1
|
Fortin W, Bouchet M, Therasse E, Maire M, Héon H, Ajji A, Soulez G, Lerouge S. Negative In Vivo Results Despite Promising In Vitro Data With a Coated Compliant Electrospun Polyurethane Vascular Graft. J Surg Res 2022; 279:491-504. [PMID: 35842974 DOI: 10.1016/j.jss.2022.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 11/15/2022]
Abstract
INTRODUCTION There is a growing need for small-diameter (<6 mm) off-the-shelf synthetic vascular conduits for different surgical bypass procedures, with actual synthetic conduits showing unacceptable thrombosis rates. The goal of this study was to build vascular grafts with better compliance than standard synthetic conduits and with an inner layer stimulating endothelialization while remaining antithrombogenic. METHODS Tubular vascular conduits made of a scaffold of polyurethane/polycaprolactone combined with a bioactive coating based on chondroitin sulfate (CS) were created using electrospinning and plasma polymerization. In vitro testing followed by a comparative in vivo trial in a sheep model as bilateral carotid bypasses was performed to assess the conduits' performance compared to the actual standard. RESULTS In vitro, the novel small-diameter (5 mm) electrospun vascular grafts coated with chondroitin sulfate (CS) showed 10 times more compliance compared to commercial expanded polytetrafluoroethylene (ePTFE) conduits while maintaining adequate suturability, burst pressure profiles, and structural stability over time. The subsequent in vivo trial was terminated after electrospun vascular grafts coated with CS showed to be inferior compared to their expanded polytetrafluoroethylene counterparts. CONCLUSIONS The inability of the experimental conduits to perform well in vivo despite promising in vitro results may be related to the low porosity of the grafts and the lack of rapid endothelialization despite the presence of the CS coating. Further research is warranted to explore ways to improve electrospun polyurethane/polycaprolactone scaffold in order to make it prone to transmural endothelialization while being resistant to strenuous conditions.
Collapse
Affiliation(s)
- William Fortin
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Department of Surgery, Hopital du Sacré-Coeur de Montreal, Montreal, Quebec, Canada
| | - Mélusine Bouchet
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Department of Mechanical Engineering, École de technologie supérieure (ÉTS), Montreal, Quebec, Canada; CREPEC, Department of Chemical Engineering, École Polytechnique de Montréal, Montreal, Quebec, Canada
| | - Eric Therasse
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Quebec, Canada; Department of Radiology, Radiation Oncology and Nuclear Medicine, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Marion Maire
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Department of Mechanical Engineering, École de technologie supérieure (ÉTS), Montreal, Quebec, Canada
| | - Hélène Héon
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Abdellah Ajji
- CREPEC, Department of Chemical Engineering, École Polytechnique de Montréal, Montreal, Quebec, Canada; Institute of Biomedical Engineering, École Polytechnique de Montréal, Montreal, Quebec, Canada
| | - Gilles Soulez
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Department of Radiology, Centre Hospitalier de l'Université de Montréal (CHUM), Quebec, Canada; Department of Radiology, Radiation Oncology and Nuclear Medicine, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Sophie Lerouge
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Department of Mechanical Engineering, École de technologie supérieure (ÉTS), Montreal, Quebec, Canada; Department of Radiology, Radiation Oncology and Nuclear Medicine, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Neves KB, Montezano AC, Lang NN, Touyz RM. Vascular toxicity associated with anti-angiogenic drugs. Clin Sci (Lond) 2020; 134:2503-2520. [PMID: 32990313 DOI: 10.1042/cs20200308] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Over the past two decades, the treatment of cancer has been revolutionised by the highly successful introduction of novel molecular targeted therapies and immunotherapies, including small-molecule kinase inhibitors and monoclonal antibodies that target angiogenesis by inhibiting vascular endothelial growth factor (VEGF) signaling pathways. Despite their anti-angiogenic and anti-cancer benefits, the use of VEGF inhibitors (VEGFi) and other tyrosine kinase inhibitors (TKIs) has been hampered by potent vascular toxicities especially hypertension and thromboembolism. Molecular processes underlying VEGFi-induced vascular toxicities still remain unclear but inhibition of endothelial NO synthase (eNOS), reduced nitric oxide (NO) production, oxidative stress, activation of the endothelin system, and rarefaction have been implicated. However, the pathophysiological mechanisms still remain elusive and there is an urgent need to better understand exactly how anti-angiogenic drugs cause hypertension and other cardiovascular diseases (CVDs). This is especially important because VEGFi are increasingly being used in combination with other anti-cancer dugs, such as immunotherapies (immune checkpoint inhibitors (ICIs)), other TKIs, drugs that inhibit epigenetic processes (histone deacetylase (HDAC) inhibitor) and poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors, which may themselves induce cardiovascular injury. Here, we discuss vascular toxicities associated with TKIs, especially VEGFi, and provide an up-to-date overview on molecular mechanisms underlying VEGFi-induced vascular toxicity and cardiovascular sequelae. We also review the vascular effects of VEGFi when used in combination with other modern anti-cancer drugs.
Collapse
Affiliation(s)
- Karla B Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
| | - Ninian N Lang
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
| |
Collapse
|
3
|
VEGF non-angiogenic functions in adult organ homeostasis: therapeutic implications. J Mol Med (Berl) 2011; 89:635-45. [DOI: 10.1007/s00109-011-0739-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/19/2011] [Accepted: 02/14/2011] [Indexed: 12/21/2022]
|
4
|
Van Ijzendoorn SC, Heemskerk JW, Reutelingsperger CP. Interactions between Endothelial Cells and Blood Platelets. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10623329509053385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
5
|
Rösen P, Schwippert B, Kaufmann L, Tschöpe D. Expression of Adhesion Molecules on the Surface of Activated Platelets is Diminished by PGI2-analogues and an NO (EDRF)-Donor: A Comparison Between Platelets of Healthy and Diabetic Subjects. Platelets 2009; 5:45-52. [DOI: 10.3109/09537109409006040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Mitchell JA, Ali F, Bailey L, Moreno L, Harrington LS. Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp Physiol 2007; 93:141-7. [DOI: 10.1113/expphysiol.2007.038588] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
7
|
Chast F. John R. Vane, « pharmacologue de l’endothélium vasculaire », 1927–2004. ANNALES PHARMACEUTIQUES FRANÇAISES 2006; 64:416-24. [PMID: 17119472 DOI: 10.1016/s0003-4509(06)75338-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The work of John Vane greatly contributed to the use of aspirin in cardiology. The impact of aspirin administration at low dose for the prevention of stroke or coronary attack results from its effect on enzymes regulating the production of prostaglandins. After understanding the mechanism of interaction between aspirin and the vascular endothelium, Vane proposed assigning a major physiological function to the vascular endothelium which then became a pharmacological target for new drugs. Using an ingenious "real time" biological assay of bloodstream hormones irrigating an isolated organ called the "blood-bathed organ cascade", John Vane developed a system for highly sensitive monitoring of several mediators like angiotensin, bradykinin and prostaglandins and discovered prostacyclin, a potent platelet aggregation inhibitor. Vane explained anti-inflammatory drugs effects (among which aspirin remains the leader) through their activity on cyclo-oxygenase and inhibition of prostacyclin and thromboxane production. Another cyclooxygenase isoform, so-called type 2, has been discovered in 1991. Thus, besides the constitutive COX-1, participating to stomach protection and renal artery vasodilatation, a COX-2 enzyme is existing, induced by inflammatory phenomenons and cytokines stimulation, allowing to design specific inhibitors "coxibs", playing an increasing but controversial role in the struggle against inflammation. He won Albert Lasker Prize in 1977 and Nobel Prize in medicine and physiology (shared with Sune Bergström and Bengt I. Samuelson) in 1982.
Collapse
Affiliation(s)
- F Chast
- Service de Pharmacologie-Toxicologie de l'Hôtel-Dieu, 1, Place du Parvis Notre-Dame, F 75181 Paris Cedex 04, France.
| |
Collapse
|
8
|
Cameron NE, Cotter MA. Effects of protein kinase Cbeta inhibition on neurovascular dysfunction in diabetic rats: interaction with oxidative stress and essential fatty acid dysmetabolism. Diabetes Metab Res Rev 2002; 18:315-23. [PMID: 12203947 DOI: 10.1002/dmrr.307] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Elevated protein kinase C (PKC) activity is thought to play a substantial role in the aetiology of diabetic microvascular complications, the PKCbeta isoform being identified as particularly important. Neuropathy has a vascular component; therefore, one aim was to assess whether the PKCbeta inhibitor, LY333531, could correct nerve conduction velocity (NCV) and perfusion deficits in diabetic rats. Neurovascular dysfunction also depends on oxidant stress and impaired omega-6 essential fatty acid metabolism; correctable by antioxidant and gamma-linolenic acid (GLA) treatments, respectively. A second aim was to assess whether there were interactions between these mechanisms and PKCbeta-mediated effects. METHODS Diabetes was induced by streptozotocin; duration was 8 weeks. NCV was monitored and blood flow was assessed by hydrogen clearance microelectrode polarography. RESULTS Diabetes caused 19.7% and 13.9% reductions in sciatic motor and saphenous sensory NCV, respectively. Two weeks of LY333531 treatment dose-dependently corrected these deficits. A dose of 10 mg kg(-1) day(-1) gave non-diabetic NCV values and also completely corrected a 50% diabetic reduction in sciatic endoneurial blood flow. Low-dose (0.25 mg kg(-1) day(-1)) LY333531 had modest effects ( approximately 20% correction) on NCV and sciatic perfusion. However, when combined with equi-effective doses of the antioxidants vitamin E or alpha-lipoic acid, or GLA, motor and sensory NCV and sciatic nerve perfusion were in the non-diabetic range. The joint effect was equivalent to that of the 10 mg kg(-1) day(-1) LY333531 dose, demonstrating synergism between PKCbeta, oxidative stress and essential fatty acid mechanisms. CONCLUSIONS LY333531, alone or combined with antioxidants or GLA, could form the basis for therapeutic intervention in neuropathy, which requires assessment in clinical trials.
Collapse
Affiliation(s)
- Norman E Cameron
- Department of Biomedical Sciences, University of Aberdeen, Scotland, UK.
| | | |
Collapse
|
9
|
Cameron NE, Cotter MA. Interaction between oxidative stress and gamma-linolenic acid in impaired neurovascular function of diabetic rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:E471-6. [PMID: 8843740 DOI: 10.1152/ajpendo.1996.271.3.e471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nerve conduction and perfusion deficits in diabetic rats depend on increased oxidative stress and impaired n-6 essential fatty acid metabolism, which are corrected by free radical scavenger and gamma-linolenic acid (GLA)-rich oil treatments, respectively. We investigated the interaction between these mechanisms on conduction velocity and endoneurial blood flow by use of low-dose antioxidant (BM15.0639) and GLA treatments, alone and in combination. After 8 wk of streptozotocin-induced diabetes, sciatic motor conduction velocity was 20.9% reduced. Treatment with GLA or BM15.0639 for the final 2 wk corrected this deficit by 18.5 and 20.0%, respectively; however, joint treatment caused 71.5% improvement, corresponding to a 7.5-fold amplification of individual drug effects. A 48.3% deficit in sciatic nutritive endoneurial blood flow was corrected by 34.8 and 24.8% with GLA and BM15.0639 treatments, respectively. With joint treatment, the flow improvement of 72.5% was greater than expected from individual drug effects, indicating a facilitatory interaction. Thus the synergistic effect of combined antioxidant and n-6 essential fatty acid treatment could potentially provide increased therapeutic power against diabetic neuropathy.
Collapse
Affiliation(s)
- N E Cameron
- Department of Biomedical Sciences, University of Aberdeen, Scotland, United Kingdom
| | | |
Collapse
|
10
|
Yang BC, Lippton H, Gumusel B, Hyman A, Mehta JL. Adrenomedullin dilates rat pulmonary artery rings during hypoxia: role of nitric oxide and vasodilator prostaglandins. J Cardiovasc Pharmacol 1996; 28:458-62. [PMID: 8877594 DOI: 10.1097/00005344-199609000-00016] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hypoxia decreases vasorelaxation and leads to pulmonary arterial hypertension. A newly identified 52 amino-acid peptide adrenomedullin (ADM) exerts vasodilator effect in intact animals under normoxic condition. We studied the effect of human ADM on rat pulmonary arterial and aortic rings under normoxic and hypoxic conditions. During normoxia, ADM caused a concentration-dependent relaxation of precontracted aortic and pulmonary arterial rings; the relaxation was much more pronounced in pulmonary arterial rings and was abolished by the nitric oxide (NO) synthesis inhibitor N omega-nitro-L-arginine methyl ester (L-NAME) and by deendothelialization. A fragment of ADM, ADM13-52, caused a degree of relaxation similar to that induced by ADM in pulmonary arterial rings, but not in the aortic rings, and the relaxation of pulmonary artery caused by ADM13-52 was not affected by the cyclooxygenase inhibitor indomethacin but was abolished by L-NAME and by deendothelialization. During hypoxia, ADM13-52 failed to relax pulmonary arterial rings, whereas ADM caused modest relaxation of pulmonary arterial rings (one third of the relaxation during normoxia), which was abolished by pretreatment with indomethacin. Our results indicate that the vasorelaxant effect of ADM is more pronounced in pulmonary artery than in the aorta; ADM has more potent vasodilator effect than ADM13-52 during hypoxia; ADM relaxes hypoxic pulmonary artery through an indomethacin-sensitive pathway; amino acids 1-12 in ADM must be present for relaxation of chronic hypoxic pulmonary arterial rings; and last, the presence of endothelium is necessary for the expression of ADM-mediated relaxation.
Collapse
Affiliation(s)
- B C Yang
- Department of Medicine, University of Florida College of Medicine, Gainesville, USA
| | | | | | | | | |
Collapse
|
11
|
Cameron NE, Cotter MA, Hohman TC. Interactions between essential fatty acid, prostanoid, polyol pathway and nitric oxide mechanisms in the neurovascular deficit of diabetic rats. Diabetologia 1996; 39:172-82. [PMID: 8635669 DOI: 10.1007/bf00403960] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Impaired omega-6 essential fatty acid metabolism and exaggerated polyol pathway flux contribute to the neurovascular abnormalities in streptozotocin-diabetic rats. The potential interactions between these mechanisms were examined by comparing the effects of threshold doses of aldose reductase inhibitors and evening primrose oil, alone and in combination, on neurovascular deficits. In addition, high-dose aldose reductase inhibitor and evening primrose oil treatment effects were challenged by co-treatment with the cyclo-oxygenase inhibitor, flurbiprofen, or the nitric oxide synthase inhibitor, NG-nitro-L-arginine. Eight weeks of diabetes caused an 18.9% reduction in sciatic motor conduction velocity (p < 0.001). This was only modestly ameliorated by a 0.1% dietary supplement of evening primrose oil or the aldose reductase inhibitors ZD5522 (0.25 mg.kg-1.day-1 and WAY121 509 (0.2 mg.kg-1.day-1 for the final 2 weeks. However, joint treatment with primrose oil and ZD5522 or WAY121 509 caused marked 71.5 and 82.4% corrections, respectively, of the conduction deficit. Sciatic nutritive blood flow was 43.1% reduced by diabetes (p < 0.001) and this was corrected by 67.8% with joint ZD5522 and primrose oil treatment (p < 0.001). High-dose WAY121 509 (10 mg. kg-1.day-1 and primrose oil (10% dietary supplement) prevented sciatic conduction velocity and nutritive blood flow deficits in 1-month diabetic rats (p < 0.001). However, these effects were abolished by flurbiprofen (5 mg.kg(-1).day-1 and NG-nitro-L-arginine (10 mg.kg-1.day-1) co-treatment (p < 0.001). Thus, the data provide evidence for synergistic interactions between polyol pathway/nitric oxide and essential fatty acid/cyclo-oxygenase systems in the control of neurovascular function in diabetic rats, from which a potential therapeutic advantage could be derived.
Collapse
Affiliation(s)
- N E Cameron
- Department of Biomedical Sciences, University of Aberdeen, Scotland, UK
| | | | | |
Collapse
|
12
|
Pettersson KS, Ostlund-Lindqvist AM, Westerlund C. The potential of antioxidants to prevent atherosclerosis development and its clinical manifestations. EXS 1996; 76:21-31. [PMID: 8805786 DOI: 10.1007/978-3-0348-8988-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- K S Pettersson
- Department of Pharmacology CV, Astra Hässle, Mölndal, Sweden
| | | | | |
Collapse
|
13
|
Kuzu A, Alaçayir I, Köksoy C, Yazar O, Kuterdem E. The endothelium-derived relaxing factor-mediated acetylcholine response of the arterial perfusion pressure after cold storage of the isolated rabbit kidney. Transpl Int 1995; 8:226-8. [PMID: 7626184 DOI: 10.1007/bf00336542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The vasodilatation induced by acetylcholine (ACh) in a rabbit isolated perfused kidney was abolished when the tissue was exposed to cold ischemia for 72 h in Euro-Collins (EC) solution. This vasodilatation is due to the release of endothelium-derived relaxing factor (EDRF) from renal vasculature as evidenced by the attenuation following methylene blue pretreatment. When kidneys were preserved in EC solution containing UK 38485, a thromboxane synthase inhibitor, or nicardipine, a calcium channel blocker, ACh-induced vasodilatation persisted after 72 h of cold ischemia. These results were taken as evidence of tissue protective activity of UK 38485 and nicardipine and have promising implications for cadaveric kidney transplantation.
Collapse
Affiliation(s)
- A Kuzu
- Department of Surgery, University of Ankara, Turkey
| | | | | | | | | |
Collapse
|
14
|
Kuzu A, Alaçayir Î, Köksoy C, Yazar Ö, Kuterdem E. The endothelium-derived relaxing factor mediated acetylcholine response of the arterial perfusion pressure after cold storage of the isolated rabbit kidney. Transpl Int 1995. [DOI: 10.1111/j.1432-2277.1995.tb01508.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Rikimaru T, Nakamura M, Yano T, Beck G, Habicht GS, Rennie LL, Widra M, Hirshman CA, Boulay MG, Spannhake EW. Mediators, initiating the inflammatory response, released in organ culture by full-thickness human skin explants exposed to the irritant, sulfur mustard. J Invest Dermatol 1991; 96:888-97. [PMID: 1710639 DOI: 10.1111/1523-1747.ep12475292] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mediators released from injured human skin that initiate the inflammatory response have not been adequately identified. Organ culture of full-thickness skin explants enables us to do so, because injury to the skin can be made in vitro, eliminating the rapid leakage of serum and infiltration of leukocytes that occur in vivo. In our studies, the military vesicant sulfur mustard (SM) (10 microliters of a 0.01 to 1.0% dilution) was topically applied to injure the epidermis of the explant. Then, the explants were cultured in small Petri dishes, usually for 18 h at 36 degrees C, and the organ-culture fluids were assayed for various inflammatory mediators. We found that the culture fluids from SM-exposed and control explants contained similar amounts of angiotensin-converting enzyme, trypsin-like and chymotrypsin-like proteases, acid phosphatase, beta-glucuronidase, beta-galactosidase, lysozyme, deoxyribonuclease, ribonuclease, interleukin 1, and lactic dehydrogenase. However, the culture fluids from SM-exposed explants contained increased amounts of histamine and plasminogen-activating activity, and often prostaglandin E2, when compared to culture fluids from control explants. After 3 to 4 d in culture, full-thickness human skin explants, when exposed to 0.2% SM (but not when exposed to 1.0% SM), sometimes showed separation of the epidermis and increased collagenase activity (i.e., hydroxyproline release). Thus, histamine (from local mast cells), and prostaglandin E2 and plasminogen-activating activity (probably from both mast cells and epidermal cells) are apparently involved in early mediation of the inflammatory response.
Collapse
Affiliation(s)
- T Rikimaru
- Department of Environmental Health Sciences, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tennant M, McGeachie JK. Blood vessel structure and function: a brief update on recent advances. THE AUSTRALIAN AND NEW ZEALAND JOURNAL OF SURGERY 1990; 60:747-53. [PMID: 2206118 DOI: 10.1111/j.1445-2197.1990.tb07468.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This article briefly reviews recent advances in knowledge of the histology and function of blood vessels. It focuses upon the multifunctional roles of endothelium and smooth muscle cells. Particular reference is made to the synthesis of a number of factors now known to be involved in maintenance of the integrity of the vessel wall and the initiation of arterial disease. The cells of the vascular wall are much more versatile and dynamic than previously thought.
Collapse
MESH Headings
- Arteriosclerosis/pathology
- Blood Vessels/anatomy & histology
- Blood Vessels/injuries
- Blood Vessels/pathology
- Blood Vessels/physiology
- Catheterization/adverse effects
- Catheters, Indwelling/adverse effects
- Endothelium, Vascular/anatomy & histology
- Endothelium, Vascular/injuries
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiology
- Humans
- Hyperplasia/etiology
- Macrophages/physiology
- Muscle, Smooth, Vascular/anatomy & histology
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiology
Collapse
Affiliation(s)
- M Tennant
- Department of Anatomy and Human Biology, University of Western Australia, Nedlands
| | | |
Collapse
|