: PMC11510484 DOI: 10.3390/nu16203447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The gut microbiota, a complex ecosystem of microorganisms in the human gastrointestinal tract (GI), plays a crucial role in maintaining metabolic health and influencing disease susceptibility. Dysbiosis, or an imbalance in gut microbiota, has been linked to the development of type 2 diabetes mellitus (T2DM) through mechanisms such as reduced glucose tolerance and increased insulin resistance. A balanced gut microbiota, or eubiosis, is associated with improved glucose metabolism and insulin sensitivity, potentially reducing the risk of diabetes-related complications. Various strategies, including the use of prebiotics like inulin, fructooligosaccharides, galactooligosaccharides, resistant starch, pectic oligosaccharides, polyphenols, β-glucan, and Dendrobium officinale have been shown to improve gut microbial composition and support glycemic control in T2DM patients. These prebiotics can directly impact blood sugar levels while promoting the growth of beneficial bacteria, thus enhancing glycemic control. Studies have shown that T2DM patients often exhibit a decrease in beneficial butyrate-producing bacteria, like Roseburia and Faecalibacterium, and an increase in harmful bacteria, such as Escherichia and Prevotella. This review aims to explore the effects of different prebiotics on T2DM, their impact on gut microbiota composition, and the potential for personalized dietary interventions to optimize diabetes management and improve overall health outcomes.
Collapse
Affiliation(s)
- Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| | - Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
5
|
Delzenne NM, Bindels LB, Neyrinck AM, Walter J. The gut microbiome and dietary fibres: implications in obesity, cardiometabolic diseases and cancer. Nat Rev Microbiol 2024:10.1038/s41579-024-01108-z. [PMID: 39390291 DOI: 10.1038/s41579-024-01108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/12/2024]
Abstract
Dietary fibres constitute a heterogeneous class of nutrients that are key in the prevention of various chronic diseases. Most dietary fibres are fermented by the gut microbiome and may, thereby, modulate the gut microbial ecology and metabolism, impacting human health. Dietary fibres may influence the occurrence of specific bacterial taxa, with this effect varying between individuals. The effect of dietary fibres on microbial diversity is a matter of debate. Most intervention studies with dietary fibres in the context of obesity and related metabolic disorders reveal the need for an accurate assessment of the microbiome to better understand the variable response to dietary fibres. Epidemiological studies confirm that a high dietary fibre intake is strongly associated with a reduced occurrence of many types of cancer. However, there is a need to determine the impact of intervention with specific dietary fibres on cancer risk, therapy efficacy and toxicity, as well as in cancer cachexia. In this Review, we summarize the mechanisms by which the gut microbiome can mediate the physiological benefits of dietary fibres in the contexts of obesity, cardiometabolic diseases and cancer, their incidence being clearly linked to low dietary fibre intake.
Collapse
Affiliation(s)
- Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Fan H, Li R, Zhang Y, Xu X, Pan S, Liu F. Effect of H 2O 2/ascorbic acid degradation and gradient ethanol precipitation on the physicochemical properties and biological activities of pectin polysaccharides from Satsuma Mandarin. Int J Biol Macromol 2024; 280:135843. [PMID: 39306161 DOI: 10.1016/j.ijbiomac.2024.135843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
In this work, three degraded polysaccharides (DMPP-40, DMPP-60, DMPP-80) were successfully obtained by H2O2/ascorbic acid degradation and gradient ethanol precipitation from Satsuma mandarin peel pectin (MPP), and their physicochemical properties, antioxidant and prebiotic activities were investigated. The molecular weight of MPP, DMPP-40, DMPP-60, DMPP-80 were determined to be 336.83 ± 10.57, 18.93 ± 0.54, 26.07 ± 0.83 and 8.71 ± 0.27 kDa, respectively. The ethanol concentration significantly affected the physicochemical properties of DMPPs. DMPP-60 showed the highest yield (69.07 %) and uronic acid content (64.85 %), DMPP-80 showed the lowest molecular weight (8.71 kDa), and the composition and proportion of monosaccharides of DMPPs were significantly different. Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (1H NMR) confirmed that DMPPs exhibited similar functional groups, while X-ray diffraction (XRD) indicated that DMPP-40 possessed some crystallographic sequences. Scanning electron microscopy (SEM) images directly verified the fragmented structure and reduced surface area of DMPPs. Besides, the H2O2/ascorbic acid treatment could obviously reduce the apparent viscosity and thermal stability of MPP. Meanwhile, the results of bioactivity assay showed that DMPPs possessed better antioxidant activity and probiotics pro-proliferative effects compared with MPP. DMPP-80 could significantly inhibit lipopolysaccharides (LPS)-stimulated production of inflammatory factors (including nitric oxide (NO), interleukin (IL)-6, tumor necrosis factor (TNF)-α and interleukin (IL)-1β) in RAW264.7 cells. Results suggest that the H2O2/ascorbic acid combined with gradient ethanol precipitation has potential applications in degradation and separation of MPP to improve its biological activities.
Collapse
Affiliation(s)
- Hekai Fan
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Ruoxuan Li
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yanbing Zhang
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Fengxia Liu
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| |
Collapse
|
7
|
Plouhinec L, Bonnin E, Kielbasa M, Armengaud J, Neugnot V, Berrin JG, Lafond M. A time-course analysis of Aspergillus terreus secretomes reveals the importance of pectin-degrading enzymes to increase the digestibility of soybean meal. Appl Environ Microbiol 2024; 90:e0215323. [PMID: 39162561 PMCID: PMC11409638 DOI: 10.1128/aem.02153-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
Considering an ever-growing global population, which hit 8 billion people in the fall of 2022, it is essential to find solutions to avoid croplands competition between human food and animal feed. Agricultural co-products such as soybean meals have become important components of the circular economy thanks to their use in animal feed. Their implementation was made possible by the addition of exogenous enzymes in the diet of monogastric animals, especially fungal carbohydrate-active enzymes (CAZymes). Here, we describe a time-course production and analysis of Aspergillus terreus secretomes for the identification of CAZymes able to enhance the digestibility of soybean meals. Functional assays revealed that the release of nutrients and the degradation of pectins in soybean meals can be tightly interconnected. Using a comparative proteomics approach, we identified several fungal pectin-degrading enzymes leading to increased assimilable nutrients in the soluble fraction of soybean meals. Our results reinforce the importance of deconstructing pectic polysaccharides in feedstuffs and contribute to sharpen our understanding of the fungal enzymatic interplays involved in pectin hydrolysis.IMPORTANCEIn the present study, we developed a strategy to identify the key fungal enzymatic activities involved in the improvement of soybean meal (SBM) digestibility. Our data unravel the importance of pectin degradation for the release of nutrients from SBM and provide some insights regarding the degradation of rhamnogalacturonan-I (RG-I) by ascomycetes. Indeed, the hydrolysis of pectins and RG-I by human microbiota is well documented in the literature, but our knowledge of the fungal CAZymes at play for the degradation of soybean pectins remains hitherto underexplored. Due to its wide use in animal feed, improving the digestibility of SBM by enzymatic treatments is a current challenge for feed additive suppliers. Since non-starch polysaccharides and pectins have often been reported for their anti-nutritional role in SBM, we believe this study will provide new avenues toward the improvement of enzymatic cocktails for animal nutrition and health.
Collapse
Affiliation(s)
- Lauriane Plouhinec
- INRAE, Aix-Marseille Université, UMR 1163 Biodiversité et Biotechnologie Fongiques, Marseille, France
- Adisseo France S.A.S, CINAbio, INSA Toulouse, Toulouse, France
| | - Estelle Bonnin
- INRAE, Université de Nantes, UR 1268 Biopolymères Interactions Assemblage, Nantes, France
| | - Mélodie Kielbasa
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, Bagnols sur Cèze, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, Bagnols sur Cèze, France
| | | | - Jean-Guy Berrin
- INRAE, Aix-Marseille Université, UMR 1163 Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Mickael Lafond
- INRAE, Aix-Marseille Université, UMR 1163 Biodiversité et Biotechnologie Fongiques, Marseille, France
| |
Collapse
|
8
|
Donadio JLS, Fabi JP. Comparative analysis of pectin and prebiotics on human microbiota modulation in early life stages and adults. Food Funct 2024; 15:6825-6846. [PMID: 38847603 DOI: 10.1039/d4fo01231c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The gut microbiota is essential in human health, influencing various physiological processes ranging from digestion and metabolism to immune function and mental health. Dietary fiber pectins and prebiotics have emerged as key modulators of gut microbiota composition and function, offering potential therapeutic implications for promoting gut health and preventing intestinal inflammatory diseases. In this review, we explore the modulation of gut microbiota by dietary fiber pectins and prebiotics in infants and adults. We begin with an overview of the gut microbiota composition and function in different age groups, highlighting the factors in shaping microbial communities in both age groups, especially the effect of diet. We then delve into the impact of dietary fiber pectins and prebiotics on gut microbiota composition and function, examining their effects on digestive health, intestinal barrier integrity, immune function, metabolic health, and mental health across different life stages. We further compare how aging affects the gut function and immune system, and we discuss the main health outcomes associated with dietary fiber intake and prebiotics, including the impact on digestive health, improvement in immune function, improvement in cholesterol and glucose metabolism, weight management, mental health, and prevention of diseases. Finally, we highlight the challenges and future directions for research. By advancing the understanding of gut microbiota dynamics and translating scientific insights into clinical practice, it could harness the full potential of dietary fiber pectins and prebiotics to optimize gut health, improve overall well-being across the lifespan, and increase longevity.
Collapse
Affiliation(s)
- Janaina Lombello Santos Donadio
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Sharma N, Patel SN, Rai AK, Singh SP. Biochemical characterization of a novel acid-active endopolygalacturonase for pectin depolymerization, pectic-oligomer production, and fruit juice clarification. Int J Biol Macromol 2024; 267:131565. [PMID: 38614184 DOI: 10.1016/j.ijbiomac.2024.131565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Endopolygalacturonases are crucial pectinases known for their efficient and sustainable pectin depolymerization activities. The present study identified a novel gene encoding endopolygalacturonase from an acidic mine tailing metagenome. The putative gene showed a maximum identity of 67.55 % with an uncharacterized peptide sequence from Flavobacterium fluvii. The gene was cloned and expressed in a heterologous host, E. coli. Biochemical characterization of the novel endopolygalacturonase enzyme variant (EPHM) showed maximum activity at 60 °C and at 5.0 pH, while retaining 50 % activity under the temperature and pH range of 20 °C to 70 °C for 6 h, and 3.0 to 10.0 for 3 h, respectively. The enzyme exhibited tolerance to different metal ions. EPHM was characterized for the depolymerization of methylated pectin into pectic oligosaccharides. Further, its utility was established for fruit juice clarification, as endorsed by high transmittance, significant viscosity reduction, and release of reducing sugars in the treated fruit juice samples.
Collapse
Affiliation(s)
- Nitish Sharma
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI, SAS Nagar, Sector 81, Mohali, India
| | - Satya N Patel
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI, SAS Nagar, Sector 81, Mohali, India
| | - Amit Kumar Rai
- National Agri-Food Biotechnology Institute, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), SAS Nagar, Sector 81, Mohali, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI, SAS Nagar, Sector 81, Mohali, India.
| |
Collapse
|
10
|
Li J, Peng C, Mao A, Zhong M, Hu Z. An overview of microbial enzymatic approaches for pectin degradation. Int J Biol Macromol 2024; 254:127804. [PMID: 37913880 DOI: 10.1016/j.ijbiomac.2023.127804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Pectin, a complex natural macromolecule present in primary cell walls, exhibits high structural diversity. Pectin is composed of a main chain, which contains a high amount of partly methyl-esterified galacturonic acid (GalA), and numerous types of side chains that contain almost 17 different monosaccharides and over 20 different linkages. Due to this peculiar structure, pectin exhibits special physicochemical properties and a variety of bioactivities. For example, pectin exhibits strong bioactivity only in a low molecular weight range. Many different degrading enzymes, including hydrolases, lyases and esterases, are needed to depolymerize pectin due to its structural complexity. Pectin degradation involves polygalacturonases/rhamnogalacturonases and pectate/pectin lyases, which attack the linkages in the backbone via hydrolytic and β-elimination modes, respectively. Pectin methyl/acetyl esterases involved in the de-esterification of pectin also play crucial roles. Many α-L-rhamnohydrolases, unsaturated rhamnogalacturonyl hydrolases, arabinanases and galactanases also contribute to heterogeneous pectin degradation. Although numerous microbial pectin-degrading enzymes have been described, the mechanisms involved in the coordinated degradation of pectin through these enzymes remain unclear. In recent years, the degradation of pectin by Bacteroides has received increasing attention, as Bacteroides species contain a unique genetic structure, polysaccharide utilization loci (PULs). The specific PULs of pectin degradation in Bacteroides species are a new field to study pectin metabolism in gut microbiota. This paper reviews the scientific information available on pectin structural characteristics, pectin-degrading enzymes, and PULs for the specific degradation of pectin.
Collapse
Affiliation(s)
- Jin Li
- College of Life Sciences, China West Normal University, Nanchong 637002, China; Department of Biology, College of Science, Shantou University, Shantou 515063, China.
| | - Chao Peng
- College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Aihua Mao
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Mingqi Zhong
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou 515063, China.
| |
Collapse
|
11
|
Divyashri G, Karthik P, Murthy TPK, Priyadarshini D, Reddy KR, Raghu AV, Vaidyanathan VK. Non-digestible oligosaccharides-based prebiotics to ameliorate obesity: Overview of experimental evidence and future perspectives. Food Sci Biotechnol 2023; 32:1993-2011. [PMID: 37860742 PMCID: PMC10581984 DOI: 10.1007/s10068-023-01381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Accepted: 06/25/2023] [Indexed: 10/21/2023] Open
Abstract
The diverse populations reportedly suffer from obesity on a global scale, and inconclusive evidence has indicated that both environmental and genetic factors are associated with obesity development. Therefore, a need exists to examine potential therapeutic or prophylactic molecules for obesity treatment. Prebiotics with non-digestible oligosaccharides (NDOs) have the potential to treat obesity. A limited number of prebiotic NDOs have demonstrated their ability as a convincing therapeutic solution to encounter obesity through various mechanisms, viz., stimulating beneficial microorganisms, reducing the population of pathogenic microorganisms, and also improving lipid metabolism and glucose homeostasis. NDOs include pectic-oligosaccharides, fructo-oligosaccharides, xylo-oligosaccharides, isomalto-oligosaccharides, manno-oligosaccharides and other oligosaccharides which significantly influence the overall human health by different mechanisms. This review provides the treatment of obesity benefits by incorporating these prebiotic NDOs, according to established scientific research, which shows their good effects extend beyond the colon.
Collapse
Affiliation(s)
- G. Divyashri
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054 India
| | - Pothiyappan Karthik
- Department of Food Technology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, 641 021 India
| | - T. P. Krishna Murthy
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054 India
| | - Dey Priyadarshini
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054 India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006 Australia
| | - Anjanapura V. Raghu
- Faculty of Allied Health Sciences, BLDE (Deemed-to-Be University), Vijayapura, 586103 Karnataka India
| | - Vinoth Kumar Vaidyanathan
- Department of Biotechnology, School of Bioengineering, Integrated Bioprocessing Laboratory, SRM Institute of Science and Technology (SRM IST), 603 203 Kattankulathur, India
| |
Collapse
|
12
|
Song X, Li T, Gu H, Yin H. Space exposure enhanced pectin-degrading enzymes expression and activity in Aspergillus costaricaensis. World J Microbiol Biotechnol 2023; 39:295. [PMID: 37658165 DOI: 10.1007/s11274-023-03740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Aspergillus is a well-studied fungal genus that is widely used in the processing of plant biomass in industries. This study investigated the effects of space exposure on the ability of Aspergillus costaricaensis, a filamentous fungus isolated from rotten orange peel, to degrade pectin. These fungal spores were carried into space by the Long March 5B carrier rocket and exposed to cosmic radiation for 79 h. After the flight, these spores were resuscitated, and then the growing strains were screened with pectin as the sole carbon source, and the pectinase activity was evaluated. A mutant with increased biomass accumulation ability and pectin-degrading activity compared to the ground control strain was obtained. Comparative transcriptome analysis revealed that several CAZymes genes were significantly upregulated in the mutant, especially those related to pectin degradation. Among the 44 pectinases identified from the annotated genome, 42 were up-regulated. The activities of these pectinases are able to synergistically break down the structure of pectin. In addition, the expression of some genes involved in metabolism, sugar transport, and stress response was altered. These results imply that space exposure might serve as a potential mutagenesis breeding technique, offering the opportunity to acquire biomass-degrading microbial strains with potential for industrial application.
Collapse
Affiliation(s)
- Xiaohui Song
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tang Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hui Gu
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
13
|
Gonçalves DA, González A, Roupar D, Teixeira JA, Nobre C. How prebiotics have been produced from agro-industrial waste: An overview of the enzymatic technologies applied and the models used to validate their health claims. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
14
|
Plouhinec L, Neugnot V, Lafond M, Berrin JG. Carbohydrate-active enzymes in animal feed. Biotechnol Adv 2023; 65:108145. [PMID: 37030553 DOI: 10.1016/j.biotechadv.2023.108145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023]
Abstract
Considering an ever-growing global population, which hit 8 billion people in the fall of 2022, it is essential to find solutions to avoid the competition between human food and animal feed for croplands. Agricultural co-products have become important components of the circular economy with their use in animal feed. Their implementation was made possible by the addition of exogenous enzymes in the diet, especially carbohydrate-active enzymes (CAZymes). In this review, we describe the diversity and versatility of microbial CAZymes targeting non-starch polysaccharides to improve the nutritional potential of diets containing cereals and protein meals. We focused our attention on cellulases, hemicellulases, pectinases which were often found to be crucial in vivo. We also highlight the performance and health benefits brought by the exogenous addition of enzymatic cocktails containing CAZymes in the diets of monogastric animals. Taking the example of the well-studied commercial cocktail Rovabio™, we discuss the evolution, constraints and future challenges faced by feed enzymes suppliers. We hope that this review will promote the use and development of enzyme solutions for industries to sustainably feed humans in the future.
Collapse
Affiliation(s)
- Lauriane Plouhinec
- INRAE, Aix-Marseille Univ., UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France; ADISSEO, 135 Avenue de Rangueil, INSA Toulouse, Hall Gilbert Durand, 31400 Toulouse, France.
| | - Virginie Neugnot
- ADISSEO, 135 Avenue de Rangueil, INSA Toulouse, Hall Gilbert Durand, 31400 Toulouse, France
| | - Mickael Lafond
- INRAE, Aix-Marseille Univ., UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix-Marseille Univ., UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France.
| |
Collapse
|
15
|
Pasdaran A, Hamedi A, Shiehzadeh S, Hamedi A. A review of citrus plants as functional foods and dietary supplements for human health, with an emphasis on meta-analyses, clinical trials, and their chemical composition. Clin Nutr ESPEN 2023; 54:311-336. [PMID: 36963879 DOI: 10.1016/j.clnesp.2023.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/10/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Fruits, flowers, leaves, essential oils, hydrosols, and juices of citrus spp. Are utilized to prepare various forms of food products. Along with their nutritional values, in the health industry, different parts of the plants of the citrus genus have been used as supplements or remedies to prevent or control diseases. This review focused on reported meta-analyses and clinical trials on the health benefits of citrus plants as functional foods. Also, chemical compounds of various citrus species were reviewed. The following information sources were used for data collection: Google Scholar, the Web of Science, Scopus, and PubMed. Various keywords, including "citrus AND chemical compounds," "citrus AND phytochemicals," "citrus species," "citrus AND meta-analysis," "nutritional and therapeutical values of citrus spp.," "clinical trials AND citrus," "clinical trials AND Rutaceae," "health benefits of citrus spp.," "citrus edible or non-edible applications," and scientific names of the citrus plants were utilized to collect data for the review. The scientific name and common name of all twenty-eight citrus species, along with any of the above keywords, were also searched in the mentioned databases. Scientific papers and data sources were sought to review and discuss the citrus plant's nutritional and therapeutic importance. Several meta-analyses and clinical trials have reported beneficial effects of citrus spices on a variety of cancer risks, cardiovascular risk factors, neurologic disorders, urinary tract conditions, and gastrointestinal tract conditions. They have shown anxiolytic, antimicrobial, and pain-alleviating effects. Some of them can be helpful in managing obesity and cardiovascular risk factors.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Hamedi
- School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sara Shiehzadeh
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Šurlan J, Šereš Z, Dokić L, Krstonošić V, Maravić N. Evaluation of sugar beet pectin viscosity, surface activity, conductivity and zeta potential in sodium chloride aqueous solutions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Selection of Enzymatic Treatments for Upcycling Lentil Hulls into Ingredients Rich in Oligosaccharides and Free Phenolics. Molecules 2022; 27:molecules27238458. [PMID: 36500548 PMCID: PMC9738424 DOI: 10.3390/molecules27238458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, the comprehensive chemical characterization of red lentil hulls obtained from the industrial production of football and split lentils was described. The lentil hulls were rich in dietary fiber (78.43 g/100 g dry weight with an insoluble to soluble fiber ratio of 4:1) and polyphenols (49.3 mg GAE/g dry weight, of which 55% was bound phenolics), which revealed the suitability of this lentil by-product as a source of bioactive compounds with recognized antioxidant and prebiotic properties. The release of oligosaccharides and phenolic compounds was accomplished by enzymatic hydrolysis, microwave treatment and a combination of both technologies. The key role played by the selection of a suitable enzymatic preparation was highlighted to maximize the yield of bioactive compounds and the functional properties of the lentil hull hydrolysates. Out of seven commercial preparations, the one with the most potential for use in a commercial context was Pectinex® Ultra Tropical, which produced the highest yields of oligosaccharides (14 g/100 g lentil hull weight) and free phenolics (45.5 mg GAE/100 g lentil hull weight) and delivered a four-fold increase in terms of the original antioxidant activity. Finally, this enzyme was selected to analyze the effect of a microwave-assisted extraction pretreatment on the yield of enzymatic hydrolysis and the content of free phenolic compounds and oligosaccharides. The integrated microwave and enzymatic hydrolysis method, although it increased the solubilization yield of the lentil hulls (from 25% to 34%), it slightly decreased the content of oligosaccharides and proanthocyanidins and reduced the antioxidant activity. Therefore, the enzymatic hydrolysis treatment alone was more suitable for producing a lentil hull hydrolysate enriched in potential prebiotics and antioxidant compounds.
Collapse
|
18
|
Hao MJ, Wu D, Xu Y, Tao XM, Li N, Yu XW. A Novel Endo-Polygalacturonase from Penicillium rolfsii with Prebiotics Production Potential: Cloning, Characterization and Application. Foods 2022; 11:3469. [PMID: 36360082 PMCID: PMC9656037 DOI: 10.3390/foods11213469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2024] Open
Abstract
In this study, a potential producer of prebiotics, a novel endo-polygalacturonase pePGA from Penicillium rolfsii BM-6, was successfully expressed in Komagataella phaffii, characterized and applied to produce pectic oligosaccharides. The optimum temperature and pH of pePGA were 60 °C and 6.0. The purified recombinant enzyme showed a good pH stability and was stable from pH 3.5 to 8.0. The Km, Vmax and kcat values of pePGA were 0.1569 g/L, 12,273 μmol/min/mg and 7478.4 s-1, respectively. More importantly, pePGA-POS, the pePGA hydrolysis products from commercial pectin, had good prebiotic and antibacterial activities in vitro. The pePGA-POS was able to significantly promote the growth of probiotics; meanwhile, the growth of Escherichia coli JM109, Staphylococcus aureus and Bacillus subtilis 168 was effectively inhibited by pePGA-POS. In addition, pePGA-POS also had the DPPH radical scavenging capacity. These properties of pePGA-POS make pePGA attractive for the production of prebiotics.
Collapse
Affiliation(s)
- Meng-Jie Hao
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Dan Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiu-Mei Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Ning Li
- Guangzhou Puratos Food Co., Ltd., Guangzhou 511400, China
| | - Xiao-Wei Yu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Kim IJ, Jeong D, Kim SR. Upstream processes of citrus fruit waste biorefinery for complete valorization. BIORESOURCE TECHNOLOGY 2022; 362:127776. [PMID: 35970501 DOI: 10.1016/j.biortech.2022.127776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Citrus fruit waste (CW) is a useful biomass and its valorization into fuels and biochemicals has received much attention. For economic feasibility, increased efficiency of the preceding extraction and enzyme saccharification processes is necessary. However, at present, there is a lack of systematic reviews addressing these two integral upstream processes in concert for CW biorefinery. Here, the state-of-the-art advancements in enzyme extraction and saccharification processes-using which relevant essential oils, flavonoids, and sugars can be obtained-are reviewed. Specifically, the extraction options for two commercially available CW-derived products, essential oils and pectin, are discussed. With respect to enzyme saccharification, the use of an undefined commercial mixture routinely results in suboptimal sugar production. In this respect, applicable strategies for enzyme mixture customization are suggested for maximizing the hydrolytic efficiency of CW. The enzyme degradation system for CW-derived carbohydrates and its extensive application for sugar production are also discussed.
Collapse
Affiliation(s)
- In Jung Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Deokyeol Jeong
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea; Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
20
|
Chandel V, Biswas D, Roy S, Vaidya D, Verma A, Gupta A. Current Advancements in Pectin: Extraction, Properties and Multifunctional Applications. Foods 2022; 11:2683. [PMID: 36076865 PMCID: PMC9455162 DOI: 10.3390/foods11172683] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/31/2022] [Indexed: 12/18/2022] Open
Abstract
Pectin is a heterogeneous hydrocolloid present in the primary cell wall and middle lamella in all dicotyledonous plants, more commonly in the outer fruit coat or peel as compared to the inner matrix. Presently, citrus fruits and apple fruits are the main sources for commercial extraction of pectin, but ongoing research on pectin extraction from alternate fruit sources and fruit wastes from processing industries will be of great help in waste product reduction and enhancing the production of pectin. Pectin shows multifunctional applications including in the food industry, the health and pharmaceutical sector, and in packaging regimes. Pectin is commonly utilized in the food industry as an additive in foods such as jams, jellies, low calorie foods, stabilizing acidified milk products, thickener and emulsifier. Pectin is widely used in the pharmaceutical industry for the preparation of medicines that reduce blood cholesterol level and cure gastrointestinal disorders, as well as in cancer treatment. Pectin also finds use in numerous other industries, such as in the preparation of edible films and coatings, paper substitutes and foams. Due to these varied uses of pectin in different applications, there is a great necessity to explore other non-conventional sources or modify existing sources to obtain pectin with desired quality attributes to some extent by rational modifications of pectin with chemical and enzymatic treatments.
Collapse
Affiliation(s)
- Vinay Chandel
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Devina Vaidya
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture & Forestry, Solan 173230, India
| | - Anil Verma
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture & Forestry, Solan 173230, India
| | - Anil Gupta
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture & Forestry, Solan 173230, India
| |
Collapse
|
21
|
Chu J, Tian Y, Li Q, Liu G, Yu Q, Jiang T, He B. Engineering the β-Fructofuranosidase Fru6 with Promoted Transfructosylating Capacity for Fructooligosaccharide Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9694-9702. [PMID: 35900332 DOI: 10.1021/acs.jafc.2c03981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Levan-type fructooligosaccharides (FOS) exhibit enhanced health-promoting prebiotic effects on gut microbiota. The wild type (WT) of β-fructofuranosidase Fru6 could mainly yield 6-ketose. Semirational design and mutagenesis of Fru6 were exploited to promote the transfructosylating capacity for FOS. The promising variants not only improved the formation of 6-kestose but also newly produced tetrasaccharides of 6,6-nystose and 1,6-nystose (a new type of FOS), and combinatorial mutation boosted the production of 6-kestose and tetrasaccharides (39.9 g/L 6,6-nystose and 4.6 g/L 1,6-nystose). Molecular docking and molecular dynamics (MD) simulation confirmed that the mutated positions reshaped the pocket of Fru6 to accommodate bulky 6-kestose in a reactive conformation with better accessibility for tetrasaccharides formation. Using favored conditions, the variant S165A/H357A could yield 6-kestose up to 335 g/L, and tetrasaccharides (6,6-nystose and 1,6-nystose) reached a high level of 121.1 g/L (134.5 times of the mutant S423A). The β-(2,6)-linked FOS may show the potential application for the prebiotic ingredients.
Collapse
Affiliation(s)
- Jianlin Chu
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing211800, China
| | - Yani Tian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing211800, China
| | - Qian Li
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing211800, China
| | - Gaofei Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing211800, China
| | - Qi Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing211800, China
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing211800, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing211800, China
| |
Collapse
|
22
|
Muller S, Concha D, Vasquez P, Rodriguez-Nuñez K, Martinez R, Bernal C. Effect of the immobilization of pectinase on the molecular weight distribution of pectin oligosaccharides obtained from citrus pectin. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Zhang L, Zheng J, Wang Y, Ye X, Chen S, Pan H, Chen J. Fabrication of rhamnogalacturonan-I enriched pectin-based emulsion gels for protection and sustained release of curcumin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Chen Y, Zhu C, Zhao Y, Zhang S, Wang W. Transcriptomics Integrated with Changes in Cell Wall Material of Chestnut (Castanea mollissima Blume) during Storage Provides a New Insight into the “Calcification” Process. Foods 2022; 11:foods11081136. [PMID: 35454723 PMCID: PMC9030872 DOI: 10.3390/foods11081136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Chestnut “calcification” is the result of a series of physiological and biochemical changes during postharvest storage; however, the associated mechanisms are unclear. In this study, several potential calcification-related physicochemical parameters in chestnut, including moisture, cell wall materials, cellulose, lignin, and pectin, were measured. Transcriptome analysis was performed on chestnut seeds during different stages of storage. The results showed that the degree of calcification in the chestnut seeds was significantly negatively correlated with the moisture content (r = −0.961) at room temperature (20–25 °C) and a relative humidity of 50–60%. The accumulation of cell wall material in completely calcified seeds was 5.3 times higher than that of fresh seeds. The total content of cellulose and lignin increased during the storage process. Transcriptome analysis of 0% and 50% calcified chestnut was performed; a total of 1801 differentially expressed genes consisting of 805 up-regulated and 996 down-regulated genes were identified during the calcification process. Furthermore, response to water, water deprivation, and salt stress were most enriched by gene ontology (GO) and gene set enrichment analysis (GSEA). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to chestnut calcification included purine metabolism, RNA degradation, the mRNA surveillance pathway, starch and sucrose metabolism, arginine and proline metabolism, and fatty acid metabolism, and were detected. Most of the genes involved in cellulose synthase, lignin catabolism, and pectin catabolism were down-regulated, while only two important genes, scaffold11300 and scaffold0412, were up-regulated, which were annotated as cellulose and pectin synthase genes, respectively. These two genes may contribute to the increase of total cell wall material accumulation during chestnut calcification. The results provided new insights into chestnut calcification process and laid a foundation for further chestnut preservation.
Collapse
|
25
|
Wongkaew M, Tangjaidee P, Leksawasdi N, Jantanasakulwong K, Rachtanapun P, Seesuriyachan P, Phimolsiripol Y, Chaiyaso T, Ruksiriwanich W, Jantrawut P, Sommano SR. Mango Pectic Oligosaccharides: A Novel Prebiotic for Functional Food. Front Nutr 2022; 9:798543. [PMID: 35399687 PMCID: PMC8987974 DOI: 10.3389/fnut.2022.798543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/22/2022] [Indexed: 12/27/2022] Open
Abstract
Prebiotics are functional food ingredients that assist probiotic growth and render many other health benefits. Mango peel is the biomass of the processing industry and has recently been value-added as a dietary fiber pectin. Besides its general use as a food additive, mango peel pectin (MPP) is partially hydrolyzed by pectinase to obtain pectic oligosaccharides (POSs) that have recently gained attention as novel prebiotic products and in medical research. This review describes probiotic candidates responsible for the digestion of pectin derivatives and the advantages of POSs as functional additives and their current best retrieval options. Mango pectic oligosaccharide (MPOS) recovery from low methoxyl MPP from mango with prebiotic performance both in vivo and in vitro environments is discussed. Current research gaps and potential developments in the field are also explored. The overall worthiness of this article is the potential use of the cheap-green food processing bioresource for high-value components.
Collapse
Affiliation(s)
- Malaiporn Wongkaew
- Program in Food Production and Innovation, College of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai, Thailand
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Pipat Tangjaidee
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Noppol Leksawasdi
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Kittisak Jantanasakulwong
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Pornchai Rachtanapun
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Phisit Seesuriyachan
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Yuthana Phimolsiripol
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Thanongsak Chaiyaso
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
26
|
Wang W, Wang Y, Yi H, Liu Y, Zhang G, Zhang L, Mayo KH, Yuan Y, Zhou Y. Biochemical Characterization of Two Rhamnogalacturonan Lyases From Bacteroides ovatus ATCC 8483 With Preference for RG-I Substrates. Front Microbiol 2022; 12:799875. [PMID: 35087500 PMCID: PMC8787155 DOI: 10.3389/fmicb.2021.799875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Rhamnogalacturonan lyase (RGL) cleaves backbone α-1,4 glycosidic bonds between L-rhamnose and D-galacturonic acid residues in type I rhamnogalacturonan (RG-I) by β-elimination to generate RG oligosaccharides with various degrees of polymerization. Here, we cloned, expressed, purified and biochemically characterized two RGLs (Bo3128 and Bo4416) in the PL11 family from Bacteroides ovatus ATCC 8483. Bo3128 and Bo4416 displayed maximal activity at pH 9.5 and pH 6.5, respectively. Whereas the activity of Bo3128 could be increased 1.5 fold in the presence of 5 mM Ca2+, Bo4416 required divalent metal ions to show any enzymatic activity. Both of RGLs showed a substrate preference for RG-I compared to other pectin domains. Bo4416 and Bo3128 primarily yielded unsaturated RG oligosaccharides, with Bo3128 also producing them with short side chains, with yields of 32.4 and 62.4%, respectively. Characterization of both RGLs contribute to the preparation of rhamnogalacturonan oligosaccharides, as well as for the analysis of the fine structure of RG-I pectins.
Collapse
Affiliation(s)
- Weiyang Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yibing Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Haoting Yi
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yang Liu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Guojing Zhang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Le Zhang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Ye Yuan
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| |
Collapse
|
27
|
Wang H, Liu N, Yang Z, Zhao K, Pang H, Shao K, Zhou Z, Li S, He N. Preventive Effect of Pectic Oligosaccharides on Acute Colitis Model Mice: Modulating Epithelial Barrier, Gut Microbiota and Treg/Th17 Balance. Food Funct 2022; 13:9999-10012. [DOI: 10.1039/d2fo01448c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pectin as dietary fiber supplements has shown emerging potential in clinical ulcerative colitis (UC) adjuvant therapy. In this study, the preventive and prebiotic effect of enzymatic-degraded pectic oligosaccharides (POS) was...
Collapse
|
28
|
Kim DR, Jeon CW, Cho G, Thomashow LS, Weller DM, Paik MJ, Lee YB, Kwak YS. Glutamic acid reshapes the plant microbiota to protect plants against pathogens. MICROBIOME 2021; 9:244. [PMID: 34930485 PMCID: PMC8691028 DOI: 10.1186/s40168-021-01186-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/27/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Plants in nature interact with other species, among which are mutualistic microorganisms that affect plant health. The co-existence of microbial symbionts with the host contributes to host fitness in a natural context. In turn, the composition of the plant microbiota responds to the environment and the state of the host, raising the possibility that it can be engineered to benefit the plant. However, technology for engineering the structure of the plant microbiome is not yet available. RESULTS The loss of diversity and reduction in population density of Streptomyces globisporus SP6C4, a core microbe, was observed coincident with the aging of strawberry plants. Here, we show that glutamic acid reshapes the plant microbial community and enriches populations of Streptomyces, a functional core microbe in the strawberry anthosphere. Similarly, in the tomato rhizosphere, treatment with glutamic acid increased the population sizes of Streptomyces as well as those of Bacillaceae and Burkholderiaceae. At the same time, diseases caused by species of Botrytis and Fusarium were significantly reduced in both habitats. We suggest that glutamic acid directly modulates the composition of the microbiome community. CONCLUSIONS Much is known about the structure of plant-associated microbial communities, but less is understood about how the community composition and complexity are controlled. Our results demonstrate that the intrinsic level of glutamic acid in planta is associated with the composition of the microbiota, which can be modulated by an external supply of a biostimulant. Video Abstract.
Collapse
Affiliation(s)
- Da-Ran Kim
- RILS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Chang-Wook Jeon
- Division of Applied Life Science (BK 21 plus) and IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gyeongjun Cho
- Division of Applied Life Science (BK 21 plus) and IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Linda S Thomashow
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, 99164-6430, USA
| | - David M Weller
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, 99164-6430, USA
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon, 65980, Republic of Korea
| | - Yong Bok Lee
- Division of Applied Life Science (BK 21 plus) and IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Youn-Sig Kwak
- RILS, Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Division of Applied Life Science (BK 21 plus) and IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Department of Plant Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
29
|
Zhang P, Su L, Ma F, Ji X, Su Y, Yue Q, Zhao C, Zhang S, Sun X, Zhao L. Weilan gum oligosaccharide ameliorates dextran sulfate sodium‑induced experimental ulcerative colitis. Mol Med Rep 2021; 25:52. [PMID: 34913079 PMCID: PMC8711021 DOI: 10.3892/mmr.2021.12568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/26/2021] [Indexed: 11/06/2022] Open
Abstract
Ulcerative colitis (UC) is a global disease, characterized by periods of relapse that seriously affects the quality of life of patients. Oligosaccharides are considered to be a prospective strategy to alleviate the symptoms of UC. The present study aimed to evaluate the effect of weilan gum oligosaccharide (WLGO) on a mouse UC model induced by dextran sulfate sodium (DSS). WLGO structural physical properties were characterized by electrospray mass spectrometry and fourier tansform infrared spectroscopy. MTT assays were performed to evaluate the non‑toxic concentration of WLGO. RT‑qPCR and ELISAs were conducted to determine the levels of inflammatory factors. The clinical symptoms and mucosal integrity of the DSS‑induced UC model were assessed by DAI and histological assessment. LPS‑induced Caco‑2 cells and DSS‑induced UC mice were used to explore the effects of WLGO on UC. Treatment of the mice with 4.48 g/kg/day WLGO via gavage for 7 days significantly relieved the symptoms of DSS‑induced UC model mice, whereas significant effects were not observed for all symptoms of DSS‑induced UC in the WLGO‑low group. The disease activity index score was decreased and the loss of body weight was reduced in DSS‑induced UC model mice treated with WLGO. Moreover, colonic damage and abnormally short colon length shortenings were relieved following WLGO treatment. WLGO treatment also reduced the concentration and mRNA expression levels of proinflammatory cytokines, including interleukin‑1β, interleukin‑6 and tumor necrosis factor α, in DSS‑induced UC model mice and lipopolysaccharide‑treated Caco‑2 cells. These results indicated that WLGO may be an effective strategy for UC treatment.
Collapse
Affiliation(s)
- Ping Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| | - Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| | - Feifan Ma
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| | - Xiuyu Ji
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| | - Yue Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| | - Chen Zhao
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250013, P.R. China
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| | - Xin Sun
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| |
Collapse
|
30
|
Ramirez CSV, Temelli F, Saldaña MD. Production of pea hull soluble fiber-derived oligosaccharides using subcritical water with carboxylic acids. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Sabater C, Calvete-Torre I, Villamiel M, Moreno FJ, Margolles A, Ruiz L. Vegetable waste and by-products to feed a healthy gut microbiota: Current evidence, machine learning and computational tools to design novel microbiome-targeted foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Inzunza-Soto M, Thai S, Sinrod AJG, Olson DA, Avena-Bustillos RJ, Li X, Rolston MR, Wang SC, Teran-Cabanillas E, Yokoyama W, McHugh TH. Health benefits of first and second extraction drum-dried pitted olive pomace. J Food Sci 2021; 86:4865-4876. [PMID: 34642970 DOI: 10.1111/1750-3841.15925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Olive pomace (OP) is the main by-product of olive oil extraction. After pit and skin removal, OP pulp has high concentrations of dietary fiber and phenolics with high antioxidant capacity. This study evaluated mice health benefits of drum-dried pitted OP pulp obtained after first and second oil extraction. Fresh OP was steam blanched, then pits and skins separated in a pulper/finisher, and pulp drum-dried and milled. OP was characterized by proximate analysis, total soluble phenolics (TSP), individual phenolics, and dietary fiber. Drum-dried pitted OP from first and second extraction was formulated at 10% and 20% in a high fat mice diet. Low fat (5%) and high fat (18%) control diets were also used for comparison. First extraction OP had higher TSP than OP from second extraction. Hydroxytyrosol was the main phenolic in OP. Mice weight gain was lower for the four OP diets compared to high and low-fat control diets. Fecal protein was high for all OP diets, indicating poor protein retention in mice, possibly by phenolics binding of protein and enzymes. Liver weight and adipose tissue were lower in mice consuming the four high fat OP diets compared to high fat control diet. Also, there was no effect on blood glucose by OP in diets. Mice gut microbiota analysis indicated that Actinobacteria decreased in the OP diets compared to the two control diets while Bacteroidetes increased, indicating a positive correlation with reduced body fat and weight. Drum-dried pitted OP is a novel agricultural by-product with its bioactive compounds having the potential to be incorporated in feeds and foods providing health benefits. PRACTICAL APPLICATION: Drum-dried pitted olive pomace can be produced from first or second olive oil extraction byproducts to be used as a shelf-stable healthy food or feed supplement.
Collapse
Affiliation(s)
- Marce Inzunza-Soto
- Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Sandy Thai
- Western Regional Research Center, Healthy Processed Foods Research, Albany, California, USA
| | - Amanda J G Sinrod
- Department of Food Science and Technology, University of California, Davis, California, USA
| | - Donald A Olson
- Western Regional Research Center, Healthy Processed Foods Research, Albany, California, USA
| | | | - Xueqi Li
- Olive Center, University of California, Davis, California, USA
| | - Matthew R Rolston
- Host Microbe Systems Biology Core, University of California, Davis, California, USA
| | - Selina C Wang
- Department of Food Science and Technology, University of California, Davis, California, USA
| | - Eli Teran-Cabanillas
- Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Wallace Yokoyama
- Western Regional Research Center, Healthy Processed Foods Research, Albany, California, USA
| | - Tara H McHugh
- Western Regional Research Center, Healthy Processed Foods Research, Albany, California, USA
| |
Collapse
|
33
|
Millan-Linares MC, Montserrat-de la Paz S, Martin ME. Pectins and Olive Pectins: From Biotechnology to Human Health. BIOLOGY 2021; 10:biology10090860. [PMID: 34571737 PMCID: PMC8470263 DOI: 10.3390/biology10090860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Pectins comprise complex polysaccharides rich in galacturonic acid, that exert many functions in higher plants as components of the cell walls, together with cellulose or lignin. The food industry has traditionally used pectins as an additive due to their gelling or thickening properties. Pharmaceutical research is also taking advantage of pectin bioactivity, providing evidence of the role of these polysaccharides as health promoters. Fruits and vegetables are natural sources of pectins that can be obtained as by-products during food or beverage production. In line with this, the aim of our study is gathering data on the current methods to extract pectins from fruit or vegetable wastes, optimizing yield and environmentally friendly protocols. Updated information about pectin applications in food or non-food industries are provided. We also point to olives as novel source of pectins that strengthen the evidence that this fruit is as remarkably healthy part of the Mediterranean diet. This work exhibits the need to explore natural bioactive components of our daily intake to improve our health, or prevent or treat chronical diseases present in our society. Abstract Pectins are a component of the complex heteropolysaccharide mixture present in the cell wall of higher plants. Structurally, the pectin backbone includes galacturonic acid to which neutral sugars are attached, resulting in functional regions in which the esterification of residues is crucial. Pectins influence many physiological processes in plants and are used industrially for both food and non-food applications. Pectin-based compounds are also a promising natural source of health-beneficial bioactive molecules. The properties of pectins have generated interest in the extraction of these polysaccharides from natural sources using environmentally friendly protocols that maintain the native pectin structure. Many fruit by-products are sources of pectins; however, owing to the wide range of applications in various fields, novel plants are now being explored as potential sources. Olives, the fruit of the olive tree, are consumed as part of the healthy Mediterranean diet or processed into olive oil. Pectins from olives have recently emerged as promising compounds with health-beneficial effects. This review details the current knowledge on the structure of pectins and describes the conventional and novel techniques of pectin extraction. The versatile properties of pectins, which make them promising bioactive compounds for industry and health promotion, are also considered.
Collapse
Affiliation(s)
- Maria C. Millan-Linares
- Department of Food & Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain;
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Correspondence: ; Tel.: +34-955421051
| | - Maria E. Martin
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Seville, Spain;
| |
Collapse
|
34
|
Divyashri G, Sadanandan B, Chidambara Murthy KN, Shetty K, Mamta K. Neuroprotective Potential of Non-Digestible Oligosaccharides: An Overview of Experimental Evidence. Front Pharmacol 2021; 12:712531. [PMID: 34497516 PMCID: PMC8419344 DOI: 10.3389/fphar.2021.712531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Non-digestible oligosaccharides (NDOs) from dietary sources have the potential as prebiotics for neuroprotection. Globally, diverse populations suffering from one or the other forms of neurodegenerative disorders are on the rise, and NDOs have the potential as supportive complementary therapeutic options against these oxidative-linked disorders. Elevated levels of free radicals cause oxidative damage to biological molecules like proteins, lipids, and nucleic acids associated with various neurological disorders. Therefore, investigating the therapeutic or prophylactic potential of prebiotic bioactive molecules such as NDOs as supplements for brain and cognitive health has merits. Few prebiotic NDOs have shown promise as persuasive therapeutic solutions to counter oxidative stress by neutralizing free radicals directly or indirectly. Furthermore, they are also known to modulate through brain-derived neurotrophic factors through direct and indirect mechanisms conferring neuroprotective and neuromodulating benefits. Specifically, NDOs such as fructo-oligosaccharides, xylo-oligosaccharides, isomalto-oligosaccharides, manno-oligosaccharides, pectic-oligosaccharides, and similar oligosaccharides positively influence the overall health via various mechanisms. Increasing evidence has suggested that the beneficial role of such prebiotic NDOs is not only directed towards the colon but also distal organs including the brain. Despite the wide applications of these classes of NDOs as health supplements, there is limited understanding of the possible role of these NDOs as neuroprotective therapeutics. This review provides important insights into prebiotic NDOs, their source, and production with special emphasis on existing direct and indirect evidence of their therapeutic potential in neuroprotection.
Collapse
Affiliation(s)
- Gangaraju Divyashri
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, India
| | - Bindu Sadanandan
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, India
| | - Kotamballi N Chidambara Murthy
- Central Research Laboratory and Division of Research and Patents, Ramaiah Medical College and Hospital, Bengaluru, India
| | - Kalidas Shetty
- Department of Plant Science, North Dakota State University, Fargo, ND, United States
| | - Kumari Mamta
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, India
| |
Collapse
|
35
|
Fuso A, Risso D, Rosso G, Rosso F, Manini F, Manera I, Caligiani A. Potential Valorization of Hazelnut Shells through Extraction, Purification and Structural Characterization of Prebiotic Compounds: A Critical Review. Foods 2021; 10:1197. [PMID: 34073196 PMCID: PMC8229101 DOI: 10.3390/foods10061197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/22/2021] [Indexed: 11/24/2022] Open
Abstract
Hazelnuts are one of the most widely consumed nuts, but their production creates large quantities of by-products, especially shells, that could be upcycled into much more valuable products. Recent studies have shown that hazelnut shell hemicellulose is particularly rich in compounds that are potential precursors of xylooligosaccharides and arabino-xylooligosaccharides ((A)XOS), previously defined as emerging prebiotics very beneficial for human health. The production of these compounds on an industrial scale-up could have big consequences on the functional foods market. However, to produce (A)XOS from a lignocellulosic biomass, such as hazelnut shell, is not easy. Many methods for the extraction and the purification of these prebiotics have been developed, but they all have different efficiencies and consequences, including on the chemical structure of the obtained (A)XOS. The latter, in turn, is strongly correlated to the nutritional effects they have on health, which is why the optimization of the structural characterization process is also necessary. Therefore, this review aims to summarize the progress made by research in this field, so as to contribute to the exploitation of hazelnut waste streams through a circular economy approach, increasing the value of this biomass through the production of new functional ingredients.
Collapse
Affiliation(s)
- Andrea Fuso
- Food and Drug Department, University of Parma, Via Parco Area delle Scienze 17/A, 43124 Parma, Italy;
| | - Davide Risso
- Soremartec Italia Srl, Ferrero Group, 12051 Alba, Italy; (D.R.); (G.R.); (F.R.); (F.M.); (I.M.)
| | - Ginevra Rosso
- Soremartec Italia Srl, Ferrero Group, 12051 Alba, Italy; (D.R.); (G.R.); (F.R.); (F.M.); (I.M.)
| | - Franco Rosso
- Soremartec Italia Srl, Ferrero Group, 12051 Alba, Italy; (D.R.); (G.R.); (F.R.); (F.M.); (I.M.)
| | - Federica Manini
- Soremartec Italia Srl, Ferrero Group, 12051 Alba, Italy; (D.R.); (G.R.); (F.R.); (F.M.); (I.M.)
| | - Ileana Manera
- Soremartec Italia Srl, Ferrero Group, 12051 Alba, Italy; (D.R.); (G.R.); (F.R.); (F.M.); (I.M.)
| | - Augusta Caligiani
- Food and Drug Department, University of Parma, Via Parco Area delle Scienze 17/A, 43124 Parma, Italy;
| |
Collapse
|
36
|
Aline de Moura F, Teixeira Macagnan F, Klein B, Wagner R, Picolli da Silva L. Metabolic properties of partially hydrolyzed pectin from passion fruit peel. BIOACTIVE CARBOHYDRATES AND DIETARY FIBRE 2021; 25:100256. [DOI: 10.1016/j.bcdf.2020.100256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
37
|
Mao Y, Robinson J, Binner E. Understanding heat and mass transfer processes during microwave-assisted and conventional solvent extraction. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116418] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Méndez DA, Fabra MJ, Gómez-Mascaraque L, López-Rubio A, Martinez-Abad A. Modelling the Extraction of Pectin towards the Valorisation of Watermelon Rind Waste. Foods 2021; 10:738. [PMID: 33807203 PMCID: PMC8066451 DOI: 10.3390/foods10040738] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 11/24/2022] Open
Abstract
Watermelon is the second largest fruit crop worldwide, with great potential to valorise its rind waste. An experimental design was used to model how extraction parameters (temperature, pH, and time) impact on the efficiency of the process, purity, esterification degree, monosaccharide composition and molar mass of watermelon rind pectin (WRP), with an insight on changes in their structural properties (linearity, branching degree and extraction severity). The models for all responses were accurately fitted (R2 > 90%, lack of fit p ≥ 0.05) and experimentally validated. At optimum yield conditions, WRP yield (13.4%), purity (540 µg/g galacturonic acid) and molar mass (106.1 kDa) were comparable to traditional pectin sources but showed a higher branching degree with longer galactan side chains and a higher protein interaction. Harsher conditions (pH 1) generated purer homogalacturonan fractions with average molar masses (80 kDa) at the expense of yield, while mild extraction conditions (pH ≥ 2) produced highly branched entangled pectin structures. This study underlines novel compositional features in WRP and the possibility of producing novel customized pectin ingredients with a wider potential application scope depending on the targeted structure.
Collapse
Affiliation(s)
- Daniel Alexander Méndez
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain; (D.A.M.); (M.J.F.); (A.L.-R.)
| | - María José Fabra
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain; (D.A.M.); (M.J.F.); (A.L.-R.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy—Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
| | - Laura Gómez-Mascaraque
- Department of Food Chemistry & Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland;
| | - Amparo López-Rubio
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain; (D.A.M.); (M.J.F.); (A.L.-R.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy—Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
| | - Antonio Martinez-Abad
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain; (D.A.M.); (M.J.F.); (A.L.-R.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy—Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
| |
Collapse
|
39
|
Duan J, Li X, Zhang J, Cheng B, Liu S, Li H, Zhou Q, Chen W. Cocktail Therapy of Fosthiazate and Cupric-Ammoniun Complex for Citrus Huanglongbing. FRONTIERS IN PLANT SCIENCE 2021; 12:643971. [PMID: 33868341 PMCID: PMC8044827 DOI: 10.3389/fpls.2021.643971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/03/2021] [Indexed: 05/05/2023]
Abstract
Huanglongbing (HLB) is a destructive citrus bacterial disease caused by Candidatus Liberibacter asiaticus (Ca.Las) and cannot be cured by current pesticides. Root lesion and Tylenchulus semipenetrans juveniles were observed in HLB-affected citrus tree roots. We hypothesize that root treatment with fosthiazate (FOS) and Cupric-Ammonium Complex (CAC) will improve the root growth and inhibit HLB. CAC is a broad spectrum fungicide and can promote growth of crops. FOS kills Tylenchulus semipenetrans and protects roots from damage by harmful bacteria such as Ca.Las. After 90 days of combination treatment of FOS and CAC through root drenches, the citrus grew new roots and its leaves changed their color to green. The inhibition rate of Ca.Las reached more than 90%. During treatment process, the chlorophyll content and the root vitality increased 396 and 151%, respectively, and starch accumulation decreased by 88%. Transmission electron microscopy (TEM) and plant tissue dyeing experiments showed that more irregular swollen starch granules existed in the chloroplast thylakoid system of the HLB-infected leaves. This is due to the blocking of their secretory tissue by starch. TEM and flow cytometry experiments in vitro showed the synergistic effects of FOS and CAC. A transcriptome analysis revealed that the treatment induced the differential expression of the genes which involved 103 metabolic pathways. These results suggested that the cocktail treatment of FOS and CAC may effectively kill various pathogens including Ca.Las on citrus root and thus effectively control HLB.
Collapse
Affiliation(s)
- Jingwei Duan
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xue Li
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Junzhe Zhang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Baoping Cheng
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Shuhan Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Hongmei Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
40
|
Akalin GO, Oztuna Taner O, Taner T. The preparation, characterization and antibacterial properties of chitosan/pectin silver nanoparticle films. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03667-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
41
|
Wongkaew M, Tinpovong B, Sringarm K, Leksawasdi N, Jantanasakulwong K, Rachtanapun P, Hanmoungjai P, Sommano SR. Crude Pectic Oligosaccharide Recovery from Thai Chok Anan Mango Peel Using Pectinolytic Enzyme Hydrolysis. Foods 2021; 10:627. [PMID: 33809517 PMCID: PMC7999440 DOI: 10.3390/foods10030627] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Pectin recovered from mango peel biomass can be used as a potential source for pectic oligosaccharide hydrolysate with excellent probiotic growth-enhancing performance and prebiotic potentials. Consequently, the objectives of the current study were to optimise the enzyme hydrolysis treatment of mango peel pectin (MPP) and to evaluate the pectic oligosaccharide effects of Lactobacillus reuteri DSM 17938 and Bifidobacterium animalis TISTR 2195. Mango of "chok anan" variety was chosen due to its excessive volume of biomass in processing and high pectin content. The optimal treatment for mango peel pectic oligosaccharide (MPOS) valorisation was 24 h of fermentation with 0.3% (v/v) pectinase. This condition provided small oligosaccharides with the molecular weight of 643 Da that demonstrated the highest score of prebiotic activity for both of B. animalis TISTR 2195 (7.76) and L. reuteri DSM 17938 (6.87). The major sugar compositions of the oligosaccharide were fructose (24.41% (w/w)) and glucose (19.52% (w/w)). For the simulation of prebiotic fermentation, B. animalis TISTR 2195 showed higher proliferation in 4% (w/v) of MPOS supplemented (8.92 log CFU/mL) than that of L. reuteri (8.53 CFU/mL) at 72 h of the fermentation time. The main short chain fatty acids (SCFAs) derived from MPOS were acetic acid and propionic acid. The highest value of total SCFA was achieved from the 4% (w/v) MPOS supplementation for both of B. animalis (68.57 mM) and L. reuteri (69.15 mM). The result of this study therefore conclusively advises that MPOS is a novel pectic oligosaccharide resource providing the opportunity for the sustainable development approach through utilising by-products from the fruit industry.
Collapse
Affiliation(s)
- Malaiporn Wongkaew
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand;
- Program of Food Production and Innovation, Faculty of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand;
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bow Tinpovong
- Program of Food Production and Innovation, Faculty of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand;
| | - Korawan Sringarm
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand; (N.L.); (K.J.); (P.R.)
| | - Noppol Leksawasdi
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand; (N.L.); (K.J.); (P.R.)
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand; (N.L.); (K.J.); (P.R.)
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pornchai Rachtanapun
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand; (N.L.); (K.J.); (P.R.)
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Prasert Hanmoungjai
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand; (N.L.); (K.J.); (P.R.)
| |
Collapse
|
42
|
Catenza KF, Donkor KK. Recent approaches for the quantitative analysis of functional oligosaccharides used in the food industry: A review. Food Chem 2021; 355:129416. [PMID: 33774226 DOI: 10.1016/j.foodchem.2021.129416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Functional oligosaccharides (OS) are diverse groups of carbohydrates that confer several health benefits stemming from their prebiotic activity. Commonly used oligosaccharides, fructooligosaccharides and galactooligosaccharides, are used in a wide range of applications from food ingredients to mimic the prebiotic activity of human milk oligosaccharides (HMOs) in infant formula to sugar and fat replacers in dairy and bakery products. However, while consumption of these compounds is associated with several positive health effects, increased consumption can cause intestinal discomfort and aggravation of intestinal bowel syndrome symptoms. Hence, it is essential to develop rapid and reliable techniques to quantify OS for quality control and proper assessment of their functionality in food and food products. The present review will focus on recent analytical techniques used to quantify OS in different matrices such as food and beverage products.
Collapse
Affiliation(s)
- K F Catenza
- Department of Physical Sciences (Chemistry), Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| | - K K Donkor
- Department of Physical Sciences (Chemistry), Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada.
| |
Collapse
|
43
|
Asadpoor M, Ithakisiou GN, Henricks PAJ, Pieters R, Folkerts G, Braber S. Non-Digestible Oligosaccharides and Short Chain Fatty Acids as Therapeutic Targets against Enterotoxin-Producing Bacteria and Their Toxins. Toxins (Basel) 2021; 13:175. [PMID: 33668708 PMCID: PMC7996226 DOI: 10.3390/toxins13030175] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Enterotoxin-producing bacteria (EPB) have developed multiple mechanisms to disrupt gut homeostasis, and provoke various pathologies. A major part of bacterial cytotoxicity is attributed to the secretion of virulence factors, including enterotoxins. Depending on their structure and mode of action, enterotoxins intrude the intestinal epithelium causing long-term consequences such as hemorrhagic colitis. Multiple non-digestible oligosaccharides (NDOs), and short chain fatty acids (SCFA), as their metabolites produced by the gut microbiota, interact with enteropathogens and their toxins, which may result in the inhibition of the bacterial pathogenicity. NDOs characterized by diverse structural characteristics, block the pathogenicity of EPB either directly, by inhibiting bacterial adherence and growth, or biofilm formation or indirectly, by promoting gut microbiota. Apart from these abilities, NDOs and SCFA can interact with enterotoxins and reduce their cytotoxicity. These anti-virulent effects mostly rely on their ability to mimic the structure of toxin receptors and thus inhibiting toxin adherence to host cells. This review focuses on the strategies of EPB and related enterotoxins to impair host cell immunity, discusses the anti-pathogenic properties of NDOs and SCFA on EPB functions and provides insight into the potential use of NDOs and SCFA as effective agents to fight against enterotoxins.
Collapse
Affiliation(s)
- Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (M.A.); (G.-N.I.); (P.A.J.H.); (G.F.)
| | - Georgia-Nefeli Ithakisiou
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (M.A.); (G.-N.I.); (P.A.J.H.); (G.F.)
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (M.A.); (G.-N.I.); (P.A.J.H.); (G.F.)
| | - Roland Pieters
- Division of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands;
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (M.A.); (G.-N.I.); (P.A.J.H.); (G.F.)
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (M.A.); (G.-N.I.); (P.A.J.H.); (G.F.)
| |
Collapse
|
44
|
|
45
|
Samborska K, Boostani S, Geranpour M, Hosseini H, Dima C, Khoshnoudi-Nia S, Rostamabadi H, Falsafi SR, Shaddel R, Akbari-Alavijeh S, Jafari SM. Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Wandee Y, Uttapap D, Mischnick P, Rungsardthong V. Production of pectic-oligosaccharides from pomelo peel pectin by oxidative degradation with hydrogen peroxide. Food Chem 2021; 348:129078. [PMID: 33515939 DOI: 10.1016/j.foodchem.2021.129078] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 11/17/2022]
Abstract
Oxidative depolymerization of alkali- and acid-extracted pomelo pectins was performed using 1% hydrogen peroxide (H2O2) with a microwave power of 550 W for 10 min. Pectic-oligosaccharides (POS) produced from the acid-extracted methyl-esterified pectin contained higher amounts of DP1 and DP2 than that from the nearly ester-free alkali-extracted pectin, and the loss of these small-size products during recovery resulted in a lower POS yield (25.0%) compared to the alkali-extracted pectin (57.7%). Degradation of the alkali-extracted pectin with 3 and 5% H2O2 led to a decrease in precipitable POS yield. The relative amount of large-sized POS decreased as the H2O2 concentration increased. An increase in the microwave power to 1100 W had no significant effect on overall yield, but the average size shifted to be lower. The results of sugar composition and identification of the degraded products with ESI-MS confirmed the existence of several POS species with different sizes and structures.
Collapse
Affiliation(s)
- Yuree Wandee
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkhuntien, Bangkok 10150, Thailand.
| | - Dudsadee Uttapap
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkhuntien, Bangkok 10150, Thailand
| | - Petra Mischnick
- Faculty of Life Sciences, Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstr, 20, D-38106 Braunschweig, Germany
| | - Vilai Rungsardthong
- Department of Agro-Industrial Technology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| |
Collapse
|
47
|
Nascimento RDPD, Marostica Junior MR. Emerging Prebiotics: Nutritional and Technological Considerations. PROBIOTICS AND PREBIOTICS IN FOODS 2021:13-46. [DOI: 10.1016/b978-0-12-819662-5.00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
48
|
Gullón P, del Río PG, Gullón B, Oliveira D, Costa P, Lorenzo JM. Pectooligosaccharides as Emerging Functional Ingredients: Sources, Extraction Technologies, and Biological Activities. SUSTAINABLE PRODUCTION TECHNOLOGY IN FOOD 2021:71-92. [DOI: 10.1016/b978-0-12-821233-2.00004-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
49
|
Olive Mill Wastes: A Source of Bioactive Molecules for Plant Growth and Protection against Pathogens. BIOLOGY 2020; 9:biology9120450. [PMID: 33291288 PMCID: PMC7762183 DOI: 10.3390/biology9120450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/28/2022]
Abstract
Simple Summary Olive oil is the most common vegetable oil used for human nutrition, and its production represents a major economic sector in Mediterranean countries. The milling industry generates large amounts of liquid and solid residues, whose disposal is complicated and costly due to their polluting properties. However, olive mill waste (OMW) may also be seen as a source of valuable biomolecules including plant nutrients, anthocyanins, flavonoids, polysaccharides, and phenolic compounds. This review describes recent advances and multidisciplinary approaches in the identification and isolation of valuable natural OMW-derived bioactive molecules. Such natural compounds may be potentially used in numerous sustainable applications in agriculture such as fertilizers, biostimulants, and biopesticides in alternative to synthetic substances that have a negative impact on the environment and are harmful to human health. Abstract Olive oil production generates high amounts of liquid and solid wastes. For a long time, such complex matrices were considered only as an environmental issue, due to their polluting properties. On the other hand, olive mill wastes (OMWs) exert a positive effect on plant growth when applied to soil due to the high content of organic matter and mineral nutrients. Moreover, OMWs also exhibit antimicrobial activity and protective properties against plant pathogens possibly due to the presence of bioactive molecules including phenols and polysaccharides. This review covers the recent advances made in the identification, isolation, and characterization of OMW-derived bioactive molecules able to influence important plant processes such as plant growth and defend against pathogens. Such studies are relevant from different points of view. First, basic research in plant biology may benefit from the isolation and characterization of new biomolecules to be potentially applied in crop growth and protection against diseases. Moreover, the valorization of waste materials is necessary for the development of a circular economy, which is foreseen to drive the future development of a more sustainable agriculture.
Collapse
|
50
|
Rico X, Gullón B, Yáñez R. Environmentally Friendly Hydrothermal Processing of Melon by-Products for the Recovery of Bioactive Pectic-Oligosaccharides. Foods 2020; 9:E1702. [PMID: 33233621 PMCID: PMC7699732 DOI: 10.3390/foods9111702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 01/30/2023] Open
Abstract
Melon by-products, that currently lack high value-added applications, could be a sustainable source of bioactive compounds such as polysaccharides and antioxidants. In this work, melon peels were extracted with water to remove free sugars, and the water-insoluble solids (WISs) were subjected to hydrothermal processing. The effect of temperature on the composition of the obtained liquors and their total phenolic content was evaluated. The selected liquors were also characterized by matrix assisted laser desorption/ionization-time of flight mass spectroscopy (MALDI-TOF MS), fourier transform infrared spectroscopy (FTIR) and high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), and its phenolic compounds were identified and quantified by high-performance liquid chromatography-diode array detector-tandem mass spectrometry (HPLC-DAD-MS/MS). In addition, the spent solids from the hydrothermal treatment were characterized and their potential use was assessed. At the optimal conditions of 140 °C (severity 2.03), the total oligosaccharide yield accounted for 15.24 g/100 g WIS, of which 10.07 g/100 g WIS were oligogalacturonides. The structural characterization confirmed the presence of partially methyl esterified oligogalacturonides with a wide range of polymerization degrees. After precipitation, 16.59 g/100 g WIS of pectin were recovered, with a galacturonic acid content of 55.41% and high linearity.
Collapse
Affiliation(s)
| | | | - Remedios Yáñez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain; (X.R.); (B.G.)
| |
Collapse
|