1
|
Zhang Q, Su J, Chen J, Wu S, Qi X, Chu M, Jiang S, He K. Diurnal rhythm-modulated transcriptome analysis of meibomian gland in hyperlipidemic mice using RNA sequencing. Int Ophthalmol 2025; 45:57. [PMID: 39890715 DOI: 10.1007/s10792-025-03431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/19/2025] [Indexed: 02/03/2025]
Abstract
AIM To explore the regulatory mechanism of meibomian gland (MG) in hyperlipidemic mice under a diurnal rhythm by transcriptomic analysis based on high-throughput sequencing. METHODS The mouse model of hyperlipidemia induced by four months of high-fat diet (HFD) feeding to a regular light-dark (LD) cycle for 2 weeks was used in this study. Phenotypic observation and RNA sequencing (RNA-seq) of MGs of the experimental mice were then performed to investigate transcriptional changes due to hyperlipidemia and the diurnal rhythm and their effects on meibomian gland dysfunction (MGD). RESULTS The expression levels of the identified dysregulated genes were then validated by qRT-PCR. Several significantly regulated genes and enriched pathways were identified as associated with MGD in hyperlipidemic mice under a diurnal rhythm; these genes included some core diurnal clock genes, e.g., Clock, Per2 and Per3. Phenotypic and histological analysis reveals abnormal morphology concomitantly with a modification of the transcriptional landscape of MG caused by HFD. CONCLUSION Our findings provide us with a deeper understanding of the diurnal rhythm regulation of MG in hyperlipidemic mice altered by daily nutritional challenge.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China.
| | - Jinxing Su
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China
| | - Jing Chen
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Sainan Wu
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Xiaoxuan Qi
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Min Chu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China
| | - Shangquan Jiang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China
| | - Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China.
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei, 230600, Anhui, People's Republic of China.
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, People's Republic of China.
| |
Collapse
|
2
|
Vrzalova A, Vrzal R. Orchestra of ligand-activated transcription factors in the molecular symphony of SERPINE 1 / PAI-1 gene regulation. Biochimie 2025; 228:138-157. [PMID: 39321911 DOI: 10.1016/j.biochi.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Plasminogen activator inhibitor 1 (PAI-1) is a crucial serine protease inhibitor that prevents plasminogen activation by inhibiting tissue- and urokinase-type plasminogen activators (tPA, uPA). PAI-1 is well-known for its role in modulating hemocoagulation or extracellular matrix formation by inhibiting plasmin or matrix metalloproteinases, respectively. PAI-1 is induced by pro-inflammatory cytokines across various tissues, yet its regulation by ligand-activated transcription factors is partly disregarded. Therefore, we have attempted to summarize the current knowledge on the transcriptional regulation of PAI-1 expression by the most relevant xenobiotic and endocrine receptors implicated in modulating PAI-1 levels. This review aims to contribute to the understanding of the specific, often tissue-dependent regulation of PAI-1 and provide insights into the modulation of PAI-1 levels beyond its direct inhibition.
Collapse
Affiliation(s)
- Aneta Vrzalova
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
3
|
Zhuang H, Fujikura Y, Ohkura N, Higo-Yamamoto S, Mishima T, Oishi K. A ketogenic diet containing medium-chain triglycerides reduces REM sleep duration without significant influence on mouse circadian phenotypes. Food Res Int 2023; 169:112852. [PMID: 37254426 DOI: 10.1016/j.foodres.2023.112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Ketogenic diets (KDs) affect the circadian rhythms of behavior and clock gene expression in experimental animals. However, these diets were designed to simulate a fasting state; thus, whether these effects are caused by diet-induced ketogenesis or persistent starvation is difficult to distinguish. The present study aimed to define the effects of a KD containing medium-chain triglycerides (MCT-KD) that increase blood ketone levels without inducing carbohydrate starvation, on circadian rhythms and sleep regulation. Mice were fed with a normal diet (CTRL) or MCT-KD for 2 weeks. Blood β-hydroxybutyrate levels were significantly increased up to 2 mM by the MCT-KD, whereas body weight gain and blood glucose levels were identical between the groups, suggesting that ketosis accumulated without carbohydrate starvation in the MCT-KD mice. Circadian rhythms of wheel-running activity and core body temperature were almost identical, although wheel-running was slightly reduced in the MCT-KD mice. The circadian expression of the core clock genes, Per1, Per2, Bmal1, and Dbp in the hypothalamus, heart, liver, epididymal adipose tissues, and skeletal muscle were almost identical between the CTRL and MCT-KD mice, whereas the amplitude of hepatic Per2 and adipose Per1 expression was increased in MCT-KD mice. The MCT-KD reduced the duration of rapid-eye-movement (REM) sleep without affecting the duration of non-REM sleep and the duration of wakefulness. These findings suggested that the impact of ketone bodies on circadian systems are limited, although they might reduce locomotor activity and REM sleep duration.
Collapse
Affiliation(s)
- Haotong Zhuang
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yuri Fujikura
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Naoki Ohkura
- Laboratory of Host Defense, School of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Sayaka Higo-Yamamoto
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Taiga Mishima
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan; Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan; Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan; School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
4
|
Martín-Reyes F, Ho-Plagaro A, Rodríguez-Díaz C, Lopez-Gómez C, Garcia-Serrano S, de Los Reyes DR, Gonzalo M, Fernández-Garcia JC, Montiel-Casado C, Fernández-Aguilar JL, Fernández JR, García-Fuentes E, Rodríguez-Pacheco F. Oleic acid regulates the circadian rhythm of adipose tissue in obesity. Pharmacol Res 2023; 187:106579. [PMID: 36435269 DOI: 10.1016/j.phrs.2022.106579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
The effect of oleic acid (OA) on the regulation of the circadian rhythm present in human visceral (VAT) and subcutaneous (SAT) adipose tissue from patients with morbid obesity has not been analyzed yet. VAT and SAT explants from patients with morbid obesity were incubated with OA to analyze the circadian regulation of clock and other genes related to lipid metabolism (SREBP-1c, FAS, LPL and CPT1), and their association with baseline variables and the improvement of these patients after bariatric surgery. There were significant differences in amplitude and acrophase in VAT with respect to SAT. In VAT, body weight negatively correlated with BMAL1 and CRY1 amplitude, and REVERBα acrophase; body mass index (BMI) negatively correlated with REVERBα acrophase; and waist circumference negatively correlated with PER3 acrophase. In SAT, BMI negatively correlated with CLOCK amplitude, and CLOCK, REVERBα and CRY2 MESOR; and waist circumference negatively correlated with PER3 amplitude and acrophase. A greater short-term improvement of body weight, BMI and waist circumference in patients with morbid obesity after bariatric surgery was associated with a lower CRY1 and CRY2 amplitude and an earlier PER1 and PER3 acrophase in SAT. OA produced a more relevant circadian rhythm and increased the amplitude of most clock genes and lipid metabolism-related genes. OA regulated the acrophase of most clock genes in VAT and SAT, placing CLOCK/BMAL1 in antiphase with regard to the other genes. OA increased the circadian rhythmicity, although with slight differences between adipose tissues. These differences could determine its different behavior in obesity.
Collapse
Affiliation(s)
- Flores Martín-Reyes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Ailec Ho-Plagaro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Cristina Rodríguez-Díaz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Carlos Lopez-Gómez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Sara Garcia-Serrano
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario, Málaga, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas-CIBERDEM, Málaga, Spain
| | - Dámaris Rodriguez de Los Reyes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Montserrat Gonzalo
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario, Málaga, Spain
| | - Jose C Fernández-Garcia
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario, Málaga, Spain
| | - Custodia Montiel-Casado
- Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Regional Universitario, Málaga, Spain
| | - Jose L Fernández-Aguilar
- Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Regional Universitario, Málaga, Spain
| | - José R Fernández
- Bioengeneering & Chronobiology Labs, atlanTTic Research Center, University of Vigo, Spain
| | - Eduardo García-Fuentes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain; CIBER de Enfermedades Hepáticas y Digestivas-CIBEREHD, Málaga, Spain.
| | - Francisca Rodríguez-Pacheco
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas-CIBERDEM, Málaga, Spain
| |
Collapse
|
5
|
Tateishi N, Morita S, Yamazaki I, Okumura H, Kominami M, Akazawa S, Funaki A, Tomimori N, Rogi T, Shibata H, Shibata S. Administration timing and duration-dependent effects of sesamin isomers on lipid metabolism in rats. Chronobiol Int 2019; 37:493-509. [DOI: 10.1080/07420528.2019.1700998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Norifumi Tateishi
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Satoshi Morita
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | - Izumi Yamazaki
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | - Hitoshi Okumura
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | - Masaru Kominami
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | - Sota Akazawa
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | - Ayuta Funaki
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | - Namino Tomimori
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | - Tomohiro Rogi
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
6
|
Ohdo S, Koyanagi S, Matsunaga N. Chronopharmacological strategies focused on chrono-drug discovery. Pharmacol Ther 2019; 202:72-90. [DOI: 10.1016/j.pharmthera.2019.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/29/2019] [Indexed: 01/21/2023]
|
7
|
Ao Y, Zhao Q, Yang K, Zheng G, Lv X, Su X. A role for the clock period circadian regulator 2 gene in regulating the clock gene network in human oral squamous cell carcinoma cells. Oncol Lett 2018. [PMID: 29541184 PMCID: PMC5835870 DOI: 10.3892/ol.2018.7825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Clock genes are the core of the circadian rhythms in the human body and are important in regulating normal physiological functions. To date, research has indicated that the clock gene, period circadian clock 2 (PER2), is downregulated in numerous types of cancer, and that it is associated with cancer occurrence and progression via the regulation of various downstream cell cycle genes. However, it remains unclear whether the decreased expression of PER2 influences the expression of other clock genes in cancer cells. In the present study, short hairpin RNA interference was used to knockdown PER2 effectively in human oral squamous cell carcinoma SCC15 cells. Quantitative polymerase chain reaction was used to assess the mRNA expression levels of various clock genes and revealed that, following the knockdown of PER2 in SCC15 cells, the mRNA expression levels of PER3, brain and muscle ARNT-like 1, deleted in esophageal cancer (DEC)1, DEC2, cryptochrome circadian clock (CRY)2, timeless circadian clock, retinoic acid receptor-related orphan receptor-alpha and neuronal PAS domain protein 2 were significantly downregulated, while the mRNA expression levels of PER1 and nuclear receptor subfamily 1 group D member 1 were significantly upregulated. In addition, flow cytometric analysis demonstrated that proliferation was enhanced and apoptosis was reduced following PER2 knockdown in SCC15 cells (P<0.05). To the best of our knowledge, the present study is the first to report that PER2 is important for the regulation of other clock genes of the clock gene network in cancer cells. This is of great significance in elucidating the molecular function and tumor suppression mechanism of PER2.
Collapse
Affiliation(s)
- Yiran Ao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qin Zhao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Kai Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Gang Zheng
- Anorectal Department, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, P.R. China
| | - Xiaoqing Lv
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaoli Su
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
8
|
Kiehn JT, Tsang AH, Heyde I, Leinweber B, Kolbe I, Leliavski A, Oster H. Circadian Rhythms in Adipose Tissue Physiology. Compr Physiol 2017; 7:383-427. [PMID: 28333377 DOI: 10.1002/cphy.c160017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The different types of adipose tissues fulfill a wide range of biological functions-from energy storage to hormone secretion and thermogenesis-many of which show pronounced variations over the course of the day. Such 24-h rhythms in physiology and behavior are coordinated by endogenous circadian clocks found in all tissues and cells, including adipocytes. At the molecular level, these clocks are based on interlocked transcriptional-translational feedback loops comprised of a set of clock genes/proteins. Tissue-specific clock-controlled transcriptional programs translate time-of-day information into physiologically relevant signals. In adipose tissues, clock gene control has been documented for adipocyte proliferation and differentiation, lipid metabolism as well as endocrine function and other adipose oscillations are under control of systemic signals tied to endocrine, neuronal, or behavioral rhythms. Circadian rhythm disruption, for example, by night shift work or through genetic alterations, is associated with changes in adipocyte metabolism and hormone secretion. At the same time, adipose metabolic state feeds back to central and peripheral clocks, adjusting behavioral and physiological rhythms. In this overview article, we summarize our current knowledge about the crosstalk between circadian clocks and energy metabolism with a focus on adipose physiology. © 2017 American Physiological Society. Compr Physiol 7:383-427, 2017.
Collapse
Affiliation(s)
- Jana-Thabea Kiehn
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Anthony H Tsang
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isabel Heyde
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Brinja Leinweber
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isa Kolbe
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Alexei Leliavski
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
9
|
Palmieri O, Mazzoccoli G, Bossa F, Maglietta R, Palumbo O, Ancona N, Corritore G, Latiano T, Martino G, Rubino R, Biscaglia G, Scimeca D, Carella M, Annese V, Andriulli A, Latiano A. Systematic analysis of circadian genes using genome-wide cDNA microarrays in the inflammatory bowel disease transcriptome. Chronobiol Int 2016; 32:903-16. [PMID: 26172092 DOI: 10.3109/07420528.2015.1050726] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Simultaneous analysis of the transcripts of thousands of genes by cDNA microarrays allows the identification of genetic regulatory mechanisms involved in disease pathophysiology. The circadian clock circuitry controls essential cell processes and the functioning of organ systems, which are characterized by rhythmic variations with 24-hour periodicity. The derangement of these processes is involved in the basic mechanisms of inflammatory, metabolic, degenerative and neoplastic diseases. We evaluated by genome-wide cDNA microarray analysis the transcriptome of endoscopic mucosal biopsies of patients with inflammatory bowel diseases (IBD) focusing on the expression of circadian genes in Crohn's disease (CD) and ulcerative colitis (UC). Twenty-nine IBD patients (15 with CD and 14 with UC) were enrolled and mucosal biopsies were sampled at either inflamed or adjacent non-inflamed areas of the colon. A total of 150 circadian genes involved in pathways controlling crucial cell processes and tissue functions were investigated. In CD specimens 50 genes were differentially expressed, and 21 genes resulted up-regulated when compared to healthy colonic mucosa. In UC specimens 50 genes were differentially expressed, and 27 genes resulted up-regulated when compared to healthy colonic mucosa. Among the core clock genes ARNTL2 and RORA were up-regulated, while CSNK2B, NPAS2, PER1 and PER3 were down-regulated in CD specimens. Conversely, ARNTL2, CRY1, CSNK1E, RORA and TIPIN were up-regulated, while NR1D2 and PER3 were down-regulated in UC. In conclusion, in CD and UC patients there are differences in the expression of circadian genes between normal and diseased intestinal mucosa. The deregulated genes evidenced by transcriptome analysis in the major IBDs may play a crucial role in the pathophysiological mechanisms and may suggest novel therapeutic approaches.
Collapse
Affiliation(s)
- Orazio Palmieri
- a Department of Medical Sciences , Division of Gastroenterology and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang Y, Cheng Y, Yu G, Jia B, Hu Z, Zhang L. Expression of PER, CRY, and TIM genes for the pathological features of colorectal cancer patients. Onco Targets Ther 2016; 9:1997-2005. [PMID: 27103825 PMCID: PMC4827416 DOI: 10.2147/ott.s96925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
As typical clock gene machinery, period (PER1, PER2, and PER3), cryptochrome (CRY1 and CRY2), and timeless (TIM), could control proliferation, cellular metabolism, and many key functions, such as recognition and repair of DNA damage, dysfunction of the circadian clock could result in tumorigenesis of colorectal cancer (CRC). In this study, the expression levels of PER1, PER2, and PER3, as well as CRY1, CRY2, and TIM in the tumor tissue and apparently healthy mucosa from CRC patients were examined and compared via quantitative real-time polymerase chain reaction. Compared with the healthy mucosa from CRC patients, expression levels of PER1, PER2, PER3, and CRY2 in their tumor tissue are much lower, while TIM level was much enhanced. There was no significant difference in the CRY1 expression level. High levels of TIM mRNA were much prevalent in the tumor mucosa with proximal lymph nodes. CRC patients with lower expression of PER1 and PER3 in the tumor tissue showed significantly poorer survival rates. The abnormal expression levels of PER and TIM genes in CRC tissue could be related to the genesis process of the tumor, influencing host–tumor interactions.
Collapse
Affiliation(s)
- Yong Wang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yunsheng Cheng
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Gang Yu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Benli Jia
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Zhihang Hu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Lijiu Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
11
|
Abstract
The hematologic system performs a number of essential functions, including oxygen transport, the execution of the immune response against tumor cells and invading pathogens, and hemostasis (blood clotting). These roles are performed by erythrocytes (red blood cells), leukocytes (white blood cells), and thrombocytes (platelets), respectively. Critically, circadian rhythms are evident in the function of all 3 cell types. In this review, we describe these oscillations, explore their mechanistic bases, and highlight their key implications. Since erythrocytes are anucleate, circadian rhythms in these cells testify to the existence of a nontranscriptional circadian clock. From a clinical perspective, leukocyte rhythms could underlie daily variation in the severity of allergic reactions, the symptoms of chronic inflammatory diseases, and the body’s response to infection, while the rhythmic properties of thrombocytes may explain daily fluctuations in the incidence of heart attack and stroke. Consequently, the efficacy of treatments for these conditions is likely to depend on the timing of their administration. Last, we outline preliminary evidence that circadian disruption in the hematologic system could contribute to the deleterious effects of poor diet, shift work, and alcohol abuse on human health.
Collapse
Affiliation(s)
- David Pritchett
- Institute of Metabolic Science, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Akhilesh B. Reddy
- Institute of Metabolic Science, Department of Clinical Neurosciences, University of Cambridge, UK
| |
Collapse
|
12
|
Wang M, Zhou Z, Khan M, Gao J, Loor J. Clock circadian regulator (CLOCK) gene network expression patterns in bovine adipose, liver, and mammary gland at 3 time points during the transition from pregnancy into lactation. J Dairy Sci 2015; 98:4601-12. [DOI: 10.3168/jds.2015-9430] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/14/2015] [Indexed: 01/03/2023]
|
13
|
Tsang AH, Kolbe I, Seemann J, Oster H. Interaction of circadian and stress systems in the regulation of adipose physiology. Horm Mol Biol Clin Investig 2014; 19:103-15. [DOI: 10.1515/hmbci-2014-0020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/08/2014] [Indexed: 11/15/2022]
Abstract
AbstractEndogenous circadian clocks facilitate the adaptation of physiology and behavior to recurring environmental changes brought about by the Earth’s rotation around its axis. Adipose tissues harbor intrinsic circadian oscillators based on interlocked transcriptional-translational feedback loops built from a set of clock genes that regulate important aspects of lipid metabolism and adipose endocrine function. These adipocyte clocks are reset via neuronal and endocrine pathways originating from a master circadian pacemaker residing in the hypothalamic suprachiasmatic nucleus. One important mediator of circadian output is the stress hormone cortisol, which, at the same time, is one of the major regulators of adipose physiology. In this review we summarize recent findings on the interaction between circadian and stress systems in the regulation of adipose physiology and discuss the implications of this crosstalk for the development of metabolic disorders associated with circadian disruption and/or chronic stress, for example in shift workers.
Collapse
|
14
|
Vinciguerra M, Mazzoccoli G, Piccoli C, Tataranni T, Andriulli A, Pazienza V. Exploitation of host clock gene machinery by hepatitis viruses B and C. World J Gastroenterol 2013; 19:8902-8909. [PMID: 24379614 PMCID: PMC3870542 DOI: 10.3748/wjg.v19.i47.8902] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/30/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023] Open
Abstract
Many aspects of cellular physiology display circadian (approximately 24-h) rhythms. Dysfunction of the circadian clock molecular circuitry is associated with human health derangements, including neurodegeneration, increased risk of cancer, cardiovascular diseases and the metabolic syndrome. Viruses triggering hepatitis depend tightly on the host cell synthesis machinery for their own replication, survival and spreading. Recent evidences support a link between the circadian clock circuitry and viruses’ biological cycle within host cells. Currently, in vitro models for chronobiological studies of cells infected with viruses need to be implemented. The establishment of such in vitro models would be helpful to better understand the link between the clock gene machinery and viral replication/viral persistence in order to develop specifically targeted therapeutic regimens. Here we review the recent literature dealing with the interplay between hepatitis B and C viruses and clock genes.
Collapse
|
15
|
Yu H, Meng X, Wu J, Pan C, Ying X, Zhou Y, Liu R, Huang W. Cryptochrome 1 overexpression correlates with tumor progression and poor prognosis in patients with colorectal cancer. PLoS One 2013; 8:e61679. [PMID: 23626715 PMCID: PMC3634012 DOI: 10.1371/journal.pone.0061679] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/13/2013] [Indexed: 12/22/2022] Open
Abstract
Background Clock genes drive about 5–15% of genome-wide mRNA expression, and disruption of the circadian clock may deregulate the cell's normal biological functions. Cryptochrome 1 is a key regulator of the circadian feedback loop and plays an important role in organisms. The present study was conducted to investigate the expression of Cry1 and its prognostic significance in colorectal cancer (CRC). In addition, the function of Cry1 in human CRC was investigated in cell culture models. Methods Real-time quantitative PCR, Western blot analysis and immunohistochemistry were used to explore Cry1 expression in CRC cell lines and primary CRC clinical specimens. MTT and colony formation assays were used to determine effects on cellular proliferation ability. The animal model was used to explore the Cry1 impact on the tumor cellular proliferation ability in vivo. Transwell assays were performed to detect the migration ability of the cell lines. Statistical analyzes were applied to evaluate the diagnostic value and the associations of Cry1 expression with clinical parameters. Results Cry1 expression was up regulated in the majority of the CRC cell lines and 168 primary CRC clinical specimens at the protein level. Clinical pathological analysis showed that Cry1 expression was significantly correlated with lymph node metastasis (p = 0.004) and the TNM stage (p = 0.003). High Cry1 expression was associated with poor overall survival in CRC patients (p = 0.010). Experimentally, we found that up-regulation of Cry1 promoted the proliferation and migration of HCT116 cells, while down-regulation of Cry1 inhibited the colony formation and migration of SW480 cells. Conclusions These results suggest that Cry1 likely plays important roles in CRC development and progression andCry1 may be a prognostic biomarker and a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Hongyan Yu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mazzoccoli G, Pazienza V, Vinciguerra M. Clock genes and clock-controlled genes in the regulation of metabolic rhythms. Chronobiol Int 2012; 29:227-51. [PMID: 22390237 DOI: 10.3109/07420528.2012.658127] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Daily rotation of the Earth on its axis and yearly revolution around the Sun impose to living organisms adaptation to nyctohemeral and seasonal periodicity. Terrestrial life forms have developed endogenous molecular circadian clocks to synchronize their behavioral, biological, and metabolic rhythms to environmental cues, with the aim to perform at their best over a 24-h span. The coordinated circadian regulation of sleep/wake, rest/activity, fasting/feeding, and catabolic/anabolic cycles is crucial for optimal health. Circadian rhythms in gene expression synchronize biochemical processes and metabolic fluxes with the external environment, allowing the organism to function effectively in response to predictable physiological challenges. In mammals, this daily timekeeping is driven by the biological clocks of the circadian timing system, composed of master molecular oscillators within the suprachiasmatic nuclei of the hypothalamus, pacing self-sustained and cell-autonomous molecular oscillators in peripheral tissues through neural and humoral signals. Nutritional status is sensed by nuclear receptors and coreceptors, transcriptional regulatory proteins, and protein kinases, which synchronize metabolic gene expression and epigenetic modification, as well as energy production and expenditure, with behavioral and light-dark alternance. Physiological rhythmicity characterizes these biological processes and body functions, and multiple rhythms coexist presenting different phases, which may determine different ways of coordination among the circadian patterns, at both the cellular and whole-body levels. A complete loss of rhythmicity or a change of phase may alter the physiological array of rhythms, with the onset of chronodisruption or internal desynchronization, leading to metabolic derangement and disease, i.e., chronopathology.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital Casa Sollievo della Sofferenza, Opera di Padre Pio da Pietrelcina, San Giovanni Rotondo (FG), Italy.
| | | | | |
Collapse
|
17
|
Zanquetta MM, Correa-Giannella ML, Giannella-Neto D, Alonso PA, Guimarães LMMV, Meyer A, Villares SMF. Expression of clock genes in human subcutaneous and visceral adipose tissues. Chronobiol Int 2012; 29:252-60. [PMID: 22390238 DOI: 10.3109/07420528.2012.657319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Disrupted circadian rhythms are associated with obesity and metabolic alterations, but little is known about the participation of peripheral circadian clock machinery in these processes. The aim of the present study was to analyze RNA expression of clock genes in subcutaneous (SAT) and visceral (VAT) adipose tissues of male and female subjects in AM (morning) and PM (afternoon) periods, and its interactions with body mass index (BMI). Ninety-one subjects (41 ± 11 yrs of age) presenting a wide range of BMI (21.4 to 48.6 kg/m(2)) were included. SAT and VAT biopsies were obtained from patients undergoing abdominal surgeries. Clock genes expressions were evaluated by qRT-PCR. The only clock gene that showed higher expression (p < .0001) in SAT in comparison to VAT was PER1 of female (372%) and male (326%) subjects. Different patterns of expression between the AM and PM periods were observed, in particular REV-ERBα, which was reduced (p < .05) at the PM period in SAT and VAT of both women and men (women: ∼53% lower; men: ∼78% lower), whereas CLOCK expression was not altered. Relationships between clock genes were different in SAT vs. VAT. BMI was negatively correlated with SATPER1 (r = -.549; p = .001) and SATPER2 (r = -.613; p = .0001) and positively with VATCLOCK (r = .541; p = .001) and VATBMAL1 (r = .468; p = .007) only in women. These data suggest that the circadian clock machinery of adipose tissue depots differs between female and male subjects, with a sex-specific effect observed for some genes. BMI correlated with clock genes, but at this moment it is not possible to establish the cause-effect relationship.
Collapse
Affiliation(s)
- Melissa Moreira Zanquetta
- Laboratório de Endocrinologia Celular e Molecular (LIM/25), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
18
|
Mazzoccoli G, Panza A, Valvano MR, Palumbo O, Carella M, Pazienza V, Biscaglia G, Tavano F, Di Sebastiano P, Andriulli A, Piepoli A. Clock gene expression levels and relationship with clinical and pathological features in colorectal cancer patients. Chronobiol Int 2012; 28:841-51. [PMID: 22080729 DOI: 10.3109/07420528.2011.615182] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The clock gene machinery controls cellular metabolism, proliferation, and key functions, such as DNA damage recognition and repair. Dysfunction of the circadian clock is involved in tumorigenesis, and altered expression of some clock genes has been found in cancer patients. The aim of this study was to evaluate the expression levels of core clock genes in colorectal cancer (CRC). Quantitative real-time polymerase chain reaction (qPCR) was used to examine ARNTL1, CLOCK, PER1, PER2, PER3, CRY1, CRY2, Timeless (TIM), TIPIN, and CSNK1? expression levels in the tumor tissue and matched apparently healthy mucosa of CRC patients. In the tumor tissue of CRC patients, compared to their matched healthy mucosa, expression levels of ARNTL1 (p=.002), PER1 (p=.002), PER2 (p=.011), PER3 (p=.003), and CRY2 (p=.012) were lower, whereas the expression level of TIM (p=.044) was higher. No significant difference was observed in the expression levels of CLOCK (p=.778), CRY1 (p=.600), CSNK1 (p=.903), and TIPIN (p=.136). As to the clinical and pathological features, a significant association was found between low CRY1 expression levels in tumor mucosa and age (p=.026), and female sex (p=.005), whereas high CRY1 expression levels in tumor mucosa were associated with cancer location in the distal colon (p?=?.015). Moreover, high TIM mRNA levels in the tumor mucosa were prevalent whenever proximal lymph nodes were involved (p= .013) and associated with TNM stages III-IV (p=.005) and microsatellite instability (p=.015). Significantly poorer survival rates were evidenced for CRC patients with lower expression in the tumor tissue of PER1 (p=.010), PER3 (p= .010), and CSNKIE (p=.024). In conclusion, abnormal expression levels of core clock genes in CRC tissue may be related to the process of tumorigenesis and exert an influence on host/tumor interactions.
Collapse
Affiliation(s)
- G Mazzoccoli
- Department of Internal Medicine and Chronobiology Unit, Scientific Institute and Regional General Hospital CasaSollievo della Sofferenza, Opera di Padre Pio da Pietrelcina, San Giovanni Rotondo (FG), Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mazzoccoli G, Pazienza V, Panza A, Valvano MR, Benegiamo G, Vinciguerra M, Andriulli A, Piepoli A. ARNTL2 and SERPINE1: potential biomarkers for tumor aggressiveness in colorectal cancer. J Cancer Res Clin Oncol 2012; 138:501-11. [PMID: 22198637 DOI: 10.1007/s00432-011-1126-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/12/2011] [Indexed: 12/24/2022]
Abstract
PURPOSE Cathepsin and plasmin may favor cancer cell invasion degrading extracellular matrix. Plasmin formation from plasminogen is regulated by plasminogen activator inhibitor type-1 (PAI-1). ARNTL2 activates the promoters of the PAI-1 gene, officially called SERPINE1, driving the circadian variation in circulating PAI-1 levels. METHODS We evaluated ARNTL2 and SERPINE1 expression in 50 colorectal cancer specimens and adjacent normal tissue and in colon cancer cell lines. RESULTS We found up-regulation of ARNTL2 (P = 0.004) and SERPINE1 (P = 0.002) in tumor tissue. A statistically significant association was found between high ARNTL2 mRNA levels and vascular invasion (P < 0.0001), and between high SERPINE1 mRNA levels and microsatellite instability (MSI-H and MSI-L, P = 0.025). Sorting the subjects into quartile groups, a statistically significant association was found between high ARNTL2 expression and lymph node involvement (P < 0.001), between high SERPINE1 expression and grading (P < 0.001) and between high SERPINE1 expression and MSI H-L (P < 0.0001). In SW480 cells, a more proliferative model compared to CaCo2 cells, there were higher mRNA levels of ARNTL2 (P < 0.001) and SERPINE1 (P = 0.001). CONCLUSION ARNTL2 and SERPINE1 expression is increased in colorectal cancer and in a highly proliferative colon cancer cell line and is related to tumor invasiveness and aggressiveness.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, IRCCS Casa Sollievo della Sofferenza, Research Hospital, San Giovanni Rotondo, FG, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Fibrosis is defined as a fibroproliferative or abnormal fibroblast activation-related disease. Deregulation of wound healing leads to hyperactivation of fibroblasts and excessive accumulation of extracellular matrix (ECM) proteins in the wound area, the pathological manifestation of fibrosis. The accumulation of excessive levels of collagen in the ECM depends on two factors: an increased rate of collagen synthesis and or decreased rate of collagen degradation by cellular proteolytic activities. The urokinase/tissue type plasminogen activator (uPA/tPA) and plasmin play significant roles in the cellular proteolytic degradation of ECM proteins and the maintenance of tissue homeostasis. The activities of uPA/tPA/plasmin and plasmin-dependent MMPs rely mostly on the activity of a potent inhibitor of uPA/tPA, plasminogen activator inhibitor-1 (PAI-1). Under normal physiologic conditions, PAI-1 controls the activities of uPA/tPA/plasmin/MMP proteolytic activities and thus maintains the tissue homeostasis. During wound healing, elevated levels of PAI-1 inhibit uPA/tPA/plasmin and plasmin-dependent MMP activities, and, thus, help expedite wound healing. In contrast to this scenario, under pathologic conditions, excessive PAI-1 contributes to excessive accumulation of collagen and other ECM protein in the wound area, and thus preserves scarring. While the level of PAI-1 is significantly elevated in fibrotic tissues, lack of PAI-1 protects different organs from fibrosis in response to injury-related profibrotic signals. Thus, PAI-1 is implicated in the pathology of fibrosis in different organs including the heart, lung, kidney, liver, and skin. Paradoxically, PAI-1 deficiency promotes spontaneous cardiac-selective fibrosis. In this review, we discuss the significance of PAI-1 in the pathogenesis of fibrosis in multiple organs.
Collapse
Affiliation(s)
- Asish K Ghosh
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
21
|
Portaluppi F. The Medical Subject Headings® thesaurus remains inaccurate and incomplete for electronic indexing and retrieval of chronobiologic references. BIOL RHYTHM RES 2011. [DOI: 10.1080/09291016.2011.613619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
22
|
Oishi K, Tomita T, Itoh N, Ohkura N. PPARγ activation induces acute PAI-1 gene expression in the liver but not in adipose tissues of diabetic model mice. Thromb Res 2011; 128:e81-5. [DOI: 10.1016/j.thromres.2011.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/20/2011] [Accepted: 06/21/2011] [Indexed: 10/17/2022]
|