1
|
Zhou D, Li P, Yu S, Cui Z, Xu T, Ouyang L. Optimizing extrusion-based 3D bioprinting of plant cells with enhanced resolution and cell viability. Biofabrication 2025; 17:025008. [PMID: 39847862 DOI: 10.1088/1758-5090/adada1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/23/2025] [Indexed: 01/25/2025]
Abstract
3D bioprinting of plant cells has emerged as a promising technology for plant cell immobilization and related applications. Despite the numerous progress in mammalian cell printing, the bioprinting of plant cells is still in its infancy and needs further investigation. Here, we present a systematic study on optimizing the 3D bioprinting of plant cells, using carrots as an example, towards enhanced resolution and cell viability. We mainly investigated the effects of cell cluster forms and nozzle size on the rheological, extrusion, and printability properties of plant cell bioinks, as well as on the resultant cell viability and growth. We found that when the printing nozzle is larger than 85% of the cell clusters embedded in the bioink, smooth extrusion and good printability can be achieved together with considerable cell viability and long-term growth. Specifically, we optimized a bioink composited with suspension-cultured carrot cells, which exhibited better uniformity, smoother extrusion, and higher cell viability over 1 month culture compared to those with the regular callus or fragmented callus. This work provides a practical guideline for optimizing plant cell bioprinting from the bioink development to the printing outcome assessment. It highlights the importance of selecting a matched nozzle and cell cluster and might provide insights for a better understanding and exploitation of plant cell bioprinting.
Collapse
Affiliation(s)
- Dezhi Zhou
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Peixi Li
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Shuang Yu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Zhenhua Cui
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Tao Xu
- Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, People's Republic of China
| | - Liliang Ouyang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| |
Collapse
|
2
|
Zhang IW, Choi LS, Friend NE, McCoy AJ, Midekssa FS, Alsberg E, Lesher-Pérez SC, Stegemann JP, Baker BM, Putnam AJ. Clickable PEG-norbornene microgels support suspension bioprinting and microvascular assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623424. [PMID: 39605682 PMCID: PMC11601470 DOI: 10.1101/2024.11.15.623424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The development of perfusable and multiscale vascular networks remains one of the largest challenges in tissue engineering. As such, there is a need for the creation of customizable and facile methods to produce robustly vascularized constructs. In this study, secondarily crosslinkable (clickable) poly(ethylene glycol)-norbornene (PEGNB) microbeads were produced and evaluated for their ability to sequentially support suspension bioprinting and microvascular self-assembly towards the aim of engineering hierarchical vasculature. The clickable PEGNB microbead slurry exhibited mechanical behavior suitable for suspension bioprinting of sacrificial bioinks, could be UV crosslinked into a granular construct post-print, and withstood evacuation of the bioink and subsequent perfusion of the patterned void space. Endothelial and stromal cells co-embedded within jammed RGD-modified PEGNB microbead slurries assembled into capillary-scale vasculature after secondary crosslinking of the beads into granular constructs, with endothelial tubules forming within the interstitial space between microbeads and supported by the perivascular association of the stromal cells. Microvascular self-assembly was not impacted by printing sacrificial bioinks into the cell-laden microbead support bath before UV crosslinking. Collectively, these results demonstrate that clickable PEGNB microbeads are a versatile substrate for both suspension printing and microvascular culture and may be the foundation for a promising methodology to engineer hierarchical vasculature.
Collapse
|
3
|
Li C, Liu C, Chen Y, Zhao Y, Tan M, He B. Protective Effects of Betaine on Boar Sperm Quality during Liquid Storage and Transport. Animals (Basel) 2024; 14:2711. [PMID: 39335300 PMCID: PMC11429310 DOI: 10.3390/ani14182711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Boar semen is commonly used in artificial insemination (AI) for pig breeding, but its quality can be negatively affected by liquid preservation and transportation, leading to reduced fertility rates. Vibration and temperature fluctuations are critical factors that significantly impact semen quality during storage and transportation, influencing the success rate of AI procedures. Betaine, a naturally occurring compound known for its role in maintaining male fertility, demonstrates potential for improving the preservation and transportation of liquid-preserved boar sperm. The present study demonstrated that betaine supplementation in the semen extenders at 0.5 mg/mL had a significant protective effect on boar sperm motility during storage at 17 °C for 3 to 5 days. During road transportation, 2.5 mg/mL betaine showed significant protective effects on boar sperm progressive motility, while 0.4 mg/mL betaine notably improved boar sperm mitochondrial activity and antioxidant capacity, and reduced lipid peroxidation damage. Simulation models also demonstrated that betaine supplementation increased the proportion of sperm displaying progressive motility and possessing intact acrosomes, regardless of the storage temperature (17 °C or 25 °C), and effectively mitigated the damage caused by vibration at a speed of 200 r/min. Overall, supplementing liquid-preserved boar semen extenders with betaine shows promise in mitigating damage to sperm quality during storage and transportation.
Collapse
Affiliation(s)
- Chenxuan Li
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.L.); (C.L.); (Y.C.); (Y.Z.); (M.T.)
| | - Chenxi Liu
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.L.); (C.L.); (Y.C.); (Y.Z.); (M.T.)
| | - Yingqi Chen
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.L.); (C.L.); (Y.C.); (Y.Z.); (M.T.)
| | - Yuting Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.L.); (C.L.); (Y.C.); (Y.Z.); (M.T.)
| | - Meiling Tan
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.L.); (C.L.); (Y.C.); (Y.Z.); (M.T.)
| | - Bin He
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.L.); (C.L.); (Y.C.); (Y.Z.); (M.T.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Wang S, Zeng X, Liu S, Hoque SAM, Min L, Ding N, Zhu Z. Vibration Emissions Reduce Boar Sperm Quality via Disrupting Its Metabolism. BIOLOGY 2024; 13:370. [PMID: 38927250 PMCID: PMC11200616 DOI: 10.3390/biology13060370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/24/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Artificial insemination (AI) with liquid-preserved semen has recently become common in pig breeding. The semen doses are produced in a centralized manner at the boar stud and then subsequently distributed and transported to sow farms. However, vibration emissions during transportation by logistic vehicles may adversely affect the quality of boar sperm. Therefore, this study aimed to explore the impact of vibration-induced emissions on sperm quality and function under simulated transportation conditions. Each time, ejaculates from all 15 boars were collected and then pooled together to minimize individual variations, and the sample was split using an extender for dilution. Different rotational speeds (0 rpm, 80 rpm, 140 rpm, 200 rpm) were utilized to simulate varying intensities of vibration exposure using an orbital shaker, considering different transportation times (0 h, 3 h, and 6 h). Subsequently, evaluations were conducted regarding sperm motility, plasma membrane integrity, acrosome integrity, mitochondrial function, adenosine triphosphate (ATP) levels, mitochondrial reactive oxygen species (ROS) levels, pH, glycolytic pathway enzyme activities, and capacitation following exposure to vibration emissions. Both vibration time and intensity impact sperm motility, plasma membrane integrity, and acrosomal integrity. Vibration exposure significantly reduced sperm ATP levels, mitochondrial membrane potential, and the levels of mitochondria-encoded proteins (MT-ND1, MT-ND6) (p < 0.05). After vibration emission treatment, the pH value and mitochondrial ROS levels significantly increased (p < 0.05). Inhibition of sperm glycolysis was observed, with reduced activities of hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH), along with decreased lactate levels (p < 0.05). Additionally, sperm tyrosine phosphorylation levels were significantly reduced by vibration emissions compared to the control group (p < 0.05). After the vibration emission treatment, the number of sperm bound to each square millimeter of oviduct explants decreased significantly compared to the control group (p < 0.05). Similarly, compared to the control group, using semen subjected to vibration stress for AI results in significantly reduced pregnancy rates, total born litter size, live-born litter size, and healthy born litter size (p < 0.05).
Collapse
Affiliation(s)
- Shanpeng Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China (L.M.)
| | - Xuejun Zeng
- Fujian Aoxin Biotechnology Group Co., Ltd., Zhangzhou 363000, China;
- Ji’an Aobao Biotechnology Group Co., Ltd., Ji’an 343000, China
| | - Shenao Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China (L.M.)
| | - S. A. Masudul Hoque
- Department of Animal Breeding and Genetics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Lingjiang Min
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China (L.M.)
| | - Nengshui Ding
- Fujian Aoxin Biotechnology Group Co., Ltd., Zhangzhou 363000, China;
- Ji’an Aobao Biotechnology Group Co., Ltd., Ji’an 343000, China
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhendong Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China (L.M.)
| |
Collapse
|
5
|
Keet G, Du Toit JP, Pott RWM. Methods for the separation of hydraulic retention time and solids retention time in the application of photosynthetic microorganisms in photobioreactors: a review. World J Microbiol Biotechnol 2024; 40:100. [PMID: 38366203 PMCID: PMC10873236 DOI: 10.1007/s11274-024-03909-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024]
Abstract
Photosynthetic microorganisms have a wide range of biotechnical applications, through the application of their versatile metabolisms. However, their use in industry has been extremely limited to date, partially because of the additional complexities associated with their cultivation in comparison to other organisms. Strategies and developments in photobioreactors (PBRs) designed for their culture and applications are needed to drive the field forward. One particular area which bears examination is the use of strategies to separate solid- and hydraulic-residence times (SRT and HRT), to facilitate flow-through systems and continuous processing. The aim of this review is to discuss the various types of PBRs and methods which are currently demonstrated in the literature and industry, with a focus on the separation of HRT and SRT. The use of an efficient method of biomass retention in a PBR may be advantageous as it unlocks the option for continuous operation, which may improve efficiency, and improve economic feasibility of large-scale implementation of photosynthetic biocatalysts, especially where biomass is not the primary product. Due to the underexplored nature of the separation of HRT and SRT in reactors using photosynthetic microorganisms, limited literature is available regarding their performance, efficiencies, and potential issues. This review first introduces an overview into photosynthetic microorganisms cultivated and commonly exploited for use in biotechnological applications, with reference to bioreactor considerations specific to each organism. Following this, the existing technologies used for the separation of HRT and SRT in PBRs are explored. The respective advantages and disadvantages are discussed for each PBR design, which may inform an interested bioprocess engineer.
Collapse
Affiliation(s)
- Grant Keet
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - J P Du Toit
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
- Watchmaker Genomics, Cape Town, South Africa
| | | |
Collapse
|
6
|
Zhang Y, O'Mahony A, He Y, Barber T. Hydrodynamic shear stress' impact on mammalian cell properties and its applications in 3D bioprinting. Biofabrication 2024; 16:022003. [PMID: 38277669 DOI: 10.1088/1758-5090/ad22ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
As an effective cell assembly method, three-dimensional bioprinting has been widely used in building organ models and tissue repair over the past decade. However, different shear stresses induced throughout the entire printing process can cause complex impacts on cell integrity, including reducing cell viability, provoking morphological changes and altering cellular functionalities. The potential effects that may occur and the conditions under which these effects manifest are not clearly understood. Here, we review systematically how different mammalian cells respond under shear stress. We enumerate available experimental apparatus, and we categorise properties that can be affected under disparate stress patterns. We also summarise cell damaging mathematical models as a predicting reference for the design of bioprinting systems. We concluded that it is essential to quantify specific cell resistance to shear stress for the optimisation of bioprinting systems. Besides, as substantial positive impacts, including inducing cell alignment and promoting cell motility, can be generated by shear stress, we suggest that we find the proper range of shear stress and actively utilise its positive influences in the development of future systems.
Collapse
Affiliation(s)
- Yani Zhang
- School of Mechanical Engineering, UNSW, Sydney, NSW 2052, Australia
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Aidan O'Mahony
- Inventia Life Science Pty Ltd, Alexandria, Sydney, NSW 2015, Australia
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Tracie Barber
- School of Mechanical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Jo S, Lee J, Lee H, Ryu D, Kim G. The one-step fabrication of porous hASC-laden GelMa constructs using a handheld printing system. NPJ Regen Med 2023; 8:30. [PMID: 37301902 DOI: 10.1038/s41536-023-00307-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The fabrication of highly porous cell-loaded structures in tissue engineering applications has been a challenging issue because non-porous cell-laden struts can cause severe cell necrosis in the middle region owing to poor transport of nutrients and oxygen. In this study, we propose a versatile handheld 3D printer for the effective fabrication of porous cell-laden methacrylated gelatin (GelMa) with high porosity (≈97%) by air injection and a bubble-making system using mesh filters through which a mixture of air/GelMa bioink is passed. In particular, the pore size and foamability of the cell constructs could be manipulated using various processing parameters (rheological properties of GelMa, filter size and number, and air-bioink volume ratio). To demonstrate the feasibility of the cell construct as a tissue engineering substitute for muscle regeneration, in vitro cellular activities and in vivo regeneration ability of human adipose stem cells were assessed. The in vitro results demonstrated that the human adipose stem cells (hASCs) fabricated using the handheld 3D printer were alive and well-proliferated. Furthermore, the in vivo results showed that the hASCs-constructs directly printed from the handheld 3D printer showed significant restoration of functionality and efficient muscle regeneration in the volumetric muscle loss model of mice. Based on these results, the fabrication method of the porous cell-laden construct could be a promising tool for regenerating muscle tissues.
Collapse
Affiliation(s)
- SeoYul Jo
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - JiUn Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hyeongjin Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - GeunHyung Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
8
|
Current Advances in 3D Dynamic Cell Culture Systems. Gels 2022; 8:gels8120829. [PMID: 36547353 PMCID: PMC9778081 DOI: 10.3390/gels8120829] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The traditional two-dimensional (2D) cell culture methods have a long history of mimicking in vivo cell growth. However, these methods cannot fully represent physiological conditions, which lack two major indexes of the in vivo environment; one is a three-dimensional 3D cell environment, and the other is mechanical stimulation; therefore, they are incapable of replicating the essential cellular communications between cell to cell, cell to the extracellular matrix, and cellular responses to dynamic mechanical stimulation in a physiological condition of body movement and blood flow. To solve these problems and challenges, 3D cell carriers have been gradually developed to provide a 3D matrix-like structure for cell attachment, proliferation, differentiation, and communication in static and dynamic culture conditions. 3D cell carriers in dynamic culture systems could primarily provide different mechanical stimulations which further mimic the real in vivo microenvironment. In this review, the current advances in 3D dynamic cell culture approaches have been introduced, with their advantages and disadvantages being discussed in comparison to traditional 2D cell culture in static conditions.
Collapse
|
9
|
Tamanini MS, dos Santos G, Leal LA, Wolf LM, Schulze M, Christ TS, Bortolozzo FP, Ulguim RR, Wentz I, Mellagi APG. Impact of agitation time of boar semen doses on sperm traits in short- and long-term extenders. Anim Reprod Sci 2022; 247:107159. [DOI: 10.1016/j.anireprosci.2022.107159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
|
10
|
Shahrivari S, Aminoroaya N, Ghods R, Latifi H, Afjei SA, Saraygord-Afshari N, Bagheri Z. Toxicity of trastuzumab for breast cancer spheroids: Application of a novel on-a-chip concentration gradient generator. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Gao W, Xiao L, Wang J, Mu Y, Mendhi J, Gao W, Li Z, Yarlagadda P, Wu R, Xiao Y. The hollow porous sphere cell carrier for the dynamic 3D cell culture. Tissue Eng Part C Methods 2022; 28:610-622. [PMID: 36127859 DOI: 10.1089/ten.tec.2022.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Large-scale mammalian cell culture is essential in stem cell-based therapy, the production of the vaccine, and the manufacturing of therapeutic protein drugs. Due to the adherent growth characteristic of most mammalian cell types, the combination of cell carrier and bioreactor is a common choice in large-scale mammalian cell culture. Cell carriers are usually developed by polymer crosslinking, lithography, and emulsion drops; however, all these methods are difficult to control the uniformed porous structure and porous interior design. Therefore, unable to optimize the dynamic culture condition for cell proliferation, matrix production, and cell differentiation. Here we use fused deposition modelling (FDM) 3D printing technology to fabricate hollow porous spheres (HPS), based on which a novel dynamic 3D culture system has been established. In the meantime, computational fluid dynamics (CFD) simulations were conducted to study liquid flow behaviour in HPS. A dynamic cell seeding was developed and refined using the 3D culture system, which increased 32% (roughly) seeding efficiency compared to the traditional static cell seeding method. The cell proliferation analysis demonstrated that HPSs could speed up cell growth in dynamic cell culture. The HPS with a honeycomb-like structure showed the highest inner pore velocity (CFD analysis) and achieved the fastest cell proliferation and the highest cell viability. Overall, our study, for the first time, developed a 3D printed HPS cell culture device with a uniformed porous structure, which can effectively facilitate cell adhesion and proliferation in the dynamic cultural environment, thereby could be considered an ideal carrier candidate for the manufacturing of cells and cell-based products. Furthermore, this study provides a novel 3D dynamic culture system that can be further applied in cell culture and research in the future.
Collapse
Affiliation(s)
- Weidong Gao
- Queensland University of Technology, 60 Musk Ave, Brisbane, Queensland, Australia, 4059;
| | - Lan Xiao
- nstitute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 Queensland, Australia, 526-05, 60 Musk Avenue, Kelvin Grove, Queensland, Queensland, Australia, 4059;
| | - Jiaqiu Wang
- Queensland University of Technology, Brisbane, Queensland, Australia;
| | - Yuqing Mu
- Queensland University of Technology, Brisbane, Queensland, Australia;
| | | | - Wendong Gao
- Queensland University of Technology, Brisbane, Queensland, Australia;
| | - Zhiyong Li
- Queensland University of Technology, Brisbane, Queensland, Australia;
| | - Prasad Yarlagadda
- Queensland University of Technology, Brisbane, Queensland, Australia;
| | - Robert Wu
- Chinese academy of Science, shanghai, China;
| | - Yin Xiao
- Queensland University of Technology, Institrute of Health and Biomedical Innovation, 60 Musk Avenue, Kelvin Grove, Brisbane, Australia, 4059.,Australia;
| |
Collapse
|
12
|
Hoyle H, Stenger C, Przyborski S. Design considerations of benchtop fluid flow bioreactors for bio-engineered tissue equivalents in vitro. BIOMATERIALS AND BIOSYSTEMS 2022; 8:100063. [PMID: 36824373 PMCID: PMC9934498 DOI: 10.1016/j.bbiosy.2022.100063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/08/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022] Open
Abstract
One of the major aims of bio-engineering tissue equivalents in vitro is to create physiologically relevant culture conditions to accurately recreate the cellular microenvironment. This often includes incorporation of factors such as the extracellular matrix, co-culture of multiple cell types and three-dimensional culture techniques. These advanced techniques can recapitulate some of the properties of tissue in vivo, however fluid flow is a key aspect that is often absent. Fluid flow can be introduced into cell and tissue culture using bioreactors, which are becoming increasingly common as we seek to produce increasingly accurate tissue models. Bespoke technology is continuously being developed to tailor systems for specific applications and to allow compatibility with a range of culture techniques. For effective perfusion of a tissue culture many parameters can be controlled, ranging from impacts of the fluid flow such as increased shear stress and mass transport, to potentially unwanted side effects such as temperature fluctuations. A thorough understanding of these properties and their implications on the culture model can aid with a more accurate interpretation of results. Improved and more complete characterisation of bioreactor properties will also lead to greater accuracy when reporting culture conditions in protocols, aiding experimental reproducibility, and allowing more precise comparison of results between different systems. In this review we provide an analysis of the different factors involved in the development of benchtop flow bioreactors and their potential biological impacts across a range of applications.
Collapse
Key Words
- 3D, three-dimensional
- ABS, acrylonitrile butadiene styrene
- ALI, air-liquid interface
- Bioreactors
- CFD, computational fluid dynamics
- Cell culture
- ECM, extracellular matrix
- FDM, fused deposition modelling
- Fluid flow
- PC, polycarbonate
- PET, polyethylene terephthalate
- PLA, polylactic acid
- PTFE, polytetrafluoroethylene
- SLA, stereolithography
- Tissue engineering
- UL, unstirred layer
- UV, ultraviolet light
Collapse
Affiliation(s)
- H.W. Hoyle
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - C.M.L. Stenger
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - S.A. Przyborski
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK,NETPark Incubator, Reprocell Europe Ltd., Thomas Wright Way, Sedgefield TS21 3FD, UK,Corresponding author at: Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
13
|
A whole-thermoplastic microfluidic chip with integrated on-chip micropump, bioreactor and oxygenator for cell culture applications. Anal Chim Acta 2022; 1221:340093. [DOI: 10.1016/j.aca.2022.340093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022]
|
14
|
Anggraini D, Ota N, Shen Y, Tang T, Tanaka Y, Hosokawa Y, Li M, Yalikun Y. Recent advances in microfluidic devices for single-cell cultivation: methods and applications. LAB ON A CHIP 2022; 22:1438-1468. [PMID: 35274649 DOI: 10.1039/d1lc01030a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-cell analysis is essential to improve our understanding of cell functionality from cellular and subcellular aspects for diagnosis and therapy. Single-cell cultivation is one of the most important processes in single-cell analysis, which allows the monitoring of actual information of individual cells and provides sufficient single-cell clones and cell-derived products for further analysis. The microfluidic device is a fast-rising system that offers efficient, effective, and sensitive single-cell cultivation and real-time single-cell analysis conducted either on-chip or off-chip. Here, we introduce the importance of single-cell cultivation from the aspects of cellular and subcellular studies. We highlight the materials and structures utilized in microfluidic devices for single-cell cultivation. We further discuss biological applications utilizing single-cell cultivation-based microfluidics, such as cellular phenotyping, cell-cell interactions, and omics profiling. Finally, present limitations and future prospects of microfluidics for single-cell cultivation are also discussed.
Collapse
Affiliation(s)
- Dian Anggraini
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Nobutoshi Ota
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yigang Shen
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tao Tang
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Yo Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Ming Li
- School of Engineering, Macquarie University, Sydney 2122, Australia.
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
New Insights from Locally Resolved Hydrodynamics in Stirred Cell Culture Reactors. Processes (Basel) 2022. [DOI: 10.3390/pr10010107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The link between hydrodynamics and biological process behavior of antibody-producing mammalian cell cultures is still not fully understood. Common methods to describe dependencies refer mostly to averaged hydrodynamic parameters obtained for individual cultivation systems. In this study, cellular effects and locally resolved hydrodynamics were investigated for impellers with different spatial hydrodynamics. Therefore, the hydrodynamics, mainly flow velocity, shear rate and power input, in a single- and a three-impeller bioreactor setup were analyzed by means of CFD simulations, and cultivation experiments with antibody-producing Chinese hamster ovary (CHO) cells were performed at various agitation rates in both reactor setups. Within the three-impeller bioreactor setup, cells could be cultivated successfully at much higher agitation rates as in the single-impeller bioreactor, probably due to a more uniform flow pattern. It could be shown that this different behavior cannot be linked to parameters commonly used to describe shear effects on cells such as the mean energy dissipation rate or the Kolmogorov length scale, even if this concept is extended by locally resolved hydrodynamic parameters. Alternatively, the hydrodynamic heterogeneity was statistically quantified by means of variance coefficients of the hydrodynamic parameters fluid velocity, shear rate, and energy dissipation rate. The calculated variance coefficients of all hydrodynamic parameters were higher in the setup with three impellers than in the single impeller setup, which might explain the rather stable process behavior in multiple impeller systems due to the reduced hydrodynamic heterogeneity. Such comprehensive insights lead to a deeper understanding of the bioprocess.
Collapse
|
16
|
Benchtop Bioreactors in Mammalian Cell Culture: Overview and Guidelines. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2436:1-15. [PMID: 34611816 DOI: 10.1007/7651_2021_441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bioreactors are manufactured apparatuses that allow the generation of a specific environment for the highly controlled cultivation of living cells. Originally used for microbial production systems, they have found widespread applications in fields as diverse as vaccine production, plant cell cultivation, and the growth of human brain organoids and exist in equally diverse designs (Chu and Robinson, Curr Opin Biotechnol 12(2):180-187, 2001; Qian et al., Nat Protoc 13:565-580, 2018). Manufacturing of biologics is currently mostly performed using a stirred tank bioreactor and CHO host cells and represents the most "classical" bioreactor production process. In this chapter, we will therefore use the cultivation of suspension Chinese hamster ovary (CHO) cells for recombinant protein production in a stirred tank bioreactor as an example. However, general guidelines provided in this chapter are transferable to different bioreactor types and host cells (Li et al., MAbs 2(5):466-479, 2010).The preparation and operation of a bioreactor (also referred to as upstream process in a biotechnological/industrial setting) is comprised of three main steps: expansion (generation of biomass), production (batch, fed-batch, or continuous process), and harvest. The expansion of cells can last from few days to weeks depending on the number of cells at the start, the cellular doubling time, and the required biomass to inoculate the production bioreactor. The production phase lasts a few weeks and is a highly sensitive phase as the concentration of different chemicals and physical parameters need to be tightly controlled. Finally, the harvest will allow the separation of the product of interest from large particles and then the desired material (cell culture supernatant or cells) is transferred to the downstream process.The raw materials used during the upstream phase (all three steps) need to be aligned with the final purpose of the manufactured product, as the presence of residual impurities may have an impact on suitability of the final product for a desired purpose.
Collapse
|
17
|
Factors influencing the response of spermatozoa to agitation stress: Implications for transport of extended boar semen. Theriogenology 2021; 175:54-60. [PMID: 34492550 DOI: 10.1016/j.theriogenology.2021.08.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/11/2021] [Accepted: 08/27/2021] [Indexed: 12/21/2022]
Abstract
The shipping of liquid preserved semen is common practice in animal breeding and prior to cryopreservation for gene banking. Vibration emissions during transport may be harmful to spermatozoa. Therefore, strategies to minimize agitation-induced sperm injury are needed. The aim was to examine whether the type of semen extender, time after semen processing and the temperature in simulated transport conditions influence the response of boar spermatozoa to agitation stress. In Experiment 1, boar semen samples (n = 16) extended in Beltsville Thawing Solution (BTS) or Androstar Plus (APL) medium were filled in 90 mL tubes and shaken for 4 h at 200 rpm either at 22 °C or 17 °C. Samples were then stored at 17 °C for 144 h. In Experiment 2, semen samples (n = 11) extended in Androstar Premium were shaken either directly after filling at 22 °C or 20 h later after cooling to 5 °C. Samples were stored at 5 °C for 144 h. In Experiment 1, sperm motility and viability were lower (p < 0.05) in the shaken samples compared to the controls. The temperature, extender and the storage length had no effect on the agitation-induced loss of sperm quality. Sperm quality traits were higher in samples stored in APL compared to BTS. In Experiment 2, sperm motility at 24 h was reduced (p < 0.05) in those samples shaken at 22 °C but not at 5 °C. Sperm viability, membrane fluidity and mitochondrial membrane potential were not affected in either of the treatment groups. Extended boar semen designed for 17 °C storage and shipped on the day of collection is sensitive to agitation stress. In contrast, spermatozoa slowly cooled to 5 °C and shaken 20 h after processing are more resistant to agitation-induced shear forces and interfacial phenomena.
Collapse
|
18
|
Box A, DeLay M, Tighe S, Chittur SV, Bergeron A, Cochran M, Lopez P, Meyer EM, Saluk A, Thornton S, Brundage K. Evaluating the Effects of Cell Sorting on Gene Expression. J Biomol Tech 2021; 31:100-111. [PMID: 32982601 DOI: 10.7171/jbt.20-3103-004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell sorting is a commonly used technology to isolate highly purified cell populations for downstream applications. Because the sorted cells are destined for further analysis, i.e., gene expression assays or functional assays, ensuring that the sorting process itself has little effect on the cells is of utmost importance. Previous studies examining the effects of sorting on cellular function have primarily focused on a specific cell type or condition. One of the goals of the Flow Cytometry Research Group of the Association of Biomolecular Resource Facilities is to establish best practice guidelines for cell sorting conditions that minimize cell stress, perturbation, or injury to the sorted cell population. In this study, the effects of nozzle size, sample pressure, UV exposure, and instrument type were evaluated for their effects on gene expression and cell cycle using both established cell lines and primary cells across several flow cytometry shared facilities. Results indicate that nozzle size and pressure, as well as UV exposure and instrument type, have only minor effects on gene expression, which were diminished by subsequent culturing of the sorted cells. In this assessment, these data demonstrate that cell sorting itself, regardless of instrumentation used, has minimal effects on downstream cellular applications.
Collapse
Affiliation(s)
- Andrew Box
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Monica DeLay
- Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Scott Tighe
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany, Albany, New York, USA
| | | | - Matthew Cochran
- University of Rochester Medical Center, West Henrietta, New York, USA
| | - Peter Lopez
- New York University Langone Medical Center, New York City, New York, USA
| | - E Michael Meyer
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Alan Saluk
- The Scripps Research Institute, San Diego, California, USA
| | - Sherry Thornton
- Department of Pediatrics and Cincinnati Children's Hospital, University of Cincinnati Medical Center, Cincinnati, Ohio, USA; and
| | | |
Collapse
|
19
|
Rastogi N, Seth P, Bhat R, Sen P. Vortex chip incorporating an orthogonal turn for size-based isolation of circulating cells. Anal Chim Acta 2021; 1159:338423. [PMID: 33867033 DOI: 10.1016/j.aca.2021.338423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022]
Abstract
Size-based label-free separation of rare cells such as CTCs is attractive due to its wider applicability, simpler sample preparation, faster turnaround and better efficiency. Amongst such methods, vortex-trapping based techniques offer high throughput but operate at high flow velocities where the resulting hydrodynamic shear stress is likely to damage cells and compromise their viability for subsequent assays. We present here an orthogonal vortex chip which can carry out size-differentiated trapping at significantly lower (38% of previously reported) velocities. Composed of entry-exit channels that couple orthogonally to a trapping chamber, fluid flow in such configuration results in formation of a vortex which selectively traps larger particles above a critical velocity while smaller particles get ejected with the flow. We call this phenomenon the turn-effect. Critical velocities and optimal architectures for trapping of cells and particles of different sizes are characterized. We explain how shear-gradient lift, centrifugal and Dean flow drag forces contribute to the turn-effect by pushing particles into specific vortex orbits in a size- and velocity-dependent fashion. Selective trapping of human breast cancer cells mixed with whole blood at low concentration is demonstrated. The device shows promising results for gentle isolation of rare cells from blood.
Collapse
Affiliation(s)
- Navya Rastogi
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| | - Pranjal Seth
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, 560012, India; Department of Biomedical Engineering, McGill University, Montreal, H3A 0G4, Canada.
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| | - Prosenjit Sen
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
20
|
Bakhtiiari A, Khorshidi R, Yazdian F, Rashedi H, Omidi M. A bioprinted composite hydrogel with controlled shear stress on cells. Proc Inst Mech Eng H 2020; 235:314-322. [PMID: 33334243 DOI: 10.1177/0954411920976682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In recent decades, three dimensional (3D) bio-printing technology has found widespread use in tissue engineering applications. The aim of this study is to scrutinize different parameters of the bioprinter - with the help of simulation software - to print a hydrogel so much so that avoid high amounts of shear stress which is detrimental for cell viability and cell proliferation. Rheology analysis was done on several hydrogels composed of different percentages of components: alginate, collagen, and gelatin. The results have led to the combination of percentages collagen:alginate:gelatin (1:4:8)% as the best condition which makes sol-gel transition at room temperature possible. The results have shown the highest diffusion rate and cell viability for the cross-linked sample with 1.5% CaCl2 for the duration of 1 h. Finally, we have succeeded in printing the hydrogel that is mechanically strong with suitable degradation rate and cell viability.
Collapse
Affiliation(s)
- Amirhossein Bakhtiiari
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Rezvan Khorshidi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Meisam Omidi
- Protein Research Center, Shahid Beheshti University G.C., Tehran, Iran
| |
Collapse
|
21
|
Uppal G, Bahcecioglu G, Zorlutuna P, Vural DC. Tissue Failure Propagation as Mediated by Circulatory Flow. Biophys J 2020; 119:2573-2583. [PMID: 33189679 DOI: 10.1016/j.bpj.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/06/2020] [Accepted: 11/05/2020] [Indexed: 01/09/2023] Open
Abstract
Aging is driven by subcellular processes that are relatively well understood. However, the qualitative mechanisms and quantitative dynamics of how these micro-level failures cascade to a macro-level catastrophe in a tissue or organs remain largely unexplored. Here, we experimentally and theoretically study how cell failure propagates in an engineered tissue in the presence of advective flow. We argue that cells secrete cooperative factors, thereby forming a network of interdependence governed by diffusion and flow, which fails with a propagating front parallel to advective circulation.
Collapse
Affiliation(s)
- Gurdip Uppal
- Department of Physics, University of Notre Dame, Notre Dame, Indiana
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana.
| | - Dervis Can Vural
- Department of Physics, University of Notre Dame, Notre Dame, Indiana.
| |
Collapse
|
22
|
Box A, DeLay M, Tighe S, Chittur SV, Bergeron A, Cochran M, Lopez P, Meyer EM, Saluk A, Thornton S, Brundage K. Evaluating the Effects of Cell Sorting on Gene Expression. J Biomol Tech 2020; 31:jbt.20-3103-004. [PMID: 32831654 DOI: 10.7171/jbt.2020-3103-004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell sorting is a commonly used technology to isolate highly purified cell populations for downstream applications. Because the sorted cells are destined for further analysis, i.e., gene expression assays or functional assays, ensuring that the sorting process itself has little effect on the cells is of utmost importance. Previous studies examining the effects of sorting on cellular function have primarily focused on a specific cell type or condition. One of the goals of the Flow Cytometry Research Group of the Association of Biomolecular Resource Facilities is to establish best practice guidelines for cell sorting conditions that minimize cell stress, perturbation, or injury to the sorted cell population. In this study, the effects of nozzle size, sample pressure, UV exposure, and instrument type were evaluated for their effects on gene expression and cell cycle using both established cell lines and primary cells across several flow cytometry shared facilities. Results indicate that nozzle size and pressure, as well as UV exposure and instrument type, have only minor effects on gene expression, which were diminished by subsequent culturing of the sorted cells. In this assessment, these data demonstrate that cell sorting itself, regardless of instrumentation used, has minimal effects on downstream cellular applications.
Collapse
Affiliation(s)
- Andrew Box
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Monica DeLay
- Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Scott Tighe
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany, Albany, New York, USA
| | | | - Matthew Cochran
- University of Rochester Medical Center, West Henrietta, New York, USA
| | - Peter Lopez
- New York University Langone Medical Center, New York City, New York, USA
| | - E Michael Meyer
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Alan Saluk
- The Scripps Research Institute, San Diego, California, USA
| | - Sherry Thornton
- Department of Pediatrics and Cincinnati Children's Hospital, University of Cincinnati Medical Center, Cincinnati, Ohio, USA; and
| | | |
Collapse
|
23
|
Wei J, Cheng L, Li J, Liu Y, Yin S, Xu B, Wang D, Lu H, Liu C. A microfluidic platform culturing two cell lines paralleled under in-vivo like fluidic microenvironment for testing the tumor targeting of nanoparticles. Talanta 2020; 208:120355. [PMID: 31816718 DOI: 10.1016/j.talanta.2019.120355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/08/2019] [Accepted: 09/14/2019] [Indexed: 01/13/2023]
Abstract
Nanoparticles are attractive in medicine because their surfaces can be chemically modified for targeting specific disease cells, especially for cancer. Providing an in-vivo like platform is crucial to evaluate the biological behaviours of nanoparticles. This paper presents a microfluidic device that could culture two cell lines in parallel in in-vivo like fluidic microenvironments and be used for testing the tumor targeting of folic acid - cholesterol - chitosan (FACC) nanoparticles. The uniformity and uniformity of flow fields inside the cell culture units are investigated using the finite element method and particle tracking technology. HeLa and A549 cells are cultured in the microfluidic chip under continuous media supplementation, mimicking the fluid microenvironment in vivo. Cell introducing processes are presented by the flow behaviours of inks with different colours. The two cell lines are identified by detecting folate receptors on the cellular membranes. The growth curves of the two cell lines are measured. The two cell lines cultured paralleled inside the microfluidic device are treated with FITC-FACC to investigate the targeting of FACC. The tumor targeting of FACC are also detected by in vivo imaging of HeLa cells growth in nude mice models. The results indicate that the microfluidic device could provide a dynamic, uniform and stable fluidic microenvironment to test the tumor targeting of FACC nanoparticles.
Collapse
Affiliation(s)
- Juan Wei
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Lichun Cheng
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingmin Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Yuanchang Liu
- Department of Mechanical Engineering, University College London, London, NW12BX, UK
| | - Shuqing Yin
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Bing Xu
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huiyi Lu
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Chong Liu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China; Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, China.
| |
Collapse
|
24
|
Hong JK, Yeo HC, Lakshmanan M, Han SH, Cha HM, Han M, Lee DY. In silico model-based characterization of metabolic response to harsh sparging stress in fed-batch CHO cell cultures. J Biotechnol 2019; 308:10-20. [PMID: 31756358 DOI: 10.1016/j.jbiotec.2019.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022]
Abstract
Mammalian cell culture platform has been successfully implemented for industrial biopharmaceutical production through the advancements in early stage process development including cell-line engineering, media design and process optimization. However, late stage developments such as scale-up, scale-down and large-scale cell cultivation still face many industrial challenges to acquire comparable process performance between different culture scales. One of them is the sparging strategy which significantly affects productivity, quality and comparability. Currently, it is mainly relying on the empirical records due to the lack of theoretical framework and scarcity of available literatures to elucidate intracellular metabolic features. Therefore, it is highly required to characterize the underlying mechanism of physiological changes and metabolic states upon the aeration stress. To this end, initially we cultivated antibody producing CHO cells under mild and harsh sparging conditions and observed that sparging stress leads to the decreased cell growth rate, viability and productivity. Subsequent in silicomodel-driven flux analysis suggested that sparging stress rewires amino acid metabolism towards the enriched H2O2 turnover rate by up-regulated fluxes of amino acid oxidases. Interestingly, many of these H2O2-generating reactions were closely connected with the production of NADH, NADPH and GSH which are typical reducing equivalents. Thus, we can hypothesize that increased amino acid uptake caused by sparging stress contributes to restore redox homeostasis against oxidative stress. The current model-driven systematic data analysis allows us to quickly define distinct metabolic feature under stress condition by using basic cell cultivation datasets.
Collapse
Affiliation(s)
- Jong Kwang Hong
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, 138668, Singapore
| | - Hock Chuan Yeo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, 138668, Singapore
| | - Meiyappan Lakshmanan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, 138668, Singapore
| | - Sung-Hyuk Han
- Upstream process, GC Pharma R&D center, 107 Ihyun-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16926, Republic of Korea
| | - Hyun Myoung Cha
- Upstream process, GC Pharma R&D center, 107 Ihyun-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16926, Republic of Korea
| | - Muri Han
- Upstream process, GC Pharma R&D center, 107 Ihyun-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16926, Republic of Korea
| | - Dong-Yup Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, 138668, Singapore; School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
25
|
Sakai S, Ohi H, Taya M. Gelatin/Hyaluronic Acid Content in Hydrogels Obtained through Blue Light-Induced Gelation Affects Hydrogel Properties and Adipose Stem Cell Behaviors. Biomolecules 2019; 9:E342. [PMID: 31387235 PMCID: PMC6722789 DOI: 10.3390/biom9080342] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022] Open
Abstract
Composite hydrogels of hyaluronic acid and gelatin attract great attention in biomedical fields. In particular, the composite hydrogels obtained through processes that are mild for cells are useful in tissue engineering. In this study, hyaluronic acid/gelatin composite hydrogels obtained through a blue light-induced gelation that is mild for mammalian cells were studied for the effect of the content of each polymer in the precursor solution on gelation, properties of resultant hydrogels, and behaviors of human adipose stem cells laden in the hydrogels. Control of the content enabled gelation in less than 20 s, and also enabled hydrogels to be obtained with 0.5-1.2 kPa Young's modulus. Human adipose stem cells were more elongated in hydrogels with a higher rather than lower content of hyaluronic acid. Stem cell marker genes, Nanog, Oct4, and Sox2, were expressed more in the cells in the composite hydrogels with a higher content of hyaluronic acid compared with those in the hydrogel composed of gelatin alone and on tissue culture dishes. These results are useful for designing conditions for using gelatin/hyaluronic acid composite hydrogels obtained through blue light-induced gelation suitable for tissue engineering applications.
Collapse
Affiliation(s)
- Shinji Sakai
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Hiromi Ohi
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Masahito Taya
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
26
|
Comprehensive study on Wave bioreactor system to scale up the cultivation of and recombinant protein expression in baculovirus-infected insect cells. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Zitzmann FD, Jahnke HG, Nitschke F, Beck-Sickinger AG, Abel B, Belder D, Robitzki AA. A novel microfluidic microelectrode chip for a significantly enhanced monitoring of NPY-receptor activation in live mode. LAB ON A CHIP 2017; 17:4294-4302. [PMID: 29119176 DOI: 10.1039/c7lc00754j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lab-on-a-chip devices that combine, e.g. chemical synthesis with integrated on-chip analytics and multi-compartment organ-on-a-chip approaches, are a fast and attractive evolving research area. While integration of appropriate cell models in microfluidic setups for monitoring the biological activity of synthesis products or test compounds is already in focus, the integration of label-free bioelectronic analysis techniques is still poorly realized. In this context, we investigated the capabilities of impedance spectroscopy as a non-destructive real-time monitoring technique for adherent cell models in a microfluidic setup. While an initial adaptation of a microelectrode array (MEA) layout from a static setup revealed clear restrictions in the application of impedance spectroscopy in a microfluidic chip, we could demonstrate the advantage of a FEM simulation based rational MEA layout optimization for an optimum electrical field distribution within microfluidic structures. Furthermore, FEM simulation based analysis of shear stress and time-dependent test compound distribution led to identification of an optimal flow rate. Based on the simulation derived optimized microfluidic MEA, comparable impedance spectra characteristics were achieved for HEK293A cells cultured under microfluidic and static conditions. Furthermore, HEK293A cells expressing Y1 receptors were used to successfully demonstrate the capabilities of impedimetric monitoring of cellular alterations in the microfluidic setup. More strikingly, the maximum impedimetric signal for the receptor activation was significantly increased by a factor of 2.8. Detailed investigations of cell morphology and motility led to the conclusion that cultivation under microfluidic conditions could lead to an extended and stabilized cell-electrode interface.
Collapse
Affiliation(s)
- Franziska D Zitzmann
- Center for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Crake C, Owen J, Smart S, Coviello C, Coussios CC, Carlisle R, Stride E. Enhancement and Passive Acoustic Mapping of Cavitation from Fluorescently Tagged Magnetic Resonance-Visible Magnetic Microbubbles In Vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:3022-3036. [PMID: 27666788 DOI: 10.1016/j.ultrasmedbio.2016.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/24/2016] [Accepted: 08/01/2016] [Indexed: 05/05/2023]
Abstract
Previous work has indicated the potential of magnetically functionalized microbubbles to localize and enhance cavitation activity under focused ultrasound exposure in vitro. The aim of this study was to investigate magnetic targeting of microbubbles for promotion of cavitation in vivo. Fluorescently labelled magnetic microbubbles were administered intravenously in a murine xenograft model. Cavitation was induced using a 0.5-MHz focused ultrasound transducer at peak negative focal pressures of 1.2-2.0 MPa and monitored in real-time using B-mode imaging and passive acoustic mapping. Magnetic targeting was found to increase the amplitude of the cavitation signal by approximately 50% compared with untargeted bubbles. Post-exposure magnetic resonance imaging indicated deposition of magnetic nanoparticles in tumours. Magnetic targeting was similarly associated with increased fluorescence intensity in the tumours after the experiments. These results suggest that magnetic targeting could potentially be used to improve delivery of cavitation-mediated therapy and that passive acoustic mapping could be used for real-time monitoring of this process.
Collapse
Affiliation(s)
- Calum Crake
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Joshua Owen
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Sean Smart
- Gray Institute for Radiation Oncology and Biology, Radiobiology Research Institute, Churchill Hospital, Oxford, UK
| | - Christian Coviello
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Constantin-C Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
| |
Collapse
|
29
|
Neunstoecklin B, Villiger TK, Lucas E, Stettler M, Broly H, Morbidelli M, Soos M. Pilot-scale verification of maximum tolerable hydrodynamic stress for mammalian cell culture. Appl Microbiol Biotechnol 2015; 100:3489-98. [DOI: 10.1007/s00253-015-7193-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
|
30
|
Integrated processes for expansion and differentiation of human pluripotent stem cells in suspended microcarriers cultures. Biochem Biophys Res Commun 2015; 473:764-8. [PMID: 26385176 DOI: 10.1016/j.bbrc.2015.09.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/13/2015] [Indexed: 01/15/2023]
Abstract
Current methods for human pluripotent stem cells (hPSC) expansion and differentiation can be limited in scalability and costly (due to their labor intensive nature). This can limit their use in cell therapy, drug screening and toxicity assays. One of the approaches that can overcome these limitations is microcarrier (MC) based cultures in which cells are expanded as cell/MC aggregates and then directly differentiated as embryoid bodies (EBs) in the same agitated reactor. This integrated process can be scaled up and eliminate the need for some culture manipulation used in common monolayer and EBs cultures. This review describes the principles of such microcarriers based integrated hPSC expansion and differentiation process, and parameters that can affect its efficiency (such as MC type and extracellular matrix proteins coatings, cell/MC aggregates size, and agitation). Finally examples of integrated process for generation cardiomyocytes (CM) and neural progenitor cells (NPC) as well as challenges to be solved are described.
Collapse
|
31
|
A High Throughput Micro-Chamber Array Device for Single Cell Clonal Cultivation and Tumor Heterogeneity Analysis. Sci Rep 2015; 5:11937. [PMID: 26149707 PMCID: PMC4493670 DOI: 10.1038/srep11937] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/11/2015] [Indexed: 01/28/2023] Open
Abstract
Recently, single cell cloning techniques have been gradually developed benefited from their important roles in monoclonal antibody screening, tumor heterogeneity research fields, etc. In this study, we developed a high throughput device containing 1400 lateral chambers to efficiently isolate single cells and carry out long-term single cell clonal cultivation as well as tumor heterogeneity studies. Most of the isolated single cells could proliferate normally nearly as long as three weeks and hundreds of clones could be formed once with one device, which made it possible to study tumor heterogeneity at single cell level. The device was further used to examine tumor heterogeneity such as morphology, growth rate, anti-cancer drug tolerance as well as adenosine triphosphate-binding cassette (ABC) transporter ABCG2 protein expression level. Except for the single cell isolation and tumor heterogeneity studies, the device is expected to be used as an excellent platform for drug screening, tumor biomarker discovering and tumor metastasis assay.
Collapse
|
32
|
Carugo D, Owen J, Crake C, Lee JY, Stride E. Biologically and Acoustically Compatible Chamber for Studying Ultrasound-Mediated Delivery of Therapeutic Compounds. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1927-37. [PMID: 25922133 DOI: 10.1016/j.ultrasmedbio.2015.03.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/13/2015] [Accepted: 03/18/2015] [Indexed: 05/05/2023]
Abstract
Ultrasound (US), in combination with microbubbles, has been found to be a potential alternative to viral therapies for transfecting biological cells. The translation of this technique to the clinical environment, however, requires robust and systematic optimization of the acoustic parameters needed to achieve a desired therapeutic effect. Currently, a variety of different devices have been developed to transfect cells in vitro, resulting in a lack of standardized experimental conditions and difficulty in comparing results from different laboratories. To overcome this limitation, we propose an easy-to-fabricate and cost-effective device for application in US-mediated delivery of therapeutic compounds. It comprises a commercially available cell culture dish coupled with a silicon-based "lid" developed in-house that enables the device to be immersed in a water bath for US exposure. Described here are the design of the device, characterization of the sound field and fluid dynamics inside the chamber and an example protocol for a therapeutic delivery experiment.
Collapse
Affiliation(s)
- Dario Carugo
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Joshua Owen
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Calum Crake
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Jeong Yu Lee
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Eleanor Stride
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
33
|
Deane GB, Stokes MD, Latz MI. Bubble stimulation efficiency of dinoflagellate bioluminescence. LUMINESCENCE 2015; 31:270-80. [PMID: 26061152 DOI: 10.1002/bio.2957] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/07/2015] [Accepted: 05/08/2015] [Indexed: 11/10/2022]
Abstract
Dinoflagellate bioluminescence, a common source of bioluminescence in coastal waters, is stimulated by flow agitation. Although bubbles are anecdotally known to be stimulatory, the process has never been experimentally investigated. This study quantified the flash response of the bioluminescent dinoflagellate Lingulodinium polyedrum to stimulation by bubbles rising through still seawater. Cells were stimulated by isolated bubbles of 0.3-3 mm radii rising at their terminal velocity, and also by bubble clouds containing bubbles of 0.06-10 mm radii for different air flow rates. Stimulation efficiency, the proportion of cells producing a flash within the volume of water swept out by a rising bubble, decreased with decreasing bubble radius for radii less than approximately 1 mm. Bubbles smaller than a critical radius in the range 0.275-0.325 mm did not stimulate a flash response. The fraction of cells stimulated by bubble clouds was proportional to the volume of air in the bubble cloud, with lower stimulation levels observed for clouds with smaller bubbles. An empirical model for bubble cloud stimulation based on the isolated bubble observations successfully reproduced the observed stimulation by bubble clouds for low air flow rates. High air flow rates stimulated more light emission than expected, presumably because of additional fluid shear stress associated with collective buoyancy effects generated by the high air fraction bubble cloud. These results are relevant to bioluminescence stimulation by bubbles in two-phase flows, such as in ship wakes, breaking waves, and sparged bioreactors.
Collapse
Affiliation(s)
- Grant B Deane
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - M Dale Stokes
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Michael I Latz
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
34
|
Guadarrama-Flores B, Rodríguez-Monroy M, Cruz-Sosa F, García-Carmona F, Gandía-Herrero F. Production of dihydroxylated betalains and dopamine in cell suspension cultures of Celosia argentea var. plumosa. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2741-9. [PMID: 25727687 DOI: 10.1021/acs.jafc.5b00065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Betalains are plant pigments of hydrophilic nature with demonstrated chemopreventive potential in cancer cell lines and animal models. Among the betalains, those containing an aromatic moiety with two free hydroxyl groups possess the strongest antioxidant and free radical scavenging activities. The betaxanthins dopaxanthin and miraxanthin V and the betacyanins betanidin and decarboxy-betanidin are the only natural betalains with catecholic substructures. These four pigments have been produced in cell cultures established from hypocotyls of the plant Celosia argentea. Two stable and differentially colored cell lines, yellow and red, were maintained on Murashige and Skoog medium supplemented with the plant growth regulators 6-benzylaminopurine (6.66 μM) and 2,4-dichlorophenoxyacetic acid (6.79 μM). Derived suspension cultures showed increased production of dihydroxylated betalains in the cells and secreted to the medium with a maximum reached after 8 days of culture. In addition, precursor molecules betalamic acid and dopamine, with content up to 42.08 mg/g dry weight, were also obtained. The joint presence of the bioactive betalains together with the production of dopamine and betalamic acid show the ability of cell cultures of C. argentea to become a stable source of valuable phytochemicals.
Collapse
Affiliation(s)
- Berenice Guadarrama-Flores
- †Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Col. Vicentina, 09340 Ciudad de México, Federal District, Mexico
- ‡Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos (CeProBi), Instituto Politécnico Nacional, San Isidro, Yautepec, Morelos, Mexico
- §Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100 Espinardo, Murcia, Spain
| | - Mario Rodríguez-Monroy
- ‡Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos (CeProBi), Instituto Politécnico Nacional, San Isidro, Yautepec, Morelos, Mexico
| | - Francisco Cruz-Sosa
- †Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Col. Vicentina, 09340 Ciudad de México, Federal District, Mexico
| | - Francisco García-Carmona
- §Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100 Espinardo, Murcia, Spain
| | - Fernando Gandía-Herrero
- §Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100 Espinardo, Murcia, Spain
| |
Collapse
|
35
|
Pre-crosslinked polymeric collagen in 3-D models of mechanically stiff tissues: blended collagen polymer hydrogels for rapid layer fabrication. Acta Biomater 2014; 10:5005-5011. [PMID: 25200843 DOI: 10.1016/j.actbio.2014.08.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 08/22/2014] [Accepted: 08/28/2014] [Indexed: 11/23/2022]
Abstract
Currently one factor hindering the development of collagen hydrogel constructs for tissue engineering is the mismatch between initial cellularity and mechanical strength. The main advantage of collagen hydrogel tissue constructs is their ability to support interstitially seeded cells. However, cells are sensitive to their environment, in particular, substrate stiffness, which cannot easily be replicated within hydrogels without cytotoxic cross-linking treatment. In this study, pre-crosslinked polymeric collagen fibrils are introduced as a starting material, thereby avoiding artificial cross-linking. Shear aggregation of this material in solution results in fibril alignment, but cell addition is only possible when polymeric collagen is blended with its monomeric counterparts to slow the aggregation of collagen fibrils. The hydrogel can then be brought to physiological collagen density by plastic compression. Interstitially seeded fibroblasts were supported for 14days. Although compression of blended gels resulted in some cell death due to increased rate of fluid expulsion, not normally seen in conventional collagen hydrogels, the surviving cell population recovers during subsequent culture. Importantly, the compression process can be controlled and customized to limit cell damage. This is the first report of native polymeric collagen used in a tissue engineering context, for the rapid production of a stiff collagen-cell constructs.
Collapse
|
36
|
Lam ATL, Li J, Chen AKL, Reuveny S, Oh SKW, Birch WR. Cationic surface charge combined with either vitronectin or laminin dictates the evolution of human embryonic stem cells/microcarrier aggregates and cell growth in agitated cultures. Stem Cells Dev 2014; 23:1688-703. [PMID: 24641164 DOI: 10.1089/scd.2013.0645] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The expansion of human pluripotent stem cells (hPSC) for biomedical applications generally compels a defined, reliable, and scalable platform. Bioreactors offer a three-dimensional culture environment that relies on the implementation of microcarriers (MC), as supports for cell anchorage and their subsequent growth. Polystyrene microspheres/MC coated with adhesion-promoting extracellular matrix (ECM) protein, vitronectin (VN), or laminin (LN) have been shown to support hPSC expansion in a static environment. However, they are insufficient to promote human embryonic stem cells (hESC) seeding and their expansion in an agitated environment. The present study describes an innovative technology, consisting of a cationic charge that underlies the ECM coatings. By combining poly-L-lysine (PLL) with a coating of ECM protein, cell attachment efficiency and cell spreading are improved, thus enabling seeding under agitation in a serum-free medium. This coating combination also critically enables the subsequent formation and evolution of hPSC/MC aggregates, which ensure cell viability and generate high yields. Aggregate dimensions of at least 300 μm during early cell growth give rise to ≈15-fold expansion at 7 days' culture. Increasing aggregate numbers at a quasi-constant size of ≈300 μm indicates hESC growth within a self-regulating microenvironment. PLL+LN enables cell seeding and aggregate evolution under constant agitation, whereas PLL+VN requires an intermediate 2-day static pause to attain comparable aggregate sizes and correspondingly high expansion yields. The cells' highly reproducible bioresponse to these defined and characterized MC surface properties is universal across multiple cell lines, thus confirming the robustness of this scalable expansion process in a defined environment.
Collapse
Affiliation(s)
- Alan Tin-Lun Lam
- 1 Stem Cell Group, Bioprocessing Technology Institute , Agency for Science, Technology and Research (A*STAR), Singapore , Singapore
| | | | | | | | | | | |
Collapse
|
37
|
Stochastic model-assisted development of efficient low-dose viral transduction in microfluidics. Biophys J 2013; 104:934-42. [PMID: 23442972 DOI: 10.1016/j.bpj.2012.12.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 12/15/2012] [Accepted: 12/31/2012] [Indexed: 12/14/2022] Open
Abstract
Adenoviruses are commonly used in vitro as gene transfer vectors in multiple applications. Nevertheless, issues such as low infection efficiency and toxicity effects on host cells have not been resolved yet. This work aims at developing a new versatile tool to enhance the expression of transduced genes while working at low viral doses in a sequential manner. We developed a microfluidic platform with automatically controlled sequential perfusion stages, which includes 10 independent channels. In addition, we built a stochastic mathematical model, accounting for the discrete nature of cells and viruses, to predict not only the percentage of infected cells, but also the associated infecting-virus distribution in the cell population. Microfluidic system and mathematical model were coupled to define an efficient experimental strategy. We used human foreskin fibroblasts, infected by replication-incompetent adenoviruses carrying EGFP gene, as the testing system. Cell characterization was performed through fluorescence microscopy, followed by image analysis. We explored the effect of different aspects: perfusion, multiplicity of infection, and temporal patterns of infection. We demonstrated feasibility of performing efficient viral transduction at low doses, by repeated pulses of cell-virus contact. This procedure also enhanced the exogenous gene expression in the sequential microfluidic infection system compared to a single infection at a higher, nontoxic, viral dose.
Collapse
|
38
|
Harouaka RA, Zhou MD, Yeh TY, Khan WJ, Allerton J, Zheng SY. Viable circulating tumor cell enrichment by flexible micro spring array. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:6269-72. [PMID: 23367362 DOI: 10.1109/embc.2012.6347427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We demonstrated a high throughput versatile platform capable of isolating circulating tumor cells (CTCs) from clinically relevant volumes of blood while preserving their viability and ability to proliferate. The enrichment is based on the fact that CTCs are larger compared with normal blood cells. The incorporated system allows size-based separation of CTCs at the micro-scale, while taking advantage of a high throughput and rapid processing speed. Testing results of model systems using cell lines show that this device can enrich CTCs from 7.5 mL of whole blood samples with 90% capture efficiency, higher than 10(4) enrichment, and better than 80% viability in approximately ten minutes without any incidence of clogging.
Collapse
Affiliation(s)
- Ramdane A Harouaka
- Department of Bioengineering and Material Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
39
|
Wolfe RP, Ahsan T. Shear stress during early embryonic stem cell differentiation promotes hematopoietic and endothelial phenotypes. Biotechnol Bioeng 2013; 110:1231-42. [PMID: 23138937 DOI: 10.1002/bit.24782] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/30/2012] [Accepted: 10/30/2012] [Indexed: 12/21/2022]
Abstract
Pluripotent embryonic stem cells (ESCs) are a potential source for cell-based tissue engineering and regenerative medicine applications, but their translation into clinical use will require efficient and robust methods for promoting differentiation. Fluid shear stress, which can be readily incorporated into scalable bioreactors, may be one solution for promoting endothelial and hematopoietic phenotypes from ESCs. Here we applied laminar shear stress to differentiating ESCs using a 2D adherent parallel plate configuration to systematically investigate the effects of several mechanical parameters. Treatment similarly promoted endothelial and hematopoietic differentiation for shear stress magnitudes ranging from 1.5 to 15 dyne/cm(2) and for cells seeded on collagen-, fibronectin- or laminin-coated surfaces. Extension of the treatment duration consistently induced an endothelial response, but application at later stages of differentiation was less effective at promoting hematopoietic phenotypes. Furthermore, inhibition of the FLK1 protein (a VEGF receptor) neutralized the effects of shear stress, implicating the membrane protein as a critical mediator of both endothelial and hematopoietic differentiation by applied shear. Using a systematic approach, studies such as these help elucidate the mechanisms involved in force-mediated stem cell differentiation and inform scalable bioprocesses for cellular therapies.
Collapse
Affiliation(s)
- Russell P Wolfe
- Department of Biomedical Engineering, Tulane University, 500 Lindy Boggs Center, New Orleans, LA 70118, USA
| | | |
Collapse
|
40
|
Computational fluid dynamics modeling of an inverted frustoconical shaking bioreactor for mammalian cell suspension culture. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-010-0426-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Miccheli A, Tomassini A, Capuani G, Di Cocco ME, Sartori E, Falasca L, Conti Devirgiliis L, Manetti C, Conti F. Energy metabolism and re-establishment of intercellularadhesion complexes of gel entrapped hepatocytes. Cytotechnology 2011; 32:219-28. [PMID: 19002983 DOI: 10.1023/a:1008134005529] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We studied the effect of continuous medium flow on the viabilityand structural organization of hepatocytes high density entrapped inalginate gel beads in the first few hours after isolation.The metabolic energy status of the entrapped cells, monitored invivo by (31)P NMR spectroscopy, was stable during theexperimental time and a physiological redox ratio was reachedafter the first three hours of culture. The morphologicalanalysis revealed that the entrapped hepatocytes placed in a fixed-bed bioreactor under continuous flow showed a polyhedricalshape with numerous microvilli on cell surface and reconstitutedtight junctions as well as bile canalicular structures, closelyresembling those present in the liver.These results suggest that continuous flow allows the culture ofhepatocytes at very high cell density within a matrix withoutloss of viability and accelerates cellular tissue reconstructionat very short times after isolation. This type of culture couldrepresent a very useful model for physiological andtoxicological studies as well as a promising approach toward thedevelopment of a bioartificial hybrid support device in acuteliver failure.
Collapse
Affiliation(s)
- A Miccheli
- Department of Chemistry, University La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hadjipanayi E, Ananta M, Binkowski M, Streeter I, Lu Z, Cui ZF, Brown RA, Mudera V. Mechanisms of structure generation during plastic compression of nanofibrillar collagen hydrogel scaffolds: towards engineering of collagen. J Tissue Eng Regen Med 2011; 5:505-19. [PMID: 21695792 DOI: 10.1002/term.343] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/07/2010] [Indexed: 02/03/2023]
Abstract
Operator control of cell/matrix density of plastically compressed collagen hydrogel scaffolds critically depends on reproducibly limiting the extent of scaffold compaction, as fluid expulsion. A functional model of the compression process is presented, based on the idea that the main fluid-leaving surface (FLS) behaves as an ultrafiltration membrane, allowing fluid (water) out but retaining collagen fibrils to form a cake. We hypothesize that accumulation of collagen at the FLS produces anisotropic structuring but also increases FLS hydraulic resistance (R(FLS) ), in turn limiting the flux. Our findings show that while compressive load is the primary determinant of flux at the beginning of compression (load-dependent phase), increasing FLS collagen density (measured by X-ray attenuation) and increasing R(FLS) become the key determinants of flux as the process proceeds (flow-dependent phase). The model integrates these two phases and can closely predict fluid loss over time for a range of compressive loads. This model provides a useful tool for engineering cell and matrix density to tissue-specific levels, as well as generating localized 3D nano micro-scale structures and zonal heterogeneity within scaffolds. Such structure generation is important for complex tissue engineering and forms the basis for process automation and up-scaling.
Collapse
Affiliation(s)
- E Hadjipanayi
- University College London, Tissue Repair and Engineering Centre, Stanmore Campus, UK
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Luni C, Zagallo M, Albania L, Piccoli M, Pozzobon M, De Coppi P, Elvassore N. Design of a stirred multiwell bioreactor for expansion of CD34+ umbilical cord blood cells in hypoxic conditions. Biotechnol Prog 2011; 27:1154-62. [PMID: 21674817 DOI: 10.1002/btpr.582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 02/15/2011] [Indexed: 01/05/2023]
Abstract
Besides having a metabolic role, oxygen is recognized as an important signaling stimulus for stem cells. In hematopoiesis, hypoxia seems to favor stem cell self-renewal. In fact, long-term repopulating hematopoietic stem cells reside in bone marrow at concentrations as low as 1% oxygen. However, O2 concentration is difficult to control in vitro. Thermodynamically, we found significant differences between O2 solubility in different media, and in presence of serum. Furthermore, we verified that medium equilibration with a hypoxic atmosphere requires several hours. Thus, in a static culture, the effective O2 concentration in the cell immediate microenvironment is difficult to control and subject to concentration gradients. Stirred systems improve homogeneity within the culture volume. In this work, we developed a stirred bioreactor to investigate hypoxia effect on the expression of stem cell markers in CD34+ cells from umbilical cord blood. The stirring system was designed on top of a standard six-well plate to favor continuity with conventional static conditions and transfer of culture protocols. The bioreactor volume (10 mL/well) is suitable for cell expansion and multiparametric flow cytometry analyses. First, it was tested at 21% O2 for biocompatibility and other possible effects on the cells compared to static conditions. Then, it was used to study c-kit expression of CD34+ cells at 5% O2, using 21%-O2 cultures as a control. In hypoxia we found that CD34+ cells maintained a higher expression of c-kit. Further investigation is needed to explore the dynamics of interaction between oxygen- and c-kit-dependent pathways at the molecular level.
Collapse
Affiliation(s)
- Camilla Luni
- Dept. of Chemical Engineering, University of Padova, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Effects of Pluronic F68 on Manganese Peroxidase Production by Pelletized Phanerochaete chrysosporium. Appl Biochem Biotechnol 2011; 164:487-96. [DOI: 10.1007/s12010-010-9150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 12/16/2010] [Indexed: 10/18/2022]
|
45
|
Didar TF, Tabrizian M. Adhesion based detection, sorting and enrichment of cells in microfluidic Lab-on-Chip devices. LAB ON A CHIP 2010; 10:3043-53. [PMID: 20877893 DOI: 10.1039/c0lc00130a] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The detection, isolation and sorting of cells are important tools in both clinical diagnostics and fundamental research. Advances in microfluidic cell sorting devices have enabled scientists to attain improved separation with comparative ease and considerable time savings. Despite the great potential of Lab-on-Chip cell sorting devices for targeting cells with desired specificity and selectivity, this field of research remains unexploited. The challenge resides in the detection techniques which has to be specific, fast, cost-effective, and implementable within the fabrication limitations of microchips. Adhesion-based microfluidic devices seem to be a reliable solution compared to the sophisticated detection techniques used in other microfluidic cell sorting systems. It provides the specificity in detection, label-free separation without requirement for a preprocessing step, and the possibility of targeting rare cell types. This review elaborates on recent advances in adhesion-based microfluidic devices for sorting, detection and enrichment of different cell lines, with a particular focus on selective adhesion of desired cells on surfaces modified with ligands specific to target cells. The effect of shear stress on cell adhesion in flow conditions is also discussed. Recently published applications of specific adhesive ligands and surface functionalization methods have been presented to further elucidate the advances in cell adhesive microfluidic devices.
Collapse
Affiliation(s)
- Tohid Fatanat Didar
- Biomedical Engineering Department, McGill University, Montreal, QC H3A 2B4, Canada
| | | |
Collapse
|
46
|
Leung HW, Chen A, Choo ABH, Reuveny S, Oh SKW. Agitation can induce differentiation of human pluripotent stem cells in microcarrier cultures. Tissue Eng Part C Methods 2010; 17:165-72. [PMID: 20698747 DOI: 10.1089/ten.tec.2010.0320] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
One of the factors that can impact human embryonic stem cell expansion in stirred microcarrier culture reactors is mechanical stress caused by agitation. Therefore, we have investigated the effects of agitation on human embryonic stem cell growth and expression of pluripotent markers. Agitation of HES-2 cell line in microcarrier cultures in stirred spinner and agitated six-well plates did not affect expression of pluripotent markers, cell viability, and cell doubling times even after seven passages. However, HES-3 cell line was found to be shear sensitive, showing downregulation of three pluripotent markers Oct-4, mAb 84, and Tra-1-60, and lower cell densities in agitated as compared with static cultures, even after one passage. Cell viability was unaffected. The HES-3-agitated cultures showed increased expression of genes and proteins of the three germ layers. We were unable to prevent loss of pluripotent markers or restore doubling times in agitated HES-3 microcarrier cultures by addition of five different known cell protective polymers. In addition, the human induced pluripotent cell line IMR90 was also shown to differentiate in agitated conditions. These results indicate that the effect of agitation on cell growth and differentiation is cell line specific. We assume that the changes in the growth and differentiation of the agitation-sensitive (HES-3) cell line do not result from the effect of shear stress directly on cell viability, but rather by signaling effects that influence the cells to differentiate resulting in slower growth.
Collapse
Affiliation(s)
- Hau Wan Leung
- Bioprocessing Technology Institute , A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | | | | | | | | |
Collapse
|
47
|
Responses of Taxus cuspidata to hydrodynamics in bubble column bioreactors with different sparging nozzle sizes. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Yang JD, Lu C, Stasny B, Henley J, Guinto W, Gonzalez C, Gleason J, Fung M, Collopy B, Benjamino M, Gangi J, Hanson M, Ille E. Fed-batch bioreactor process scale-up from 3-L to 2,500-L scale for monoclonal antibody production from cell culture. Biotechnol Bioeng 2007; 98:141-54. [PMID: 17657776 DOI: 10.1002/bit.21413] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This case study focuses on the scale-up of a Sp2/0 mouse myeloma cell line based fed-batch bioreactor process, from the initial 3-L bench scale to the 2,500-L scale. A stepwise scale-up strategy that involved several intermediate steps in increasing the bioreactor volume was adopted to minimize the risks associated with scale-up processes. Careful selection of several available mixing models from literature, and appropriately applying the calculated results to our settings, resulted in successful scale-up of agitation speed for the large bioreactors. Consideration was also given to scale-up of the nutrient feeding, inoculation, and the set-points of operational parameters such as temperature, pH, dissolved oxygen, dissolved carbon dioxide, and aeration in an integrated manner. It has been demonstrated through the qualitative and the quantitative side-by-side comparison of bioreactor performance as well as through a panel of biochemical characterization tests that the comparability of the process and the product was well controlled and maintained during the process scale-up. The 2,500-L process is currently in use for the routine clinical production of Epratuzumab in support of two global Phase III clinical trials in patients with lupus. Today, the 2,500 L, fed-batch production process for Epratuzumab has met all scheduled batch releases, and the quality of the antibody is consistent and reproducible, meeting all specifications, thus confirming the robustness of the process.
Collapse
Affiliation(s)
- Jeng-Dar Yang
- Immunomedics, Inc. 300 American Road, Morris Plains, New Jersey 07950, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Martín M, Montes FJ, Galán MA. On the influence of the liquid physical properties on bubble volumes and generation times. Chem Eng Sci 2006. [DOI: 10.1016/j.ces.2006.03.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Martín M, Montes FJ, Galán MA. Numerical calculation of shapes and detachment times of bubbles generated from a sieve plate. Chem Eng Sci 2006. [DOI: 10.1016/j.ces.2005.06.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|