1
|
Richter PR, Strauch SM, Ntefidou M, Schuster M, Daiker V, Nasir A, Haag FWM, Lebert M. Influence of different light-dark cycles on motility and photosynthesis of Euglena gracilis in closed bioreactors. ASTROBIOLOGY 2014; 14:848-858. [PMID: 25279932 PMCID: PMC4201281 DOI: 10.1089/ast.2014.1176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/03/2014] [Indexed: 06/03/2023]
Abstract
Abstract The unicellular photosynthetic freshwater flagellate Euglena gracilis is a promising candidate as an oxygen producer in biological life-support systems. In this study, the capacity of Euglena gracilis to cope with different light regimes was determined. Cultures of Euglena gracilis in closed bioreactors were exposed to different dark-light cycles (40 W/m(2) light intensity on the surface of the 20 L reactor; cool white fluorescent lamps in combination with a 100 W filament bulb): 1 h-1 h, 2 h-2 h, 4 h-4 h, 6 h-6 h, and 8 h-16 h, respectively. Motility and oxygen development in the reactors were measured constantly. It was found that, during exposure to light-dark cycles of 1 h-1 h, 2 h-2 h, 4 h-4 h, and 6 h-6 h, precision of gravitaxis as well as the number of motile cells increased during the dark phase, while velocity increased in the light phase. Oxygen concentration did not yet reach a plateau phase. During dark-light cycles of 8 h-16 h, fast changes of movement behavior in the cells were detected. The cells showed an initial decrease of graviorientation after onset of light and an increase after the start of the dark period. In the course of the light phase, graviorientation increased, while motility and velocity decreased after some hours of illumination. In all light profiles, Euglena gracilis was able to produce sufficient oxygen in the light phase to maintain the oxygen concentration above zero in the subsequent dark phase.
Collapse
Affiliation(s)
- Peter R Richter
- Cell Biology Division, Gravitational Biology, Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Báez-Ruiz A, Cázares-Gómez K, Vázquez-Martínez O, Aguilar-Roblero R, Díaz-Muñoz M. Diurnal and nutritional adjustments of intracellular Ca2+ release channels and Ca2+ ATPases associated with restricted feeding schedules in the rat liver. J Circadian Rhythms 2013; 11:8. [PMID: 23962056 PMCID: PMC3850936 DOI: 10.1186/1740-3391-11-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/07/2013] [Indexed: 01/18/2023] Open
Abstract
Background Intracellular calcium is a biochemical messenger that regulates part of the metabolic adaptations in the daily fed-fast cycle. The aim of this study was to characterize the 24-h variations of the liver ryanodine and IP3 receptors (RyR and IP3R) as well as of the endoplasmic-reticulum and plasma-membrane Ca2+-ATPases (SERCA and PMCA) in daytime restricted feeding protocol. Methods A biochemical and immunohistochemical approach was implemented in this study: specific ligand-binding for RyR and IP3R, enzymatic activity (SERCA and PMCA), and protein levels and zonational hepatic-distribution were determined by immunoblot and immunohistochemistry respectively under conditions of fasting, feeding, and temporal food-restriction. Results Binding assays and immunoblots for IP3R1 and 2 showed a peak at the light/dark transition in the ad-libitum (AL) group, whereas in the restricted-feeding (RF) group the peak shifted towards the food-access time. In the case of RyR binding experiments, both AL and RF groups showed a modest elevation during the dark period, with the RF rats exhibiting increased binding in response to feeding. The AL group showed 24-h rhythmicity in SERCA level; in contrast, RF group showed a pronounced amplitude elevation and a peak phase-shift during the light-period in SERCA level and activity. The activity of PMCA was constant along day in both groups; PMCA1 levels showed a 24-h rhythmicity in the RF rats (with a peak in the light period), meanwhile PMCA4 protein levels showed rhythmicity in both groups. The fasted condition promoted an increase in IP3R binding and protein level; re-feeding increased the amount of RyR; neither the activity nor expression of SERCA and PMCA protein was affected by fasting–re-feeding conditions. Histochemical experiments showed that the distribution of the Ca2+-handling proteins, between periportal and pericentral zones of the liver, varied with the time of day and the feeding protocol. Conclusions Our findings show that RF influences mainly the phase and amplitude of hepatic IP3R and SERCA rhythms as well as discrete zonational distribution for RyR, IP3Rs, SERCA, and PMCA within the liver acinus, suggesting that intracellular calcium dynamics could be part of the rheostatic adaptation of the liver due to diurnal meal entrainment/food entrained oscillator expression.
Collapse
Affiliation(s)
- Adrián Báez-Ruiz
- Departamento de Neurobiología Molecular y Celular, Instituto de Neurobiología, UNAM-Juriquilla, Boulevard Juriquilla #3001, Apdo, Postal 1-1141, Querétaro, QRO 76230, México.
| | | | | | | | | |
Collapse
|
3
|
Driessche TV. Circadian Rhythms in Three Unicellular Organisms. The Pecularities of the Organisms, the Evidence Brought on Rhythms and their Specific Practical Problems. Outline of Recent Hypotheses. BIOL RHYTHM RES 2008. [DOI: 10.1080/09291019409360309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Kippert F. Cellular signalling and the complexity of biological timing: insights from the ultradian clock of Schizosaccharomyces pombe. Philos Trans R Soc Lond B Biol Sci 2001; 356:1725-33. [PMID: 11710979 PMCID: PMC1088548 DOI: 10.1098/rstb.2001.0935] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The molecular bases of circadian clocks are complex and cannot be sufficiently explained by the relatively simple feedback loops, based on transcription and translation, of current models. The existence of additional oscillators has been demonstrated experimentally, but their mechanism(s) have so far resisted elucidation and any universally conserved clock components have yet to be identified. The fission yeast, Schizosaccharomyces pombe, as a simple and well-characterized eukaryote, is a useful model organism in the investigation of many aspects of cell regulation. In fast-growing cells of the yeast an ultradian clock operates, which can serve as a model system to analyse clock complexity. This clock shares strict period homeostasis and efficient entrainment with circadian clocks but, because of its short period of 30 min, mechanisms other than a transcription/translation-based feedback loop must be working. An initial systematic screen involving over 200 deletion mutants has shown that major cellular signalling pathways (calcium/phosphoinositide, mitogen-activated protein kinase and cAMP/protein kinase A) are crucial for the normal functioning of this ultradian clock. A comparative examination of the role of cellular signalling pathways in the S.pombe ultradian clock and in the circadian timekeeping of different eukaryotes may indicate common principles in biological timing processes that are universally conserved amongst eukaryotes.
Collapse
Affiliation(s)
- F Kippert
- Biological Timing Laboratory, Institute of Cell, Animal and Population Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JN, UK.
| |
Collapse
|
5
|
Bult A, Kobylk ME, Van der Zee EA. Differential expression of protein kinase C betaI (PKCbetaI) but not PKCalpha and PKCbetaII in the suprachiasmatic nucleus of selected house mouse lines, and the relationship to arginine-vasopressin. Brain Res 2001; 914:123-33. [PMID: 11578605 DOI: 10.1016/s0006-8993(01)02821-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The functional significance of the suprachiasmatic nucleus (SCN) in circadian rhythm control of mammals has been well documented. The role of protein phosphorylation mediated by protein kinase C (PKC), however, is not well known. We report the immunocytochemical localization of three Ca(2+)-dependent PKC isoforms (alpha, betaI, betaII) within the SCN of selected house mouse lines that differ in behavioral circadian rhythm parameters. Optical density measurements revealed that the adult mice selected for low levels of nest-building behavior (small nest-builders) had more than threefold higher PKCbetaI immunostaining in the SCN than the mice selected for high levels of nest-building behavior (big nest-builders). A similar twofold difference between the adult small and big nest-builders was observed for the number of PKCbetaI-containing cells in the SCN. The non-selected control lines were intermediate. Ten-day-old pups revealed similar differences in PKCbetaI immunostaining in the SCN between the small and big nest-builders. PKCalpha and PKCbetaII immunostaining in the SCN was not different among the lines. PKCbetaI immunostaining was not different among the selected lines in the lateroanterior hypothalamic nucleus (LA) and the cornu ammonis field 1 (CA1) of the dorsal hippocampus and confirms the specificity of the difference in PKCbetaI immunostaining in the SCN among the selected lines. The significance of these findings is discussed in the context of differences among the lines in arginine-vasopressin (AVP) and light-induced Fos expression in the SCN, behavioral phase-delay responses to 15-min light pulses in constant darkness, and measures of the strength of the circadian activity rhythm expressed.
Collapse
Affiliation(s)
- A Bult
- Alaskan Basic Neuroscience Program, Institute of Arctic Biology, University of Alaska Fairbanks, P.O. Box 757000, Fairbanks, AK 99775-7000, USA.
| | | | | |
Collapse
|
6
|
Marshall ST, Fa'anunu AI, Bult A. Calretinin is not a marker for subdivisions within the suprachiasmatic nucleus. Brain Res 2000; 854:216-9. [PMID: 10784124 DOI: 10.1016/s0006-8993(99)02263-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In this study, we report the immunocytochemical localization of the calcium-binding protein calretinin (CAL) in the suprachiasmatic nuclei (SCN) of male and female rodents including rats, mice, golden hamsters, and Arvicanthis niloticus. The results revealed that CAL is present in different subdivisions of the SCN in the different species studied and CAL can, therefore, not be considered a marker for particular subdivisions within the SCN. No differences were found between males and females.
Collapse
Affiliation(s)
- S T Marshall
- Biology Department, Middlebury College, VT 05753, USA
| | | | | |
Collapse
|
7
|
Bult A, Smale L. Distribution of Ca2+-dependent protein kinase C isoforms in the suprachiasmatic nucleus of the diurnal murid rodent, Arvicanthis niloticus. Brain Res 1999; 816:190-9. [PMID: 9878732 DOI: 10.1016/s0006-8993(98)01176-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The suprachiasmatic nuclei (SCN) contain the major 'biological clock' in mammals that controls most circadian rhythms expressed by these animals. The functional importance of protein phosphorylation and intracellular Ca2+ in the mammalian circadian pacemaker is becoming increasingly apparent. Here we report the immunocytochemical localization of the four Ca2+-dependent protein kinase C (PKC) isoforms (alpha, betaI, betaII, gamma) within the SCN of the diurnal murid rodent, Arvicanthis niloticus, and the nocturnal golden hamster. In the SCN of A. niloticus, PKCalpha was the most abundant of the four isoforms. Cells containing PKCalpha were homogeneously distributed throughout the SCN. PKCbetaI cells were sparsely distributed in the perimeter of the SCN and were absent in its central area. PKCbetaII and -gamma were not found in the SCN of A. niloticus. In the SCN of the golden hamster, PKCalpha cells were most heavily concentrated in the dorsomedial region, though some were also present laterally and ventrally. The distribution of arginine-vasopressin (AVP) cells in the SCN overlapped with that of PKC in both species. Species differences in the location of the Ca2+-dependent PKC isoforms suggest differences in function such as the relaying of photic or non-photic information to the clock mechanism, or the synchronization of AVP neurons and their subsequent output signals.
Collapse
Affiliation(s)
- A Bult
- Psychology Department and Neuroscience Program, Michigan State University, East Lansing, MI 48824,
| | | |
Collapse
|
8
|
Cagampang FR, Antoni FA, Smith SM, Piggins HD, Coen CW. Circadian changes of type II adenylyl cyclase mRNA in the rat suprachiasmatic nuclei. Brain Res 1998; 810:279-82. [PMID: 9813369 DOI: 10.1016/s0006-8993(98)00934-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Circadian functions of the suprachiasmatic nuclei (SCN) are influenced by cyclic AMP (cAMP). Adenylyl cyclase type II (AC-II) is a cAMP-generating enzyme which, in the context of activation by Gsalpha, is further stimulated by protein kinase C or G protein betagamma subunits. Using in situ hybridization we have found a biphasic variation in AC-II mRNA within the rat SCN during the light-dark cycle (peaks at Zeitgeber time 6 and 18) and also in constant darkness (peaks at circadian time 2 and 14). The cingulate cortex showed no such variation. These findings suggest that circadian changes in AC-II expression may be pertinent to the rhythmic functions of the SCN.
Collapse
Affiliation(s)
- F R Cagampang
- Anatomy and Human Biology, Division of Biomedical Sciences, King's College London, London, WC2R 2LS, UK
| | | | | | | | | |
Collapse
|
9
|
Abstract
The existence of circadian oscillations in the level of hormones, in numerous physiological parameters, in toxicity and in behavior is now fully recognized in all living organisms. In contrast, the synchronisation and regulation of cell proliferation by circadian rhythms in vivo is only starting to be appreciated. This article reviews the experimental evidence for circadian synchronisation of cell division in different mammalian tissues (mainly the gastro-intestinal tract and hemapoietic system), including tumoral tissues. The possible causes of this coupling of the cell cycle phases to the circadian rhythm are discussed. Testing of novel antitumour agents using murine models should take into consideration the temporal difference between murine and human circadian control of proliferation (the peak of DNA synthesis occurs during the activity period, i.e. during daytime in man, and at night-time in mice and rats). Experimental and clinical data clearly support the important implications of the circadian control of the cell cycle in the optimisation of cancer chemotherapy, both for reducing toxicity and increasing the antitumour effects.
Collapse
Affiliation(s)
- R Smaaland
- Department of Oncology, Haukeland Hospital, University of Bergen, Norway
| |
Collapse
|
10
|
Reuss S, Rimoldi S. Circadian rhythm and effects of light on cAMP content of the dwarf hamster suprachiasmatic nucleus. Neurosci Lett 1998; 241:131-4. [PMID: 9507938 DOI: 10.1016/s0304-3940(98)00013-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study was conducted in the dwarf hamster (Phodopus sungorus) to investigate whether a circadian rhythm is present in the content of the second messenger cyclic adenosine 3',5'-monophosphate (cAMP) in the suprachiasmatic nucleus (SCN), the endogenous clock in mammals. In animals held under light/dark conditions (LD), we observed high levels at the end of the light phase and low levels during the night in frozen SCN punches. In animals held in continuous dark, a similar rhythm was seen although a second peak was present in the subjective day. In senile hamsters under LD, the decrease of cAMP levels at the light transition was not seen. These data, obtained for the first time from hamsters, support the view that cAMP is involved in time-keeping mechanisms within the SCN.
Collapse
Affiliation(s)
- S Reuss
- Department of Anatomy, School of Medicine, Johannes Gutenberg-University, Mainz, Germany.
| | | |
Collapse
|
11
|
Abstract
The time structure of a biological system is at least as intricate as its spatial structure. Whereas we have detailed information about the latter, our understanding of the former is still rudimentary. As techniques for monitoring intracellular processes continuously in single cells become more refined, it becomes increasingly evident that periodic behaviour abounds in all time domains. Circadian timekeeping dominates in natural environments. Here the free-running period is about 24 h. Circadian rhythms in eukaryotes and prokaryotes allow predictive matching of intracellular states with environmental changes during the daily cycles. Unicellular organisms provide excellent systems for the study of these phenomena, which pervade all higher life forms. Intracellular timekeeping is essential. The presence of a temperature-compensated oscillator provides such a timer. The coupled outputs (epigenetic oscillations) of this ultradian clock constitute a special class of ultradian rhythm. These are undamped and endogenously driven by a device which shows biochemical properties characteristic of transcriptional and translational elements. Energy-yielding processes, protein turnover, motility and the timing of the cell-division cycle processes are all controlled by the ultradian clock. Different periods characterize different species, and this indicates a genetic determinant. Periods range from 30 min to 4 h. Mechanisms of clock control are being elucidated; it is becoming evident that many different control circuits can provide these functions.
Collapse
Affiliation(s)
- D Lloyd
- Microbiology Group (PABIO), University of Wales Cardiff, UK
| |
Collapse
|
12
|
Edmunds LN. Clocks, cell cycles, cancer, and aging. Role of the adenylate cyclase-cyclic AMP-phosphodiesterase axis in signal transduction between circadian oscillator and cell division cycle. Ann N Y Acad Sci 1994; 719:77-96. [PMID: 8010627 DOI: 10.1111/j.1749-6632.1994.tb56821.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- L N Edmunds
- Division of Biological Sciences, State University of New York at Stony Brook 11794
| |
Collapse
|
13
|
Chapter 29. Adenylate Cyclase Subtypes as Molecular Drug Targets. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1994. [DOI: 10.1016/s0065-7743(08)60742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
14
|
Tong J, Edmunds LN. Role of cyclic GMP in the mediation of circadian rhythmicity of the adenylate cyclase-cyclic AMP-phosphodiesterase system in Euglena. Biochem Pharmacol 1993; 45:2087-91. [PMID: 8390260 DOI: 10.1016/0006-2952(93)90020-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cyclic AMP (cAMP) and cyclic GMP (cGMP) are two second messengers that have been proposed to act as a dualistic system in biological regulation. To determine if cGMP plays a role in the mediation of circadian rhythmicity of the adenylate cyclase (AC)-cAMP-phosphodiesterase (PDE) system in the achlorophyllous ZC mutant of the unicellular flagellate Euglena, the levels of cAMP and cGMP were monitored in synchronized cell populations, and the effects of the cGMP analog 8-bromo-cGMP (8-Br-cGMP) and the cGMP inhibitor 6-anilinoquinoline-5,8-quinone (LY 83583) on the activity of AC and PDE, as well as on the level of cAMP, were measured in vivo. A bimodal, 24-hr rhythm of cGMP content was found in both dividing and nondividing cultures in either a 12-hr:12-hr light-dark cycle or constant darkness. The peaks and troughs of the cGMP rhythm occurred 2 hr in advance of those of the cAMP rhythm that has been reported previously. The addition of 8-Br-cGMP at different circadian times increased the cAMP level in vivo by two to five times, whereas LY 83583 reduced the amplitude of the cAMP rhythm so that it disappeared. The effects of 8-Br-cGMP on the activity of AC and PDE were circadian phase-dependent and consistent with the changes in cAMP content. These findings suggest that cGMP may serve as an upstream effector that mediates the cAMP oscillation by regulation of the AC-cAMP-PDE system.
Collapse
Affiliation(s)
- J Tong
- Department of Anatomical Sciences, State University of New York, Stony Brook 11794
| | | |
Collapse
|