1
|
Cheng WY, Desmet L, Depoortere I. Time-restricted eating for chronodisruption-related chronic diseases. Acta Physiol (Oxf) 2023; 239:e14027. [PMID: 37553828 DOI: 10.1111/apha.14027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
The circadian timing system enables organisms to adapt their physiology and behavior to the cyclic environmental changes including light-dark cycle or food availability. Misalignment between the endogenous circadian rhythms and external cues is known as chronodisruption and is closely associated with the development of metabolic and gastrointestinal disorders, cardiovascular diseases, and cancer. Time-restricted eating (TRE, in human) is an emerging dietary approach for weight management. Recent studies have shown that TRE or time-restricted feeding (TRF, when referring to animals) has several beneficial health effects, which, however, are not limited to weight management. This review summarizes the effects of TRE/TRF on regulating energy metabolism, gut microbiota and homeostasis, development of cardiovascular diseases and cancer. Furthermore, we will address the role of circadian clocks in TRE/TRF and propose ways to optimize TRE as a dietary strategy to obtain maximal health benefits.
Collapse
Affiliation(s)
- Wai-Yin Cheng
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| | - Louis Desmet
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Giebfried J, Lorentz A. Relationship between the Biological Clock and Inflammatory Bowel Disease. Clocks Sleep 2023; 5:260-275. [PMID: 37218867 DOI: 10.3390/clockssleep5020021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
The biological clock is a molecular oscillator that generates a 24-hour rhythm in accordance with the earth's rotation. Physiological functions and pathophysiological processes such as inflammatory bowel diseases (IBD) are closely linked to the molecular clock. This review summarizes 14 studies in humans and mice on the interactions between the biological clock and IBD. It provides evidence that IBD negatively affect core clock gene expression, metabolism and immune functions. On the other hand, disruption of the clock promotes inflammation. Overexpression of clock genes can lead to inhibition of inflammatory processes, while silencing of clock genes can lead to irreversible disease activity. In both human and mouse studies, IBD and circadian rhythms have been shown to influence each other. Further research is needed to understand the exact mechanisms and to develop potential rhythm-related therapies to improve IBD.
Collapse
Affiliation(s)
- Jonathan Giebfried
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Axel Lorentz
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| |
Collapse
|
3
|
Genetic Mapping of Behavioral Traits Using the Collaborative Cross Resource. Int J Mol Sci 2022; 24:ijms24010682. [PMID: 36614124 PMCID: PMC9821145 DOI: 10.3390/ijms24010682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
The complicated interactions between genetic background, environment and lifestyle factors make it difficult to study the genetic basis of complex phenotypes, such as cognition and anxiety levels, in humans. However, environmental and other factors can be tightly controlled in mouse studies. The Collaborative Cross (CC) is a mouse genetic reference population whose common genetic and phenotypic diversity is on par with that of humans. Therefore, we leveraged the power of the CC to assess 52 behavioral measures associated with locomotor activity, anxiety level, learning and memory. This is the first application of the CC in novel object recognition tests, Morris water maze tasks, and fear conditioning tests. We found substantial continuous behavioral variations across the CC strains tested, and mapped six quantitative trait loci (QTLs) which influenced these traits, defining candidate genetic variants underlying these QTLs. Overall, our findings highlight the potential of the CC population in behavioral genetic research, while the identified genomic loci and genes driving the variation of relevant behavioral traits provide a foundation for further studies.
Collapse
|
4
|
Checa-Ros A, D’Marco L. Role of Omega-3 Fatty Acids as Non-Photic Zeitgebers and Circadian Clock Synchronizers. Int J Mol Sci 2022; 23:12162. [PMID: 36293015 PMCID: PMC9603208 DOI: 10.3390/ijms232012162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 10/23/2024] Open
Abstract
Omega-3 fatty acids (ω-3 FAs) are well-known for their actions on immune/inflammatory and neurological pathways, functions that are also under circadian clock regulation. The daily photoperiod represents the primary circadian synchronizer ('zeitgeber'), although diverse studies have pointed towards an influence of dietary FAs on the biological clock. A comprehensive literature review was conducted following predefined selection criteria with the aim of updating the evidence on the molecular mechanisms behind circadian rhythm regulation by ω-3 FAs. We collected preclinical and clinical studies, systematic reviews, and metanalyses focused on the effect of ω-3 FAs on circadian rhythms. Twenty animal (conducted on rodents and piglets) and human trials and one observational study providing evidence on the regulation of neurological, inflammatory/immune, metabolic, reproductive, cardiovascular, and biochemical processes by ω-3 FAs via clock genes were discussed. The evidence suggests that ω-3 FAs may serve as non-photic zeitgebers and prove therapeutically beneficial for circadian disruption-related pathologies. Future work should focus on the role of clock genes as a target for the therapeutic use of ω-3 FAs in inflammatory and neurological disorders, as well as on the bidirectional association between the molecular clock and ω-3 FAs.
Collapse
Affiliation(s)
- Ana Checa-Ros
- Department of Medicine and Surgery, Faculty of Health Sciences, Universidad Cardenal Herrera—CEU, CEU Universities, 46115 Valencia, Spain
- Aston Institute of Health and Neurosciences, School of Life & Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Luis D’Marco
- Department of Medicine and Surgery, Faculty of Health Sciences, Universidad Cardenal Herrera—CEU, CEU Universities, 46115 Valencia, Spain
- Department of Nephrology, Hospital General Universitario de Valencia, 46014 Valencia, Spain
| |
Collapse
|
5
|
Salwen-Deremer JK, Ballou S. Painful GI Conditions and Their Bidirectional Relationships with Sleep Disturbances. CURRENT SLEEP MEDICINE REPORTS 2022. [DOI: 10.1007/s40675-022-00230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Fowler S, Hoedt EC, Talley NJ, Keely S, Burns GL. Circadian Rhythms and Melatonin Metabolism in Patients With Disorders of Gut-Brain Interactions. Front Neurosci 2022; 16:825246. [PMID: 35356051 PMCID: PMC8959415 DOI: 10.3389/fnins.2022.825246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Circadian rhythms are cyclic patterns of physiological, behavioural and molecular events that occur over a 24-h period. They are controlled by the suprachiasmatic nucleus (SCN), the brain’s master pacemaker which governs peripheral clocks and melatonin release. While circadian systems are endogenous, there are external factors that synchronise the SCN to the ambient environment including light/dark cycles, fasting/fed state, temperature and physical activity. Circadian rhythms also provide internal temporal organisation which ensures that any internal changes that take place are centrally coordinated. Melatonin synchronises peripheral clocks to the external time and circadian rhythms are regulated by gene expression to control physiological function. Synchronisation of the circadian system with the external environment is vital for the health and survival of an organism and as circadian rhythms play a pivotal role in regulating GI physiology, disruption may lead to gastrointestinal (GI) dysfunction. Disorders of gut-brain interactions (DGBIs), also known as functional gastrointestinal disorders (FGIDs), are a group of diseases where patients experience reoccurring gastrointestinal symptoms which cannot be explained by obvious structural abnormalities and include functional dyspepsia (FD) and irritable bowel syndrome (IBS). Food timing impacts on the production of melatonin and given the correlation between food intake and symptom onset reported by patients with DGBIs, chronodisruption may be a feature of these conditions. Recent advances in immunology implicate circadian rhythms in the regulation of immune responses, and DGBI patients report fatigue and disordered sleep, suggesting circadian disruption. Further, melatonin treatment has been demonstrated to improve symptom burden in IBS patients, however, the mechanisms underlying this efficacy are unclear. Given the influence of circadian rhythms on gastrointestinal physiology and the immune system, modulation of these rhythms may be a potential therapeutic option for reducing symptom burden in these patients.
Collapse
Affiliation(s)
- Sophie Fowler
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Emily C. Hoedt
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Nicholas J. Talley
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Grace L. Burns
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Grace L. Burns,
| |
Collapse
|
7
|
Gray KJ, Gibbs JE. Adaptive immunity, chronic inflammation and the clock. Semin Immunopathol 2022; 44:209-224. [PMID: 35233691 PMCID: PMC8901482 DOI: 10.1007/s00281-022-00919-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/28/2022] [Indexed: 12/17/2022]
Abstract
The adaptive arm of the immune system facilitates recognition of specific foreign pathogens and, via the action of T and B lymphocytes, induces a fine-tuned response to target the pathogen and develop immunological memory. The functionality of the adaptive immune system exhibits daily 24-h variation both in homeostatic processes (such as lymphocyte trafficking and development of T lymphocyte subsets) and in responses to challenge. Here, we discuss how the circadian clock exerts influence over the function of the adaptive immune system, considering the roles of cell intrinsic clockwork machinery and cell extrinsic rhythmic signals. Inappropriate or misguided actions of the adaptive immune system can lead to development of autoimmune diseases such as rheumatoid arthritis, ulcerative colitis and multiple sclerosis. Growing evidence indicates that disturbance of the circadian clock has negative impact on development and progression of these chronic inflammatory diseases and we examine current understanding of clock-immune interactions in the setting of these inflammatory conditions. A greater appreciation of circadian control of adaptive immunity will facilitate further understanding of mechanisms driving daily variation in disease states and drive improvements in the diagnosis and treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Kathryn J Gray
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Julie E Gibbs
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
8
|
Scapoli C, Ziliotto N, Lunghi B, Menegatti E, Salvi F, Zamboni P, Baroni M, Mascoli F, Bernardi F, Marchetti G. Combination of Genomic and Transcriptomic Approaches Highlights Vascular and Circadian Clock Components in Multiple Sclerosis. Int J Mol Sci 2021; 23:ijms23010310. [PMID: 35008743 PMCID: PMC8745220 DOI: 10.3390/ijms23010310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 12/17/2022] Open
Abstract
Aiming at exploring vascular components in multiple sclerosis (MS) with brain outflow disturbance, we combined transcriptome analysis in MS internal jugular vein (IJV) wall with WES in MS families with vertical transmission of disease. Main results were the differential expression in IJV wall of 16 MS-GWAS genes and of seven genes (GRIN2A, GRIN2B, IL20RB, IL26, PER3, PITX2, and PPARGC1A) not previously indicated by GWAS but encoding for proteins functionally interacting with MS candidate gene products. Strikingly, 22/23 genes have been previously associated with vascular or neuronal traits/diseases, nine encoded for transcriptional factors/regulators and six (CAMK2G, GRIN2A, GRIN2B, N1RD1, PER3, PPARGC1A) for circadian entrainment/rhythm components. Among the WES low-frequency (MAF ≤ 0.04) SNPs (n = 7) filtered in the 16 genes, the NR1D1 rs17616365 showed significantly different MAF in the Network for Italian Genomes affected cohort than in the 1000 Genome Project Tuscany samples. This pattern was also detected in five nonintronic variants (GRIN2B rs1805482, PER3 rs2640909, PPARGC1A rs2970847, rs8192678, and rs3755863) in genes coding for functional partners. Overall, the study proposes specific markers and low-frequency variants that might help (i) to understand perturbed biological processes in vascular tissues contributing to MS disease, and (ii) to characterize MS susceptibility genes for functional association with disease-pathways.
Collapse
Affiliation(s)
- Chiara Scapoli
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.S.); (B.L.); (M.B.)
| | - Nicole Ziliotto
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Barbara Lunghi
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.S.); (B.L.); (M.B.)
| | - Erica Menegatti
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (P.Z.)
| | - Fabrizio Salvi
- Center for Immunological and Rare Neurological Diseases, IRCCS of Neurological Sciences, Bellaria Hospital, 40139 Bologna, Italy;
| | - Paolo Zamboni
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (P.Z.)
| | - Marcello Baroni
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.S.); (B.L.); (M.B.)
| | - Francesco Mascoli
- Unit of Vascular and Endovascular Surgery, S. Anna University-Hospital, 44124 Ferrara, Italy;
| | - Francesco Bernardi
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.S.); (B.L.); (M.B.)
- Correspondence: ; Tel.: +39-0532-974425
| | - Giovanna Marchetti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
9
|
Yesil Sayin G, Pehlivan S, Serin I, Medetalibeyoglu A, Kose M, Agacfidan A, Senkal N, Isoglu-Alkac U, Tukek T. Is There a Link between Circadian Clock Protein PERIOD 3 (PER3) (rs57875989) Variant and the Severity of COVID-19 Infection? Curr Med Sci 2021; 41:1075-1080. [PMID: 34542826 PMCID: PMC8450707 DOI: 10.1007/s11596-021-2442-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/03/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Corona Virus Disease-2019 (COVID-19) has been among the major infectious events of the century. In today's literature where COVID-19 and host factor effects are frequently examined, we aimed to examine another factor: Circadian Clock Protein PERIOD 3 (PER3). There is a significant correlation between PER3 gene polymorphism and circadian rhythm disturbances and immune system dysregulation. METHODS In our study, we recruited 200 patients diagnosed with COVID-19 in our hospital between April-June 2020, and 100 volunteers without known comorbidities to create a healthy control group. After comparing the initial gene polymorphisms of the patients with healthy controls, three separate clinical subgroups were formed. Gene polymorphism distribution and statistical significance were examined in the formed patient groups. RESULTS No significant difference was found between the patient group and the healthy controls (P>0.05, for all). When patients were divided into two separate clinical subgroups as exitus/alive according to their last condition during their 28-day follow-up, the 4R/5R genotype was significantly more common in patients with a mortal course (P=0.007). The PER3 4R/5R genotype was found at a significantly higher rate in the group of patients with the need for intensive care (P=0.034). CONCLUSION The 4R/5R genotype may be associated with the need for intensive care and mortality in COVID-19 patients. These important results will be a guide for future studies.
Collapse
Affiliation(s)
- Gozde Yesil Sayin
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34098 Turkey
| | - Sacide Pehlivan
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34098 Turkey
| | - Istemi Serin
- Department of Hematology, Istanbul Training and Research Hospital, University of Health Sciences, Istanbul, 34098 Turkey
| | - Alpay Medetalibeyoglu
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34098 Turkey
| | - Murat Kose
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34098 Turkey
| | - Ali Agacfidan
- Department of Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34098 Turkey
| | - Naci Senkal
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34098 Turkey
| | - Ummihan Isoglu-Alkac
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34098 Turkey
| | - Tufan Tukek
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34098 Turkey
| |
Collapse
|
10
|
Abstract
Many molecular, physiological and behavioural processes display distinct 24-hour rhythms that are directed by the circadian system. The master clock, located in the suprachiasmatic nucleus region of the hypothalamus, is synchronized or entrained by the light-dark cycle and, in turn, synchronizes clocks present in peripheral tissues and organs. Other environmental cues, most importantly feeding time, also synchronize peripheral clocks. In this way, the circadian system can prepare the body for predictable environmental changes such as the availability of nutrients during the normal feeding period. This Review summarizes existing knowledge about the diurnal regulation of gastrointestinal processes by circadian clocks present in the digestive tract and its accessory organs. The circadian control of gastrointestinal digestion, motility, hormones and barrier function as well as of the gut microbiota are discussed. An overview is given of the interplay between different circadian clocks in the digestive system that regulate glucose homeostasis and lipid and bile acid metabolism. Additionally, the bidirectional interaction between the master clock and peripheral clocks in the digestive system, encompassing different entraining factors, is described. Finally, the possible behavioural adjustments or pharmacological strategies for the prevention and treatment of the adverse effects of chronodisruption are outlined.
Collapse
|
11
|
Liu JL, Wang CY, Cheng TY, Rixiati Y, Ji C, Deng M, Yao S, Yuan LH, Zhao YY, Shen T, Li JM. Circadian Clock Disruption Suppresses PDL1 + Intraepithelial B Cells in Experimental Colitis and Colitis-Associated Colorectal Cancer. Cell Mol Gastroenterol Hepatol 2021; 12:251-276. [PMID: 33652118 PMCID: PMC8141473 DOI: 10.1016/j.jcmgh.2021.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS The circadian clock is crucial for physiological homeostasis including gut homeostasis. Disorder of the circadian clock may contribute to many diseases including inflammatory bowel disease (IBD). However, the role and the mechanisms of circadian clock involvement in IBD still are unclear. METHODS Disorder of the circadian clock including chronic social jet lag and circadian clock gene deficiency mice (Bmal1-/-, and Per1-/-Per2-/-) were established. Dextran sulfate sodium (DSS) and/or azoxymethane were used to induce mouse models of colitis and its associated colorectal cancer. Flow cytometry, immunohistochemistry, immunofluorescence, Western blot, and reverse-transcription quantitative polymerase chain reaction were used to analyze the characteristics of immune cells and their related molecules. RESULTS Mice with disorders of the circadian clock including chronic social jet lag and circadian clock gene deficiency were susceptible to colitis. Functionally, regulatory B (Breg) cells highly expressing Programmed cell death 1 ligand 1 (PDL1) in intestinal intraepithelial lymphocytes (IELs) helped to alleviate the severity of colitis after DSS treatment and was dysregulated in DSS-treated Bmal1-/- mice. Notably, interleukin 33 in the intestinal microenvironment was key for Bmal1-regulated PDL1+ Breg cells and interleukin 33 was a target of Bmal1 transcriptionally. Dysregulated PDL1+ B cells induced cell death of activated CD4+ T cells in DSS-treated Bmal1-/- mice. Consequently, circadian clock disorder was characterized as decreased numbers of Breg+ PDL1+ cells in IELs and dysfunction of CD4+ T cells promoted colitis-associated colorectal cancer (CRC) in mice. In clinical samples from CRC patients, low expression of Bmal1 gene in paracancerous tissues and center area of tumor was associated closely with a poorer prognosis of CRC patients. CONCLUSIONS Our study uncovers the importance of the circadian clock regulating PDL1+ Breg+ cells of IELs in IBD and IBD-associated CRC.
Collapse
Affiliation(s)
- Jing-Lin Liu
- Department of Pathology, Soochow University Medical School, Suzhou, China
| | - Chu-Yi Wang
- Department of Pathology, Soochow University Medical School, Suzhou, China
| | - Tian-Yu Cheng
- Department of Pathology, Soochow University Medical School, Suzhou, China
| | | | - Cheng Ji
- Department of Pathology, Soochow University Medical School, Suzhou, China
| | - Min Deng
- Department of Pathology, Soochow University Medical School, Suzhou, China
| | - Su Yao
- Department of Pathology, Guangdong General Hospital, Guangzhou, China
| | - Li-Hua Yuan
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yuan-Yuan Zhao
- Department of Pathology, Soochow University Medical School, Suzhou, China
| | - Tong Shen
- Department of Pathology, Soochow University Medical School, Suzhou, China.
| | - Jian-Ming Li
- Department of Pathology, Soochow University Medical School, Suzhou, China; Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
12
|
The circadian clock and inflammation: A new insight. Clin Chim Acta 2020; 512:12-17. [PMID: 33242468 DOI: 10.1016/j.cca.2020.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
The circadian clock is a complex cellular mechanism that controls a series of physiological processes, including inflammation. It can directly interact physically with the components of the key inflammatory pathway. Similarly, inflammation can also lead to circadian rhythm disorders, which may further amplify the inflammatory response and aggravate tissue damage. This review offers a structured overview that focusses on the core proteins of the circadian clock and their interactions with inflammatory players, and provides a potential mechanism for the pathological rhythms observed under inflammatory conditions.
Collapse
|
13
|
Kubo M. Diurnal Rhythmicity Programs of Microbiota and Transcriptional Oscillation of Circadian Regulator, NFIL3. Front Immunol 2020; 11:552188. [PMID: 33013924 PMCID: PMC7511535 DOI: 10.3389/fimmu.2020.552188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
Circadian rhythms are a very exquisite mechanism to influence on transcriptional levels and physiological activities of various molecules that affect cell metabolic pathways. Long-term alteration of circadian rhythms increases the risk of cardiovascular diseases, hypertension, hypertriglyceridemia, and metabolic syndrome. A drastic change in dietary patterns can affect synchronizing the circadian clock within the metabolic system. Therefore, the interaction between the host and the bacterial community colonizing the mammalian gastrointestinal tract has a great impact on the circadian clock in diurnal programs. Here, we propose that the microbiota regulates body composition through the transcriptional oscillation of circadian regulators. The transcriptional regulator, NFIL3 (also called E4BP4) is a good example. Compositional change of the commensal bacteria influences the rhythmic expression of NFIL3 in the epithelium, which subsequently controls obesity and insulin resistance. Therefore, control of circadian regulators would be a promising therapeutic target for metabolic diseases.
Collapse
Affiliation(s)
- Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan.,Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
| |
Collapse
|
14
|
Collins SM. Interrogating the Gut-Brain Axis in the Context of Inflammatory Bowel Disease: A Translational Approach. Inflamm Bowel Dis 2020; 26:493-501. [PMID: 31970390 PMCID: PMC7054772 DOI: 10.1093/ibd/izaa004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Indexed: 12/14/2022]
Abstract
This review examines preclinical and clinical studies relevant to our understanding of how the bidirectional gut-brain axis influences the natural history of inflammatory bowel disease. Preclinical studies provide proof of concept that preexisting behavioral illness, such as depression, results in increased susceptibility to inflammatory stimuli and that commonly used classes of antidepressants protect against this vulnerability. However, clinical studies suggesting behavioral illness as a risk factor for IBD and a protective role for antidepressants have relied primarily on symptom-reporting rather than objective measurements of inflammation. In terms of gut-to-brain signaling, there is emerging evidence from preclinical and clinical observation that intestinal inflammation alters brain functions, including the induction of mood disorders, alteration of circadian rhythm both centrally and peripherally, and changes in appetitive behaviors. Furthermore, preclinical studies suggest that effective treatment of intestinal inflammation improves associated behavioral impairment. Taken together, the findings of this review encourage a holistic approach to the management of patients with IBD, accommodating lifestyle issues that include the avoidance of sleep deprivation, optimized nutrition, and the monitoring and appropriate management of behavioral disorders. The review also acknowledges the need for better-designed clinical studies evaluating the impact of behavioral disorders and their treatments on the natural history of IBD, utilizing hard end points to assess changes in the inflammatory process as opposed to reliance on symptom-based assessments. The findings of the review also encourage a better understanding of changes in brain function and circadian rhythm induced by intestinal inflammation.
Collapse
Affiliation(s)
- Stephen M Collins
- Farncombe Family Digestive Health Research Institute, Department of Medicine, Division of Gastroenterology, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada,Address correspondence to: Stephen M. Collins, MBBS, FRCPC, FRSC, Farncombe Family Digestive Health Research Institute, Faculty of Health Sciences, Room 3N8B, McMaster University Medical Centre, Hamilton, Ontario, CANADA L8N 3Z5. E-mail:
| |
Collapse
|
15
|
Colonic microbiota is associated with inflammation and host epigenomic alterations in inflammatory bowel disease. Nat Commun 2020; 11:1512. [PMID: 32251296 PMCID: PMC7089947 DOI: 10.1038/s41467-020-15342-5] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Studies of inflammatory bowel disease (IBD) have been inconclusive in relating microbiota with distribution of inflammation. We report microbiota, host transcriptomics, epigenomics and genetics from matched inflamed and non-inflamed colonic mucosa [50 Crohn's disease (CD); 80 ulcerative colitis (UC); 31 controls]. Changes in community-wide and within-patient microbiota are linked with inflammation, but we find no evidence for a distinct microbial diagnostic signature, probably due to heterogeneous host-microbe interactions, and show only marginal microbiota associations with habitual diet. Epithelial DNA methylation improves disease classification and is associated with both inflammation and microbiota composition. Microbiota sub-groups are driven by dominant Enterbacteriaceae and Bacteroides species, representative strains of which are pro-inflammatory in vitro, are also associated with immune-related epigenetic markers. In conclusion, inflamed and non-inflamed colonic segments in both CD and UC differ in microbiota composition and epigenetic profiles.
Collapse
|
16
|
Teichman EM, O'Riordan KJ, Gahan CGM, Dinan TG, Cryan JF. When Rhythms Meet the Blues: Circadian Interactions with the Microbiota-Gut-Brain Axis. Cell Metab 2020; 31:448-471. [PMID: 32130879 DOI: 10.1016/j.cmet.2020.02.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/18/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022]
Abstract
The microbiota-gut-brain axis encompasses a bidirectional mode of communication between the microorganisms residing in our gut, and our brain function and behavior. The composition of the gut microbiota is subject to diurnal variation and is entrained by host circadian rhythms. In turn, a diverse microbiota is essential for optimal regulation of host circadian pathways. Disruption of the cyclical nature of this microbe-host interaction profoundly influences disease pathology and severity. This review aims to summarize current knowledge on this bidirectional relationship. Indeed, the past few years have revealed promising data regarding the relationship between the microbiota-gut-brain axis and circadian rhythms and how they act in concert to influence disease, but further research needs to be done to examine how they coalesce to modulate severity of, and risk for, certain diseases. Moreover, there is a need for a greater understanding of the molecular mechanisms underlying the close relationship between circadian-microbiome-brain interactions.
Collapse
Affiliation(s)
| | | | - Cormac G M Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
17
|
Hashimoto A, Uemura R, Sawada A, Nadatani Y, Otani K, Hosomi S, Nagami Y, Tanaka F, Kamata N, Taira K, Yamagami H, Tanigawa T, Watanabe T, Fujiwara Y. Changes in Clock Genes Expression in Esophagus in Rat Reflux Esophagitis. Dig Dis Sci 2019; 64:2132-2139. [PMID: 30815822 DOI: 10.1007/s10620-019-05546-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/19/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Gastroesophageal reflux disease (GERD) is strongly associated with sleep disturbances. Clock genes harmonize circadian rhythms by their periodic expression and regulate several physiological functions. However, the association between clock genes and GERD is still unknown. AIMS We investigated whether reflux esophagitis affects circadian variability of clock genes in the esophagus and other organs using a rat reflux esophagitis model. METHODS Reflux esophagitis was induced in 7-week-old male Wistar rats. Sham-operated rats were used as controls. Rats were killed at 09:00 (light period) and 21:00 (dark period) 3 days (acute phase) and 21 days (chronic phase) after induction of esophagitis. The expression levels of clock gene mRNAs such as Per1, Per2, Per3, Cry1, Cry2, Arntl, and Clock in the esophagus were investigated by qPCR. Arntl expression was examined in stomach, small intestine, colon, and liver tissues. Serum melatonin and IL-6 levels were measured by ELISA. RESULTS Histological examination of reflux esophagitis mainly revealed epithelial defects with marked inflammatory cell infiltration in the acute phase and mucosal thickening with basal cell hyperplasia in the chronic phase. Circadian variability of clock genes, except Cry1, was present in the normal esophagus and was completely disrupted in reflux esophagitis during the acute phase. The circadian variability of Per2, Per3, and Arntl returned to normal, but disruption of Per1, Cry2, and Clock was present in the chronic phase. Disruption of circadian variability of Arntl was observed in the esophagus, as well as in the stomach, small intestine, and liver tissues in reflux esophagitis during the acute phase. There were no significant differences in serum melatonin and IL-6 levels between control and reflux esophagitis animals in both acute and chronic phases. CONCLUSIONS Disruption to circadian variability of clock genes may play a role in the pathogenesis of GERD.
Collapse
Affiliation(s)
- Atsushi Hashimoto
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Risa Uemura
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Akinari Sawada
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yuji Nadatani
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Koji Otani
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Shuhei Hosomi
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yasuaki Nagami
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Fumio Tanaka
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Noriko Kamata
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Koichi Taira
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hirokazu Yamagami
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tetsuya Tanigawa
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Toshio Watanabe
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yasuhiro Fujiwara
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.
| |
Collapse
|
18
|
Helvaci N, Oguz SH, Kabacam S, Karabulut E, Akbiyik F, Alikasifoglu M, Gurlek A. Clock gene PERIOD3 polymorphism is associated with susceptibility to Graves’ disease but not to Hashimoto’s thyroiditis. Chronobiol Int 2019; 36:1343-1350. [DOI: 10.1080/07420528.2019.1642909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nafiye Helvaci
- Department of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| | - Seda Hanife Oguz
- Department of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| | - Serkan Kabacam
- Department of Medical Genetics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Erdem Karabulut
- Department of Biostatistics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Filiz Akbiyik
- Department of Medical Biochemistry, Hacettepe University School of Medicine, Ankara, Turkey
| | - Mehmet Alikasifoglu
- Department of Medical Genetics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Alper Gurlek
- Department of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
19
|
Voigt RM, Forsyth CB, Keshavarzian A. Circadian rhythms: a regulator of gastrointestinal health and dysfunction. Expert Rev Gastroenterol Hepatol 2019; 13:411-424. [PMID: 30874451 PMCID: PMC6533073 DOI: 10.1080/17474124.2019.1595588] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Circadian rhythms regulate much of gastrointestinal physiology including cell proliferation, motility, digestion, absorption, and electrolyte balance. Disruption of circadian rhythms can have adverse consequences including the promotion of and/or exacerbation of a wide variety of gastrointestinal disorders and diseases. Areas covered: In this review, we evaluate some of the many gastrointestinal functions that are regulated by circadian rhythms and how dysregulation of these functions may contribute to disease. This review also discusses some common gastrointestinal disorders that are known to be influenced by circadian rhythms as well as speculation about the mechanisms by which circadian rhythm disruption promotes dysfunction and disease pathogenesis. We discuss how knowledge of circadian rhythms and the advent of chrono-nutrition, chrono-pharmacology, and chrono-therapeutics might influence clinical practice. Expert opinion: As our knowledge of circadian biology increases, it may be possible to incorporate strategies that take advantage of circadian rhythms and chronotherapy to prevent and/or treat disease.
Collapse
Affiliation(s)
- Robin M Voigt
- Rush Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Christopher B Forsyth
- Rush Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Rush Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
20
|
Gombert M, Carrasco-Luna J, Pin-Arboledas G, Codoñer-Franch P. The connection of circadian rhythm to inflammatory bowel disease. Transl Res 2019; 206:107-118. [PMID: 30615844 DOI: 10.1016/j.trsl.2018.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/25/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) comprises a group of chronic, immune system-mediated inflammatory diseases that primarily affect the gastrointestinal tract. The pathogenesis of the intestinal lesions in IBD remains elusive, but the inflammation process could be the result of dysfunction of the innate and adaptive immune systems induced by genetic and environmental factors. In recent years, research has demonstrated a connection between environmental stressors that can influence day-night variations, also called circadian rhythms, and digestive health. In this review, we focus on alterations in the complex interactions between intestinal mucosa, microbial factors, and the immune response in the intestinal milieu. We introduce the mechanisms that establish circadian rhythms and their regulation by the circadian rhythm genes. Evidence of circadian variation in the defense mechanisms of the intestine and its implication in the maintenance of a healthy microbiota are presented. Disruption of the circadian system can increase the activity of the gut immune system and the release of inflammatory factors. The link between chronodisruption or circadian rhythm impairment and IBD demonstrated by experimental and clinical studies illustrates the potential impact of circadian rhythms on treatment of these diseases. Future studies that investigate aspects of this subject are warranted.
Collapse
Affiliation(s)
- Marie Gombert
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain; Department of Biotechnology, University of La Rochelle, La Rochelle, France
| | - Joaquín Carrasco-Luna
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain; Department Experimental Sciences, Catholic University of Valencia, Valencia, Spain
| | - Gonzalo Pin-Arboledas
- Department of Pediatrics, Pediatric Sleep Unit, Hospital Quironsalud, Valencia, Spain
| | - Pilar Codoñer-Franch
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain; Department of Pediatrics, Dr. Peset University Hospital, Valencia, Spain.
| |
Collapse
|
21
|
Codoñer-Franch P, Gombert M. Circadian rhythms in the pathogenesis of gastrointestinal diseases. World J Gastroenterol 2018; 24:4297-4303. [PMID: 30344415 PMCID: PMC6189841 DOI: 10.3748/wjg.v24.i38.4297] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/31/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
The etiology of digestive pathologies such as irritable bowel syndrome (IBS), inflammatory bowel diseases (IBD) and cancer is not yet fully understood. In recent years, several studies have evidenced circadian variations in mechanisms involved in digestive health. In situations of disturbed circadian rhythms (chronodisruption) where the central clock and the peripheral clocks receive incoherent signals, the synchronicity is lost producing implications for health. This lack of coordination could alter the tissue function and cause long term damage to the organs. Life habits such as sleep, physical exercise, social interaction, and feeding times are determinants for stability and integrity of circadian rhythms. In recent years, experimental and clinical studies have consistently evidenced that the alteration of circadian rhythms is associated with the development of digestive pathologies mainly linked to dismotility or changes in microbiota composition. Likewise, it seems reasonable to deep into the importance of chronodisruption as a factor that may participate in the development of pathologies such as IBS, IBD and digestive cancers. Moreover, life habits respecting circadian rhythms should be promoted for the prevention of these diseases. Further studies will allow us a better understanding of the mechanisms acting at molecular level, and the development of new therapeutic targets.
Collapse
Affiliation(s)
- Pilar Codoñer-Franch
- Department of Pediatrics, Obstetrics and Ginecology, University of Valencia, Valencia 46010, Spain
- Department of Pediatrics, Dr. Peset University Hospital, Valencia 46017, Spain
| | - Marie Gombert
- Department of Pediatrics, Obstetrics and Ginecology, University of Valencia, Valencia 46010, Spain
- Department of Biotechnology, University of La Rochelle, La Rochelle 17000, France
| |
Collapse
|
22
|
Chakradeo PS, Keshavarzian A, Singh S, Dera AE, Esteban JPG, Lee AA, Burgess HJ, Fogg L, Swanson GR. Chronotype, social jet lag, sleep debt and food timing in inflammatory bowel disease. Sleep Med 2018; 52:188-195. [PMID: 30243610 DOI: 10.1016/j.sleep.2018.08.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/29/2022]
Abstract
The preference of the sleep/wake cycle can be grouped into categories or chronotypes. Inflammatory bowel disease (IBD) has been linked to poor sleep quality which correlates with disease severity. Social jet lag (SJL) is the difference between sleep timing on work and free days and is a marker for circadian misalignment which has been linked to increased inflammation. We investigated whether chronotype, SJL, sleep debt (SD), and food timing were associated with an IBD specific complications and a lower quality of life. Overall, 191 subjects (115 IBD subjects and 76 healthy controls (HC)) completed the Pittsburgh Sleep Quality Index (PSQI), Morningness-Eveningness Questionnaire (MEQ), Munich ChronoType Questionnaire (MCTQ), Short Inflammatory Bowel Disease Questionnaire (SIBDQ), and a structured Food Timing Questionnaire. Later chronotype (by MEQ) was associated with a worse SIBDQ (r = -0.209; P < 0.05). SJL was increased in IBD at 1.32 h ± 1.03 vs. 1.05 h ± 0.97 in HC, P < 0.05, when adjusted for age. SJL (>2 h) was present in 40% of severe/complicated Crohn's patients (fistulizing or structuring Crohn's or history of Crohn's related surgery) compared to only 16% of uncomplicated Crohn's patients (P < 0.05). Sleep debt was increased in IBD subjects compared to HC at 21.90 m ± 25.37 vs. 11.49 m ± 13.58, P < 0.05. IBD subjects with inconsistent breakfast or dinner times had lower SIBDQ scores (4.78 ± 1.28 vs. 5.49 ± 1.02, P < 0.05; 4.95 ± 0.31 vs. 5.42 ± 0.32, P < 0.05 respectively). In summary, later chronotype, and markers of circadian misalignment (social jet lag, sleep debt, and inconsistent meal timing) were associated with IBD disease specific complications and/or lower quality of life.
Collapse
Affiliation(s)
- Prachi S Chakradeo
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Rush University Medical Center, 1725 W. Harrison, Suite 206, Chicago, IL, 60612, United States.
| | - Ali Keshavarzian
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Rush University Medical Center, 1725 W. Harrison, Suite 206, Chicago, IL, 60612, United States.
| | - Shubha Singh
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Rush University Medical Center, 1725 W. Harrison, Suite 206, Chicago, IL, 60612, United States.
| | - Akram E Dera
- Internal Medicine, Greater Baltimore Medical Center, Towson, MD, United States.
| | | | - Alice A Lee
- Rush University Medical Center, Chicago, IL, 60612, United States.
| | - Helen J Burgess
- Biological Rhythms Research Laboratory, Rush University Medical Center, Chicago, IL, 60612, United States.
| | - Louis Fogg
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Rush University Medical Center, 1725 W. Harrison, Suite 206, Chicago, IL, 60612, United States.
| | - Garth R Swanson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Rush University Medical Center, 1725 W. Harrison, Suite 206, Chicago, IL, 60612, United States.
| |
Collapse
|
23
|
Chrobak AA, Nowakowski J, Zwolińska-Wcisło M, Cibor D, Przybylska-Feluś M, Ochyra K, Rzeźnik M, Dudek A, Arciszewska A, Siwek M, Dudek D. Associations between chronotype, sleep disturbances and seasonality with fatigue and inflammatory bowel disease symptoms. Chronobiol Int 2018; 35:1142-1152. [PMID: 29737879 DOI: 10.1080/07420528.2018.1463236] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Growing number of studies suggests link between circadian rhythms and inflammatory bowel diseases (IBD) manifestation. We hypothesize that: 1) IBD are associated with increased eveningness and sleep disturbances; 2) eveningness and sleep disturbances are related to more severe IBD symptoms. In total, 129 participants were enrolled to this study, divided into three groups: 34 Crohn's disease (CD) patients, 38 ulcerative colitis (UC) patients and 57 healthy controls (HC) group. They all fulfilled a questionnaire, consisting of the Composite Scale of Morningness (CSM), Seasonal Pattern Assessment Questionnaire (SPAQ), Pittsburgh Sleep Quality Index, Inflammatory Bowel Disease Questionnaire (IBDQ) and Multidimensional Fatigue Inventory (MFI). Multiple regression models controlled for age and sex revealed that in CD group higher eveningness measured with CSM was associated with higher general fatigue, physical fatigue, mental fatigue and reduced motivation measured by MFI. Lower CSM morning affect is associated with greater general fatigue, physical fatigue and more reduced activity. Greater seasonality scores are associated with increased physical fatigue and more reduced activity and motivation. Lower sleep quality measured with PSQI is associated with higher physical fatigue and more reduced activity. Correlational analysis revealed that higher seasonality and lower sleep quality are associated with increased systemic and bowel symptoms and decreased emotional and social functions measured with IBDQ. In UC group, eveningness is associated with greater general fatigue, physical fatigue and more reduced activity. Higher CSM morning affect is associated with decreased general fatigue, physical fatigue and less reduced activity. Higher CSM circadian preference scores are associated with decreased general and physical fatigue, and less reduced activity. Increased seasonality is associated with more physical fatigue. Lower sleep quality is associated with greater general and physical fatigue. To our best knowledge this is the first study evaluating associations between chronotype and sleep disturbances with IBD symptoms. We have found that chronotype preferences, whose role in IBD has been until now overlooked, may be one of the important factors contributing to fatigue in this clinical group.
Collapse
Affiliation(s)
- Adrian A Chrobak
- a Department of Psychiatry , Jagiellonian University Medical College , Cracow , Poland
| | - Jarosław Nowakowski
- b Department of Rheumatology and Balneology , Jagiellonian University Medical College , Cracow , Poland
| | - Małgorzata Zwolińska-Wcisło
- c Department of Gastroenterology, Hepatology and Infectious Diseases , Jagiellonian University Medical College , Cracow , Poland
| | - Dorota Cibor
- c Department of Gastroenterology, Hepatology and Infectious Diseases , Jagiellonian University Medical College , Cracow , Poland
| | - Magdalena Przybylska-Feluś
- c Department of Gastroenterology, Hepatology and Infectious Diseases , Jagiellonian University Medical College , Cracow , Poland
| | - Katarzyna Ochyra
- d Faculty of Medicine, Medical College , Jagiellonian University , Cracow , Poland
| | - Monika Rzeźnik
- d Faculty of Medicine, Medical College , Jagiellonian University , Cracow , Poland
| | - Alicja Dudek
- d Faculty of Medicine, Medical College , Jagiellonian University , Cracow , Poland
| | - Aleksandra Arciszewska
- e Department of Affective Disorders, Medical College , Chair of Psychiatry, Jagiellonian University , Cracow , Poland
| | - Marcin Siwek
- e Department of Affective Disorders, Medical College , Chair of Psychiatry, Jagiellonian University , Cracow , Poland
| | - Dominika Dudek
- e Department of Affective Disorders, Medical College , Chair of Psychiatry, Jagiellonian University , Cracow , Poland
| |
Collapse
|
24
|
Abstract
There is increasing evidence that sleep and circadian disruption can worsen the disease course in inflammatory bowel disease (IBD). Sleep and circadian disruption are prevalent in society and are associated with worse outcomes in IBD. Emerging research suggests sleep and circadian disruption can impact key components in IBD disease flares, including intestinal permeability, translocation of bacterial endotoxins, intestinal dysbiosis, and proinflammatory cytokines. Much of this research has been conducted in animal models. There is a clear need for large randomized controlled trials in human patients with IBD, where the potential for chronotherapeutic strategies to improve disease course can be tested.
Collapse
|
25
|
Pagel R, Bär F, Schröder T, Sünderhauf A, Künstner A, Ibrahim SM, Autenrieth SE, Kalies K, König P, Tsang AH, Bettenworth D, Divanovic S, Lehnert H, Fellermann K, Oster H, Derer S, Sina C. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine. FASEB J 2017; 31:4707-4719. [PMID: 28710114 DOI: 10.1096/fj.201700141rr] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022]
Abstract
Endogenous circadian clocks regulate 24-h rhythms of physiology and behavior. Circadian rhythm disruption (CRD) is suggested as a risk factor for inflammatory bowel disease. However, the underlying molecular mechanisms remain unknown. Intestinal biopsies from Per1/2 mutant and wild-type (WT) mice were investigated by electron microscopy, immunohistochemistry, and bromodeoxyuridine pulse-chase experiments. TNF-α was injected intraperitoneally, with or without necrostatin-1, into Per1/2 mice or rhythmic and externally desynchronized WT mice to study intestinal epithelial cell death. Experimental chronic colitis was induced by oral administration of dextran sodium sulfate. In vitro, caspase activity was assayed in Per1/2-specific small interfering RNA-transfected cells. Wee1 was overexpressed to study antiapoptosis and the cell cycle. Genetic ablation of circadian clock function or environmental CRD in mice increased susceptibility to severe intestinal inflammation and epithelial dysregulation, accompanied by excessive necroptotic cell death and a reduced number of secretory epithelial cells. Receptor-interacting serine/threonine-protein kinase (RIP)-3-mediated intestinal necroptosis was linked to increased mitotic cell cycle arrest via Per1/2-controlled Wee1, resulting in increased antiapoptosis via cellular inhibitor of apoptosis-2. Together, our data suggest that circadian rhythm stability is pivotal for the maintenance of mucosal barrier function. CRD increases intestinal necroptosis, thus rendering the gut epithelium more susceptible to inflammatory processes.-Pagel, R., Bär, F., Schröder, T., Sünderhauf, A., Künstner, A., Ibrahim, S. M., Autenrieth, S. E., Kalies, K., König, P., Tsang, A. H., Bettenworth, D., Divanovic, S., Lehnert, H., Fellermann, K., Oster, H., Derer, S., Sina, C. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine.
Collapse
Affiliation(s)
- René Pagel
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Florian Bär
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Torsten Schröder
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany.,Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lubeck, Germany.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Annika Sünderhauf
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lubeck, Germany
| | - Axel Künstner
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Guest Group Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Plon, Germany
| | - Saleh M Ibrahim
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Stella E Autenrieth
- Department of Internal Medicine II, University of Tübingen, Tubingen, Germany
| | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, Lubeck, Germany
| | - Peter König
- Institute of Anatomy, University of Lübeck, Lubeck, Germany
| | - Anthony H Tsang
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Dominik Bettenworth
- Department of Medicine B, University Hospital of Münster, Munster, Germany; and
| | - Senad Divanovic
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hendrik Lehnert
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Klaus Fellermann
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Henrik Oster
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lubeck, Germany
| | - Christian Sina
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany; .,Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lubeck, Germany
| |
Collapse
|
26
|
Alexander M, Burch JB, Steck SE, Chen CF, Hurley TG, Cavicchia P, Shivappa N, Guess J, Zhang H, Youngstedt SD, Creek KE, Lloyd S, Jones K, Hébert JR. Case-control study of candidate gene methylation and adenomatous polyp formation. Int J Colorectal Dis 2017; 32:183-192. [PMID: 27771773 PMCID: PMC5288296 DOI: 10.1007/s00384-016-2688-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/12/2016] [Indexed: 02/04/2023]
Abstract
PURPOSE Colorectal cancer (CRC) is one of the most common and preventable forms of cancer but remains the second leading cause of cancer-related death. Colorectal adenomas are precursor lesions that develop in 70-90 % of CRC cases. Identification of peripheral biomarkers for adenomas would help to enhance screening efforts. This exploratory study examined the methylation status of 20 candidate markers in peripheral blood leukocytes and their association with adenoma formation. METHODS Patients recruited from a local endoscopy clinic provided informed consent and completed an interview to ascertain demographic, lifestyle, and adenoma risk factors. Cases were individuals with a histopathologically confirmed adenoma, and controls included patients with a normal colonoscopy or those with histopathological findings not requiring heightened surveillance (normal biopsy, hyperplastic polyp). Methylation-specific polymerase chain reaction was used to characterize candidate gene promoter methylation. Odds ratios (ORs) and 95 % confidence intervals (95% CIs) were calculated using unconditional multivariable logistic regression to test the hypothesis that candidate gene methylation differed between cases and controls, after adjustment for confounders. RESULTS Complete data were available for 107 participants; 36 % had adenomas (men 40 %, women 31 %). Hypomethylation of the MINT1 locus (OR 5.3, 95% CI 1.0-28.2) and the PER1 (OR 2.9, 95% CI 1.1-7.7) and PER3 (OR 11.6, 95% CI 1.6-78.5) clock gene promoters was more common among adenoma cases. While specificity was moderate to high for the three markers (71-97 %), sensitivity was relatively low (18-45 %). CONCLUSION Follow-up of these epigenetic markers is suggested to further evaluate their utility for adenoma screening or surveillance.
Collapse
Affiliation(s)
- M Alexander
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - J B Burch
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA.
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA.
- William Jennings Bryant Dorn Department of Veterans Affairs Medical Center, Columbia, SC, USA.
| | - S E Steck
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - C-F Chen
- Center for Molecular Studies, Greenwood Genetic Center, Greenwood, SC, USA
| | - T G Hurley
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
| | - P Cavicchia
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
- Division of Community Health Promotion, Florida Department of Health, Tallahassee, FL, USA
| | - N Shivappa
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - J Guess
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - H Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - S D Youngstedt
- College of Nursing and Health Innovation, College of Health Solutions, Arizona State University and Phoenix VA Health Care System, Phoenix, AZ, USA
| | - K E Creek
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - S Lloyd
- South Carolina Medical Endoscopy Center, and Department of Family Medicine, University of South Carolina School of Medicine, Columbia, SC, USA
| | - K Jones
- Center for Molecular Studies, Greenwood Genetic Center, Greenwood, SC, USA
| | - J R Hébert
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
- Department of Family and Preventive Medicine, School of Medicine, University of South Carolin, Columbia, SC, USA
| |
Collapse
|
27
|
Palmieri O, Mazzoccoli G, Bossa F, Maglietta R, Palumbo O, Ancona N, Corritore G, Latiano T, Martino G, Rubino R, Biscaglia G, Scimeca D, Carella M, Annese V, Andriulli A, Latiano A. Systematic analysis of circadian genes using genome-wide cDNA microarrays in the inflammatory bowel disease transcriptome. Chronobiol Int 2016; 32:903-16. [PMID: 26172092 DOI: 10.3109/07420528.2015.1050726] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Simultaneous analysis of the transcripts of thousands of genes by cDNA microarrays allows the identification of genetic regulatory mechanisms involved in disease pathophysiology. The circadian clock circuitry controls essential cell processes and the functioning of organ systems, which are characterized by rhythmic variations with 24-hour periodicity. The derangement of these processes is involved in the basic mechanisms of inflammatory, metabolic, degenerative and neoplastic diseases. We evaluated by genome-wide cDNA microarray analysis the transcriptome of endoscopic mucosal biopsies of patients with inflammatory bowel diseases (IBD) focusing on the expression of circadian genes in Crohn's disease (CD) and ulcerative colitis (UC). Twenty-nine IBD patients (15 with CD and 14 with UC) were enrolled and mucosal biopsies were sampled at either inflamed or adjacent non-inflamed areas of the colon. A total of 150 circadian genes involved in pathways controlling crucial cell processes and tissue functions were investigated. In CD specimens 50 genes were differentially expressed, and 21 genes resulted up-regulated when compared to healthy colonic mucosa. In UC specimens 50 genes were differentially expressed, and 27 genes resulted up-regulated when compared to healthy colonic mucosa. Among the core clock genes ARNTL2 and RORA were up-regulated, while CSNK2B, NPAS2, PER1 and PER3 were down-regulated in CD specimens. Conversely, ARNTL2, CRY1, CSNK1E, RORA and TIPIN were up-regulated, while NR1D2 and PER3 were down-regulated in UC. In conclusion, in CD and UC patients there are differences in the expression of circadian genes between normal and diseased intestinal mucosa. The deregulated genes evidenced by transcriptome analysis in the major IBDs may play a crucial role in the pathophysiological mechanisms and may suggest novel therapeutic approaches.
Collapse
Affiliation(s)
- Orazio Palmieri
- a Department of Medical Sciences , Division of Gastroenterology and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
ALEXANDER MELANNIE, BURCH JAMESB, STECK SUSANE, CHEN CHINFU, HURLEY THOMASG, CAVICCHIA PHILIP, RAY MEREDITH, SHIVAPPA NITIN, GUESS JACLYN, ZHANG HONGMEI, YOUNGSTEDT SHAWND, CREEK KIME, LLOYD STEPHEN, YANG XIAOMING, HÉBERT JAMESR. Case-control study of the PERIOD3 clock gene length polymorphism and colorectal adenoma formation. Oncol Rep 2015; 33:935-41. [PMID: 25501848 PMCID: PMC4306271 DOI: 10.3892/or.2014.3667] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/18/2014] [Indexed: 01/02/2023] Open
Abstract
Clock genes are expressed in a self-perpetuating, circadian pattern in virtually every tissue including the human gastrointestinal tract. They coordinate cellular processes critical for tumor development, including cell proliferation, DNA damage response and apoptosis. Circadian rhythm disturbances have been associated with an increased risk for colon cancer and other cancers. This mechanism has not been elucidated, yet may involve dysregulation of the 'period' (PER) clock genes, which have tumor suppressor properties. A variable number tandem repeat (VNTR) in the PERIOD3 (PER3) gene has been associated with sleep disorders, differences in diurnal hormone secretion, and increased premenopausal breast cancer risk. Susceptibility related to PER3 has not been examined in conjunction with adenomatous polyps. This exploratory case-control study was the first to test the hypothesis that the 5-repeat PER3 VNTR sequence is associated with increased odds of adenoma formation. Information on demographics, medical history, occupation and lifestyle was collected prior to colonoscopy. Cases (n=49) were individuals with at least one histopathologically confirmed adenoma. Controls (n=97) included patients with normal findings or hyperplastic polyps not requiring enhanced surveillance. Unconditional multiple logistic regression was used to calculate odds ratios (ORs) with 95% confidence intervals (CIs), after adjusting for potential confounding. Adenomas were detected in 34% of participants. Cases were more likely to possess the 5-repeat PER3 genotype relative to controls (4/5 OR, 2.1; 95% CI, 0.9-4.8; 5/5 OR, 5.1; 95% CI, 1.4-18.1; 4/5+5/5 OR, 2.5; 95% CI, 1.7-5.4). Examination of the Oncomine microarray database indicated lower PERIOD gene expression in adenomas relative to adjacent normal tissue. Results suggest a need for follow-up in a larger sample.
Collapse
Affiliation(s)
- MELANNIE ALEXANDER
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - JAMES B. BURCH
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
- Dorn Department of Veterans Affairs Medical Center, Columbia, SC, USA
| | - SUSAN E. STECK
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - CHIN-FU CHEN
- Center for Molecular Studies, Greenwood Genetic Center, Greenwood, SC, USA
| | - THOMAS G. HURLEY
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
| | - PHILIP CAVICCHIA
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, FL, USA
| | - MEREDITH RAY
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - NITIN SHIVAPPA
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - JACLYN GUESS
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - HONGMEI ZHANG
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - SHAWN D. YOUNGSTEDT
- College of Nursing and Health Innovation, and College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - KIM E. CREEK
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - STEPHEN LLOYD
- South Carolina Medical Endoscopy Center, and Department of Family Medicine, University of South Carolina School of Medicine, Columbia, SC, USA
| | - XIAOMING YANG
- Medical Chronobiology Laboratory, Dorn Department of Veterans Affairs Medical Center, Columbia, SC, USA
| | - JAMES R. HÉBERT
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
- Department of Family and Preventive Medicine, School of Medicine, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
29
|
Maciukiewicz M, Dmitrzak-Weglarz M, Pawlak J, Leszczynska-Rodziewicz A, Zaremba D, Skibinska M, Hauser J. Analysis of genetic association and epistasis interactions between circadian clock genes and symptom dimensions of bipolar affective disorder. Chronobiol Int 2014; 31:770-8. [PMID: 24673294 DOI: 10.3109/07420528.2014.899244] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bipolar affective disorder (BD) is a severe psychiatric disorder characterized by periodic changes in mood from depression to mania. Disruptions of biological rhythms increase risk of mood disorders. Because clinical representation of disease is heterogeneous, homogenous sets of patients are suggested to use in the association analyses. In our study, we aimed to apply previously computed structure of bipolar disorder symptom dimension for analyses of genetic association. We based quantitative trait on: main depression, sleep disturbances, appetite disturbances, excitement and psychotic dimensions consisted of OPCRIT checklist items. We genotyped 42 polymorphisms from circadian clock genes: PER3, ARNTL, CLOCK and TIMELSSS from 511 patients BD (n = 292 women and n = 219 men). As quantitative trait we used clinical dimensions, described above. Genetic associations between alleles and quantitative trait were performed using applied regression models applied in PLINK. In addition, we used the Kruskal-Wallis test to look for associations between genotypes and quantitative trait. During second stage of our analyses, we used multidimensional scaling (multifactor dimensionality reduction) for quantitative trait to compute pairwise epistatic interactions between circadian gene variants. We found association between ARNTL variant rs11022778 main depression (p = 0.00047) and appetite disturbances (p = 0.004). In epistatic interaction analyses, we observed two locus interactions between sleep disturbances (p = 0.007; rs11824092 of ARNTL and rs11932595 of CLOCK) as well as interactions of subdimension in main depression and ARNTL variants (p = 0.0011; rs3789327, rs10766075) and appetite disturbances in depression and ARNTL polymorphism (p = 7 × 10(-4); rs11022778, rs156243).
Collapse
Affiliation(s)
- Malgorzata Maciukiewicz
- Laboratory of Psychiatric Genetics, Department of Psychiatry, Poznan University of Medical Sciences , Poznan , Poland
| | | | | | | | | | | | | |
Collapse
|
30
|
Lipkova J, Splichal Z, Bienertova-Vasku JA, Jurajda M, Parenica J, Vasku A, Goldbergova MP. Period3VNTR polymorphism influences the time-of-day pain onset of acute myocardial infarction with ST elevation. Chronobiol Int 2014; 31:878-90. [DOI: 10.3109/07420528.2014.921790] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Mazzoccoli G, Vinciguerra M, Papa G, Piepoli A. Circadian clock circuitry in colorectal cancer. World J Gastroenterol 2014; 20:4197-4207. [PMID: 24764658 PMCID: PMC3989956 DOI: 10.3748/wjg.v20.i15.4197] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/18/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is the most prevalent among digestive system cancers. Carcinogenesis relies on disrupted control of cellular processes, such as metabolism, proliferation, DNA damage recognition and repair, and apoptosis. Cell, tissue, organ and body physiology is characterized by periodic fluctuations driven by biological clocks operating through the clock gene machinery. Dysfunction of molecular clockworks and cellular oscillators is involved in tumorigenesis, and altered expression of clock genes has been found in cancer patients. Epidemiological studies have shown that circadian disruption, that is, alteration of bodily temporal organization, is a cancer risk factor, and an increased incidence of colorectal neoplastic disease is reported in shift workers. In this review we describe the involvement of the circadian clock circuitry in colorectal carcinogenesis and the therapeutic strategies addressing temporal deregulation in colorectal cancer.
Collapse
|
32
|
De Cata A, D'Agruma L, Tarquini R, Mazzoccoli G. Rheumatoid arthritis and the biological clock. Expert Rev Clin Immunol 2014; 10:687-95. [PMID: 24684672 DOI: 10.1586/1744666x.2014.899904] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease of unknown cause and a chronic and progressive inflammatory disorder ensuing in genetically predisposed subjects, characterized by synovitis causing joint destruction, as well as inflammation in body organ systems, leading to anatomical alteration and functional disability. Immune competent cells, deregulated synoviocytes and cytokines play a key role in the pathophysiological mechanisms. The immune system function shows time-related variations related to the influence of the neuroendocrine system and driven by the circadian clock circuitry. Immune processes and symptom intensity in RA are characterized by oscillations during the day following a pattern of circadian rhythmicity. A cross-talk between inflammatory and circadian pathways is involved in RA pathogenesis and underlies the mutual actions of disruption of the circadian clock circuitry on immune system function as well as of inflammation on the function of the biological clock. Modulation of molecular processes and humoral factors mediating in RA the interplay between the biological clock and the immune response and underlying the rhythmic fluctuations of pathogenic processes and symptomatology could represent a promising therapeutic strategy in the future.
Collapse
Affiliation(s)
- Angelo De Cata
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | | | | | | |
Collapse
|
33
|
Cermakian N, Lange T, Golombek D, Sarkar D, Nakao A, Shibata S, Mazzoccoli G. Crosstalk between the circadian clock circuitry and the immune system. Chronobiol Int 2013; 30:870-88. [PMID: 23697902 DOI: 10.3109/07420528.2013.782315] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Various features, components, and functions of the immune system present daily variations. Immunocompetent cell counts and cytokine levels present variations according to the time of day and the sleep-wake cycle. Moreover, different immune cell types, such as macrophages, natural killer cells, and lymphocytes, contain a circadian molecular clockwork. The biological clocks intrinsic to immune cells and lymphoid organs, together with inputs from the central pacemaker of the suprachiasmatic nuclei via humoral and neural pathways, regulate the function of cells of the immune system, including their response to signals and their effector functions. Consequences of this include, for example, the daily variation in the response to an immune challenge (e.g., bacterial endotoxin injection) and the circadian control of allergic reactions. The circadian-immune connection is bidirectional, because in addition to this circadian control of immune functions, immune challenges and immune mediators (e.g., cytokines) were shown to have strong effects on circadian rhythms at the molecular, cellular, and behavioral levels. This tight crosstalk between the circadian and immune systems has wide-ranging implications for disease, as shown by the higher incidence of cancer and the exacerbation of autoimmune symptoms upon circadian disruption.
Collapse
Affiliation(s)
- Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Interaction between retinoid acid receptor-related orphan receptor alpha (RORA) and neuropeptide S receptor 1 (NPSR1) in asthma. PLoS One 2013; 8:e60111. [PMID: 23565190 PMCID: PMC3615072 DOI: 10.1371/journal.pone.0060111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/21/2013] [Indexed: 12/31/2022] Open
Abstract
Retinoid acid receptor-related Orphan Receptor Alpha (RORA) was recently identified as a susceptibility gene for asthma in a genome-wide association study. To investigate the impact of RORA on asthma susceptibility, we performed a genetic association study between RORA single nucleotide polymorphisms (SNPs) in the vicinity of the asthma-associated SNP (rs11071559) and asthma-related traits. Because the regulatory region of a previously implicated asthma susceptibility gene, Neuropeptide S receptor 1 (NPSR1), has predicted elements for RORA binding, we hypothesized that RORA may interact biologically and genetically with NPSR1. 37 RORA SNPs and eight NPSR1 SNPs were genotyped in the Swedish birth cohort BAMSE (2033 children) and the European cross-sectional PARSIFAL study (1120 children). Seven RORA SNPs confined into a 49 kb region were significantly associated with physician-diagnosed childhood asthma. The most significant association with rs7164773 (T/C) was driven by the CC genotype in asthma cases (OR = 2.0, 95%CI 1.36-2.93, p = 0.0003 in BAMSE; and 1.61, 1.18-2.19, p = 0.002 in the combined BAMSE-PARSIFAL datasets, respectively), and strikingly, the risk effect was dependent on the Gln344Arg mutation in NPSR1. In cell models, stimulation of NPSR1 activated a pathway including RORA and other circadian clock genes. Over-expression of RORA decreased NPSR1 promoter activity further suggesting a regulatory loop between these genes. In addition, Rora mRNA expression was lower in the lung tissue of Npsr1 deficient mice compared to wildtype littermates during the early hours of the light period. We conclude that RORA SNPs are associated with childhood asthma and show epistasis with NPSR1, and the interaction between RORA and NPSR1 may be of biological relevance. Combinations of common susceptibility alleles and less common functional polymorphisms may modify the joint risk effects on asthma susceptibility.
Collapse
|
35
|
Anderson G, Beischlag TV, Vinciguerra M, Mazzoccoli G. The circadian clock circuitry and the AHR signaling pathway in physiology and pathology. Biochem Pharmacol 2013; 85:1405-16. [PMID: 23438471 DOI: 10.1016/j.bcp.2013.02.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/14/2013] [Accepted: 02/14/2013] [Indexed: 12/14/2022]
Abstract
Life forms populating the Earth must face environmental challenges to assure individual and species survival. The strategies predisposed to maintain organismal homeostasis and grant selective advantage rely on anticipatory phenomena facing periodic modifications, and compensatory phenomena facing unpredictable changes. Biological processes bringing about these responses are respectively driven by the circadian timing system, a complex of biological oscillators entrained to the environmental light/dark cycle, and by regulatory and metabolic networks that precisely direct the body's adjustments to variations of external conditions and internal milieu. A critical role in organismal homeostatic functions is played by the aryl hydrocarbon receptor (AHR) complex, which senses environmental and endogenous compounds, influences metabolic responses controlling phase I/II gene expression, and modulates vital phenomena such as development, inflammation and adaptive immunity. A physiological cross-talk between circadian and AHR signaling pathways has been evidenced. The alteration of AHR signaling pathway deriving from genetic damage with polymorphisms or mutations, or produced by exogenous or endogenous AHR activation, and chronodisruption caused by mismatch between the body's internal clock and geophysical time/social schedules, are capable of triggering pathological mechanisms involved in metabolic, immune-related and neoplastic diseases. On the other hand, the molecular components of the circadian clock circuitry and AHR signaling pathway may represent useful tools for preventive interventions and valuable targets of therapeutic approaches.
Collapse
Affiliation(s)
- George Anderson
- Clinical Research Centre/Communications, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
36
|
Evans JA, Davidson AJ. Health consequences of circadian disruption in humans and animal models. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:283-323. [PMID: 23899601 DOI: 10.1016/b978-0-12-396971-2.00010-5] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Daily rhythms in behavior and physiology are programmed by a hierarchical collection of biological clocks located throughout the brain and body, known as the circadian system. Mounting evidence indicates that disruption of circadian regulation is associated with a wide variety of adverse health consequences, including increased risk for premature death, cancer, metabolic syndrome, cardiovascular dysfunction, immune dysregulation, reproductive problems, mood disorders, and learning deficits. Here we review the evidence for the pervasive effects of circadian disruption in humans and animal models, drawing from both environmental and genetic studies, and identify questions for future research.
Collapse
Affiliation(s)
- Jennifer A Evans
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | | |
Collapse
|