1
|
Hu G, Li G, Huang D, Zou Y, Yuan X, Ritter JK, Li N, Li PL. Renomedullary exosomes produce antihypertensive effects in reversible two-kidney one-clip renovascular hypertensive mice. Biochem Pharmacol 2022; 204:115238. [PMID: 36055382 PMCID: PMC10777442 DOI: 10.1016/j.bcp.2022.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
The rapid fall in blood pressure following unclipping of the stenotic renal artery in the Goldblatt two-kidney one-clip (2K1C) model of renovascular hypertension is proposed to be due to release of renomedullary vasodepressor lipids, but the mechanism has remained unclear. In this study, we hypothesized that the hypotensive response to unclipping is mediated by exosomes released from the renal medulla. In male C57BL6/J mice made hypertensive by the 2K1C surgery, unclipping of the renal artery after 10 days decreased mean arterial pressure (MAP) by 23 mmHg one hr after unclipping. This effect was accompanied by a 556% increase in the concentration of exosomes in plasma as observed by nanoparticle tracking analysis. Immunohistochemical analysis of exosome markers, CD63 and AnnexinII, showed increased staining in interstitial cells of the inner medulla of stenotic but not contralateral control kidney of clipped 2K1C mice. Treatment with rapamycin, an inducer of exosome release, blunted the hypertensive response to clipping, whereas GW-4869, an exosome biosynthesis inhibitor, prevented both the clipping-induced increase in inner medullary exosome marker staining and the unclipping-induced fall in MAP. Plasma exosomes isolated from unclipped 2K1C mice showed elevated neutral lipid content compared to sham mouse exosomes by flow cytometric analysis after Nile red staining. Exosomes from 2K1C but not sham control mice exerted potent MAP-lowering and diuretic-natriuretic effects in both 2K1C and angiotensin II-infused hypertensive mice. These results are consistent with increased renomedullary synthesis and release of exosomes with elevated antihypertensive neutral lipids in response to increased renal perfusion pressure.
Collapse
Affiliation(s)
- Gaizun Hu
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States
| | - Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States
| | - Dandan Huang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States
| | - Yao Zou
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States
| | - Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States.
| |
Collapse
|
2
|
Daneva Z, Dempsey SK, Ahmad A, Li N, Li PL, Ritter JK. Diuretic, Natriuretic, and Vasodepressor Activity of a Lipid Fraction Enhanced in Medium of Cultured Mouse Medullary Interstitial Cells by a Selective Fatty Acid Amide Hydrolase Inhibitor. J Pharmacol Exp Ther 2019; 368:187-198. [PMID: 30530623 PMCID: PMC6337005 DOI: 10.1124/jpet.118.252320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023] Open
Abstract
The relationship between the endocannabinoid system in the renal medulla and the long-term regulation of blood pressure is not yet understood. To investigate the possible role of the endocannabinoid system in renomedullary interstitial cells, mouse medullary interstitial cells (MMICs) were obtained, cultured, and characterized for their responses to treatment with a selective inhibitor of fatty acid amide hydrolase, PF-3845 (N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidinecarboxamide). Treatment of MMICs with PF-3845 increased cytoplasmic lipid granules detected by Sudan Black B staining and multilamellar bodies identified by transmission electron microscopy. High-performance liquid chromatography (HPLC) analyses of lipid extracts of MMIC culture medium revealed a 205-nm absorbing peak that showed responsiveness to PF-3845 treatment. The biologic activities of the PF-3845-induced product (PIP) isolated by HPLC were investigated in anesthetized, normotensive surgically instrumented mice. Intramedullary and intravenous infusion of PIP at low dose rates (0.5-1 area units under the peak/10 min) stimulated diuresis and natriuresis, whereas these parameters returned toward baseline at higher doses but mean arterial pressure (MAP) was lowered. Whereas intravenous bolus doses of PIP stimulated diuresis, the glomerular filtration rate, and medullary blood flow (MBF) and reduced or had no effect on MAP, an intraperitoneal bolus injection of PIP reduced MAP, increased MBF, and had no effect on urine parameters. These data support a model whereby PF-3845 treatment of MMICs results in increased secretion of a neutral lipid that acts directly to promote diuresis and natriuresis and indirectly through metabolites to produce vasodepression. Efforts to identify the structure of the PF-3845-induced lipid and its relationship to the previously proposed renomedullary antihypertensive lipids are ongoing.
Collapse
Affiliation(s)
- Zdravka Daneva
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Sara K Dempsey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Ashfaq Ahmad
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
3
|
Glodny B, Pauli GF. The vasodepressor function of the kidney: further characterization of medullipin and a second hormone designated angiolysin. Hypertens Res 2006; 29:533-44. [PMID: 17044666 DOI: 10.1291/hypres.29.533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of this study was to further characterize the antihypertensive properties of medullipin and a second hormone designated angiolysin physiologically. Angiolysin and medullipin were tested in coronary and aortic rings from cows, sheep, pigs, mice and rats. In vivo animal experiments were performed using spontaneously hypertensive rats. Medullipin was successfully separated from another antihypertensive agent at the polar end of the polarity continuum. It is an extremely potent vasodilator. With the methods available today, it is not possible to make a galenical preparation of medullipin for in vivo analysis. The newly discovered antihypertensive agent is another extremely potent vasodilator, even stronger than medullipin, and was therefore named angiolysin. The vasodilatory activity of both medullipin and angiolysin persisted for hours, on rat and mouse aortae, and on the coronary arteries of pigs, cows and sheep. Both substances exerted their effects even in animal rings that were precontracted with 100 mmol/l K+. Angiolysin reduced the resting tension in blood vessels from mice and rats even without precontraction. A single injection of angiolysin resulted in a dose-dependent reduction of blood pressure, independent of the initial blood pressure, even to zero if the dosage was sufficient. The effect persisted for several hours. In conclusion, both hormones are extremely potent vasodilators, and are expected to lead to paradigmatic changes in the treatment of hypertension. With regard to potency, only sodium nitroprusside is comparable, but the effects of medullipin and angiolysin persist for hours after a single injection.
Collapse
Affiliation(s)
- Bernhard Glodny
- Department of Radiology, Innsbruck Medical University, Austria.
| | | |
Collapse
|
4
|
Glodny B, Pauli GF. The vasodepressor function of the kidney: prostaglandin E2 is not the principal vasodepressor lipid of the renal medulla. Acta Physiol (Oxf) 2006; 187:419-30. [PMID: 16776667 DOI: 10.1111/j.1748-1716.2006.01578.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Whereas prostaglandin E2 has been characterized as the principal vasodepressor lipid, medullipin remains a hypothetical vasodepressor principle of the renal medulla. Representing the first step towards the isolation of medullipin as a pure compound, the aim of the present study was to determine whether or not the known vasodilator and antihypertensive action of prostaglandins play a role in the antihypertensive activity of renal medulla. METHODS A chloroform extract of porcine kidney medulla was fractionated by gradient vacuum liquid chromatography (VLC) and analysed by capillary GC-MS for the presence of prostaglandins (detection limit: 2.2 ppm). The biological activity was determined in spontaneously hypertensive Wistar rats. The particle size of injectable colloids prepared from extract and fractions was controlled by photon correlation spectroscopy. RESULTS The extract caused a pronounced blood pressure decline (29.6 +/- 6.3/24.9+/- 5.5 mmHg; P = 0.0078; 10 mg kg(-1) body weight; particle size of 143 +/- 18 nm; n = 7) lasting for more than 1 h. The heart rate remained stable, showing only a slightly decrease. All fractions were shown to be devoid of vasodilator prostanoid substances. The VLC procedure allowed the successful separation of endogenous emulsifiers from the active principle. An extract from the renal cortex did not exhibit a similar vasodepressor effect. CONCLUSION Prostaglandins are excluded as the blood pressure-lowering active principle of a total lipid kidney medulla extract. The vasodepressor principle is contained in the kidney medulla, but not in the cortex. It can be separated from endogenous emulsifying substances, is chromatographically stable, and is amenable to purification and chemical characterization.
Collapse
Affiliation(s)
- B Glodny
- Innsbruck Medical University, Department of Radiology, Anichstrasse 35, 6020 Innsbruck, Austria.
| | | |
Collapse
|
5
|
Belibi FA, Reif G, Wallace DP, Yamaguchi T, Olsen L, Li H, Helmkamp GM, Grantham JJ. Cyclic AMP promotes growth and secretion in human polycystic kidney epithelial cells11See Editorial by Torres, p. 1283. Kidney Int 2004; 66:964-73. [PMID: 15327388 DOI: 10.1111/j.1523-1755.2004.00843.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Progressive cyst enlargement, the hallmark of autosomal-dominant polycystic kidney disease (ADPKD) and autosomal-recessive (ARPKD) polycystic kidney disease, precedes the eventual decline of function in these conditions. The expansion of individual cysts in ADPKD is determined to a major extent by mural epithelial cell proliferation and transepithelial fluid secretion. This study determined if common receptor-mediated agonists and an anonymous lipid stimulate the production of 3' 5'-cyclic monophosphate (cAMP) in mural epithelial cells from the two major types of human cystic diseases. METHODS cAMP responses to maximally effective concentrations of renal agonists were determined together with measurements of transepithelial anion current and cellular proliferation and extracellular signal-related kinase (ERK 1/2) expression in primary cultures of epithelial cells from human ADPKD and ARPKD cysts. RESULTS The rank orders of responses to ligands for ADPKD and ARPKD cells were identical: epinephrine > desmopressin (DDAVP) approximately arginine vasopressin (AVP) > adenosine > prostaglandin E(2) (PGE(2)) > parathyroid hormone (PTH). cAMP concentrations elevated by epinephrine, DDAVP, adenosine, and PGE(2) were diminished by receptor-specific inhibitors. Pools of cyst fluid collected individually from 16 of 19 ADPKD kidneys increased, to varying degrees, cAMP levels in ADPKD and ARPKD cells. PGE(2), beta-adrenergic and AVP antagonists partially inhibited cAMP accumulation in response to fluids from three kidneys, but a large portion of the endogenous activity was attributed to yet-to-be identified bioactive lipid, designated cyst activating factor (CAF). CAF stimulated cAMP production in ADPKD and ARPKD cells, activated ERK(1/2), and increased cellular proliferation in ADPKD cells. CAF increased positive short circuit current (I(SC)) in polarized ADPKD and T-84 monolayers, indicating stimulation of net anion secretion. CONCLUSION Endogenous adenylyl cyclase agonists promote cell proliferation and electrolyte secretion of human ADPKD and ARPKD cells in vitro. We suggest that increased levels of cAMP may accelerate cyst growth and overall renal enlargement in patients with PKD.
Collapse
Affiliation(s)
- Franck A Belibi
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160-7382, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Correia AG, Bergström G, Jia J, Anderson WP, Evans RG. Dominance of pressure natriuresis in acute depressor responses to increased renal artery pressure in rabbits and rats. J Physiol 2002; 538:901-10. [PMID: 11826173 PMCID: PMC2290088 DOI: 10.1113/jphysiol.2001.013280] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Increasing renal artery pressure (RAP) activates pressure diuresis/natriuresis and inhibits renal renin release. There is also evidence that increasing RAP stimulates release of a putative depressor hormone from the renal medulla, although this hypothesis remains controversial. We examined the relative roles of these antihypertensive mechanisms in the acute depressor responses to increased RAP in anaesthetized rabbits and rats. In rabbits, an extracorporeal circuit was established which allows RAP to be set and controlled without direct effects on systemic haemodynamics. When RAP was maintained at approximately 65 mmHg, cardiac output (CO) and mean arterial pressure (MAP) did not change significantly. In contrast, when RAP was increased to approximately 160 mmHg, CO and MAP fell 20 +/- 5 % and 36 +/- 5 %, respectively, over 30 min. Urine flow also increased more than 28-fold when RAP was increased. When compound sodium lactate was infused intravenously at a rate equal to urine flow, neither CO nor MAP fell significantly in response to increased RAP. In 1 kidney-1 clip hypertensive rats, MAP fell by 54 +/- 10 mmHg over a 2 h period after unclipping. In rats in which isotonic NaCl was administered intravenously at a rate equal to urine flow, MAP did not change significantly after unclipping (-14 +/- 9 mmHg). Our results suggest that the depressor responses to increasing RAP in these experimental models are chiefly attributable to hypovolaemia secondary to pressure diuresis/natruresis. These models therefore appear not to be bioassays for release of a putative renal medullary depressor hormone.
Collapse
|
7
|
Zhuo JL. Renomedullary interstitial cells: a target for endocrine and paracrine actions of vasoactive peptides in the renal medulla. Clin Exp Pharmacol Physiol 2000; 27:465-73. [PMID: 10874500 DOI: 10.1046/j.1440-1681.2000.03277.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. The renal medulla plays an important role in regulating body sodium and fluid balance and blood pressure homeostasis through its unique structural relationships and interactions between renomedullary interstitial cells (RMIC), renal tubules and medullary vasculature. 2. Several endocrine and/or paracrine factors, including angiotensin (Ang)II, endothelin (ET), bradykinin (BK), atrial natriuretic peptide (ANP) and vasopressin (AVP), are implicated in the regulation of renal medullary function and blood pressure by acting on RMIC, tubules and medullary blood vessels. 3. Renomedullary interstitial cells express multiple vasoactive peptide receptors (AT1, ETA, ETB, BK B2, NPRA and NPRB and V1a) in culture and in tissue. 4. In cultured RMIC, AngII, ET, BK, ANP and AVP act on their respective receptors to induce various cellular responses, including contraction, prostaglandin synthesis, cell proliferation and/or extracellular matrix synthesis. 5. Infusion of vasoactive peptides or their antagonists systemically or directly into the medullary interstitium modulates medullary blood flow, sodium excretion and urine osmolarity. 6. Overall, expression of multiple vasoactive peptide receptors in RMIC, which respond to various vasoactive peptides and paracrine factors in vitro and in vivo, supports the hypothesis that RMIC may be an important paracrine target of various vasoactive peptides in the regulation of renal medullary function and long-term blood pressure homeostasis.
Collapse
Affiliation(s)
- J L Zhuo
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
8
|
Huang WC, Tsai RY, Fang TC. Nitric oxide modulates the development and surgical reversal of renovascular hypertension in rats. J Hypertens 2000; 18:601-13. [PMID: 10826564 DOI: 10.1097/00004872-200018050-00014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate the role of nitric oxide (NO) in the development and unclipping-induced reversal of blood pressure and bilateral renal function in two-kidney, one clip (2K1C) Goldblatt hypertensive rats. METHODS Goldblatt hypertensive rats were prepared by clipping the left renal artery 4 weeks before unclipping experiments. NG-nitro-L-arginine methyl ester (L-NAME) was administered after clipping and during unclipping to inhibit nitric oxide (NO) synthesis. Blood pressure and bilateral renal responses were measured. RESULTS Chronic L-NAME treatment accelerated and aggravated blood pressure elevations and increased plasma nitrite and nitrate levels in 2K1C rats. Surgical removal of the renal artery clip induced profound reductions in blood pressure in rats with and without L-NAME treatment. However, the magnitude of the unclipping-induced depressor response at the first post-unclipping hour was significantly smaller in L-NAME-treated rats compared to those without L-NAME administration (15 +/- 1 versus 22 +/- 1%, P < 0.05). Two hours after unclipping, blood pressure of both groups fell to a comparable, normal level. Acute intravenous infusion of L-NAME in established 2K1C hypertensive rats further increased blood pressure. Subsequent unclipping caused a depressor response similar to that observed in hypertensive rats treated chronically with L-NAME. Despite the marked decreases in blood pressure, unclipping induced striking increases in glomerular filtration rate (GFR), urine flow and sodium and potassium excretion rates in the ipsilateral kidney. However, the magnitudes of increases in GFR and the diuretic and natriuretic responses in rats without L-NAME treatment were significantly greater than in rats with L-NAME administration. In contrast, unclipping reduced these function indices in the contralateral kidney to a similar level in rats with and without L-NAME treatment. CONCLUSIONS NO exerts vasodilator action and thereby lessens renal artery clipping-induced blood pressure elevation. Furthermore, unclipping-induced release of NO partially contributes to the early reduction in blood pressure and changes in bilateral renal function but does not directly mediate the normalization of blood pressure after unclipping in this hypertension model.
Collapse
Affiliation(s)
- W C Huang
- Graduate Institute of Medical Science, Tzu Chi College of Medicine and Humanities, Hualien, Taiwan, Republic of China.
| | | | | |
Collapse
|
9
|
Correia AG, Madden AC, Bergström G, Evans RG. Effects of renal medullary and intravenous norepinephrine on renal antihypertensive function. Hypertension 2000; 35:965-70. [PMID: 10775570 DOI: 10.1161/01.hyp.35.4.965] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increasing renal arterial pressure activates at least 3 antihypertensive mechanisms: reduced renin release, pressure natriuresis, and release of a putative renal medullary depressor hormone. To examine the role of renal medullary perfusion in these mechanisms, we tested the effects of the infusion of norepinephrine, either infusion into the renal medullary interstitium or intravenous infusion, on responses to increased renal arterial pressure in pentobarbital-anesthetized rabbits. We used an extracorporeal circuit, which allows renal arterial pressure to be set to any level above or below systemic arterial pressure. With renal arterial pressure initially set at 65 mm Hg, intravenous and medullary interstitial norepinephrine (300 ng. kg(-1). min(-1)) similarly increased mean arterial pressure (by 12% to 17% of baseline) and reduced total renal blood flow (by 16% to 17%) and cortical perfusion (by 13% to 19%), but only medullary norepinephrine reduced medullary perfusion (by 28%). When renal arterial pressure was increased to approximately 160 mm Hg, in steps of approximately 65 mm Hg, urine output and sodium excretion increased exponentially, and plasma renin activity and mean arterial pressure fell. Medullary interstitial but not intravenous norepinephrine attenuated the increased diuresis and natriuresis and the depressor response to increased renal arterial pressure. This suggests that norepinephrine can act within the renal medulla to inhibit these renal antihypertensive mechanisms, perhaps by reducing medullary perfusion. These observations support the concept that medullary perfusion plays a critical role in the long-term control of arterial pressure by its influence on pressure diuresis/natriuresis mechanisms and also by affecting the release of the putative renal medullary depressor hormone.
Collapse
Affiliation(s)
- A G Correia
- Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | | | | | | |
Collapse
|
10
|
Huang WC, Tsai RY. Nitric oxide synthesis inhibition retards surgical reversal of one-kidney Goldblatt hypertension in rats. Hypertension 1998; 32:534-40. [PMID: 9740622 DOI: 10.1161/01.hyp.32.3.534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surgical correction of renal artery stenosis in Goldblatt hypertension rapidly normalizes blood pressure and increases renal function. This study was conducted in 1-kidney, 1 clip (1K1C) Goldblatt hypertensive rats to examine whether the unclipping-induced reversal of blood pressure and renal function is mediated by nitric oxide (NO). The 1K1C rats were prepared and given tap water with or without supplementation of NG-nitro-L-arginine methyl ester (L-NAME). Systolic blood pressure (SBP) before and after renal artery clipping was measured with the tail-cuff method. Four weeks later, surgical unclipping was performed while blood pressure and renal function responses were determined. The results show that clipping the renal artery for 4 weeks increased SBP from 140+/-5 to 183+/-6 mm Hg (P<0.05). Concurrent L-NAME treatment accelerated and aggravated the clipping-induced increases in SBP from 138+/-6 to 219+/-8 mm Hg (P<0.05). Surgical unclipping reduced blood pressure to normotensive levels within 2 hours in all hypertensive rats with and without chronic or acute L-NAME treatment. However, the magnitude of reductions in blood pressure in the initial 1 hour after unclipping was significantly less in L-NAME-treated rats than in nontreated rats (9+/-2% versus 16+/-1%, P<0.05). Despite reducing blood pressure, unclipping significantly increased glomerular filtration rate, urine flow, and sodium and potassium excretions, but the extent of the increases in these renal functions was significantly attenuated in L-NAME-treated rats. These data suggest that NO production partly contributes to the hypotensive and renal responses to unclipping but does not mediate the reversal of renovascular hypertension of this model.
Collapse
Affiliation(s)
- W C Huang
- From the Graduate Institute of Medical Sciences, Tzu Chi College of Medicine, Hualien, Taiwan, Republic of China.
| | | |
Collapse
|
11
|
Bergström G, Göthberg G, Karlström G, Rudenstam J. Renal medullary blood flow and renal medullary antihypertensive mechanisms. Clin Exp Hypertens 1998; 20:1-26. [PMID: 9507785 DOI: 10.3109/10641969809053203] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has long been recognised that the kidneys take part in blood pressure control via both their exocrine and endocrine functions. An endocrine antihypertensive function of the renal medulla has been proposed. The renal medullary depressor substances ("medullipins"), are released in response to increased renal perfusion pressure. It has been suggested that the release of "medullipin" is controlled via changes in renal medullary blood flow. Recent observations also suggest that renal medullary blood flow is involved in the control of the pressure/natriuretic-diuretic action of the kidney. In this review we outline a unified hypothesis for blood pressure control via a combination of the plasma volume regulating pressure-natriuresis mechanism and the powerful antihypertensive actions of the "medullipins" (i.e. vasodilatation, inhibition of sympathetic drive and a diuretic action). It is hypothesised that the activity of both these systems are under control by renal medullary blood flow.
Collapse
Affiliation(s)
- G Bergström
- Department of Physiology, Göteborg University, Sweden
| | | | | | | |
Collapse
|
12
|
Thomas CJ, Woods RL, Evans RG, Alcorn D, Christy IJ, Anderson WP. Evidence for a renomedullary vasodepressor hormone. Clin Exp Pharmacol Physiol 1996; 23:777-85. [PMID: 8911713 DOI: 10.1111/j.1440-1681.1996.tb01179.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1. Recent physiological experiments have established that increasing the perfusion pressure of the kidney causes the release of vasodepressor substance from the renal medulla. 2. The substance is not a platelet activating factor, a prostaglandin or nitric oxide and the vasodepressor response to increased renal perfusion is not due simply to inhibition of renin release. 3. The mechanisms by which the renomedullary vasodepressor substance lowers arterial pressure remain to be determined. Sympathoinhibition may account for part of the response, but the hypotension still occurs in autonomic ganglion blocked animals. 4. The source of substance appears to be the renomedullary interstitial cells, though the control of the production and release of the substance remain to be determined. 5. The substance may be a lipid but it is yet to be fully isolated and identified. 6. The threshold for release of the substance appears to be close to normal resting arterial blood pressure. 7. Despite strong evidence that the renal medulla releases a vasodepressor hormone in response to increased renal perfusion pressure, much is still to be determined regarding the physiology of this hormone and its involvement in the aetiology of hypertension.
Collapse
Affiliation(s)
- C J Thomas
- Baker Medical Research Institute, Prahran, Victoria, Australia
| | | | | | | | | | | |
Collapse
|