1
|
Tan QL, Zhou CY, Cheng L, Luo M, Liu CP, Xu WX, Zhang X, Zeng X. Immunotherapy of Bacillus Calmette‑Guérin by targeting macrophages against bladder cancer in a NOD/scid IL2Rg‑/‑ mouse model. Mol Med Rep 2020; 22:362-370. [PMID: 32319653 PMCID: PMC7248479 DOI: 10.3892/mmr.2020.11090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/14/2019] [Indexed: 02/07/2023] Open
Abstract
Bacillus Calmette‑Guérin (BCG) is considered to be a successful biotherapy for treating bladder cancer (BCa). However, the underlying mechanisms of BCG have not been completely clarified, to date. The role of macrophages in BCG therapy for BCa has still not been determined in vivo. In the present study, the role and potential mechanism of BCG (0.25, 1.25 and 6.25 µg/mouse; intravenous) immunotherapy for BCa was investigated in a NOD/scid IL2Rg‑/‑ (NSI) mouse model by targeting macrophages in vivo. Notably, it was observed that NSI mice with T24 BCa cells displayed high levels of the macrophage marker CD11b+ F4/80+ after injection via the tail vein of live BCG, as well as a significant reduction in tumor volume. The levels of the inflammatory and macrophage maturation cytokines, such as tumor necrosis factor‑α, interleukin (IL)‑1β, IL‑6, IL‑12P70, TNF superfamily member 11 and monocyte chemotactic protein 1, were significantly increased in the serum and the tumor supernatant compared to that in normal control subjects. Furthermore, BCG promoted the expression of the pro‑differential genes Spi‑1 proto‑oncogene, early growth response protein 1, nuclear factor (NF)‑κB and proto‑oncogene c‑Fos in bone marrow. In conclusion, these observations indicate that the injection of live BCG can target macrophages against bladder tumor growth in vivo. The mechanism is likely related to the promotion of macrophage maturation, immune activation and increased numbers of macrophages infiltrating the bladder tumor.
Collapse
Affiliation(s)
- Qing-Long Tan
- Phase I Clinical Research Center, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Chang-Yuan Zhou
- Phase I Clinical Research Center, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Lin Cheng
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Min Luo
- Phase I Clinical Research Center, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Chun-Ping Liu
- Phase I Clinical Research Center, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Wen-Xing Xu
- Phase I Clinical Research Center, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xian Zhang
- Phase I Clinical Research Center, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xing Zeng
- Phase I Clinical Research Center, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
2
|
In-depth proteome analysis of more than 12,500 proteins in buffalo mammary epithelial cell line identifies protein signatures for active proliferation and lactation. Sci Rep 2020; 10:4834. [PMID: 32179766 PMCID: PMC7075962 DOI: 10.1038/s41598-020-61521-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
The mature mammary gland is made up of a network of ducts that terminates in alveoli. The innermost layer of alveoli is surrounded by the differentiated mammary epithelial cells (MECs), which are responsible for milk synthesis and secretion during lactation. However, the MECs are in a state of active proliferation during pregnancy, when they give rise to network like structures in the mammary gland. Buffalo (Bubalus bubalis) constitute a major source of milk for human consumption, and the MECs are the major precursor cells which are mainly responsible for their lactation potential. The proteome of MECs defines their functional state and suggests their role in various cellular activities such as proliferation and lactation. To date, the proteome profile of MECs from buffalo origin is not available. In the present study, we have profiled in-depth proteome of in vitro cultured buffalo MECs (BuMECs) during active proliferation using high throughput tandem mass spectrometry (MS). MS analysis identified a total of 8330, 5970, 5289, 4818 proteins in four sub-cellular fractions (SCFs) that included cytosolic (SCF-I), membranous and membranous organelle’s (SCF-II), nuclear (SCF-III), and cytoskeletal (SCF-IV). However, 792 proteins were identified in the conditioned media, which represented the secretome. Altogether, combined analysis of all the five fractions (SCFs- I to IV, and secretome) revealed a total of 12,609 non-redundant proteins. The KEGG analysis suggested that these proteins were associated with 325 molecular pathways. Some of the highly enriched molecular pathways observed were metabolic, MAPK, PI3-AKT, insulin, estrogen, and cGMP-PKG signalling pathway. The newly identified proteins in this study are reported to be involved in NOTCH signalling, transport and secretion processes.
Collapse
|
3
|
Bahrami A, Bianconi V, Pirro M, Orafai HM, Sahebkar A. The role of TFEB in tumor cell autophagy: Diagnostic and therapeutic opportunities. Life Sci 2020; 244:117341. [PMID: 31972208 DOI: 10.1016/j.lfs.2020.117341] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/29/2019] [Accepted: 01/18/2020] [Indexed: 12/12/2022]
Abstract
Autophagy is a conserved "self-eating" recycling process which removes aggregated or misfolded proteins, or defective organelles, to maintain cellular hemostasis. In the autophagy-lysosome pathway (ALP), clearance of unwanted debris and materials occurs through the generation of the autophagosome, a complex of double-membrane bounded vesicles that form around cytosolic cargos and catabolize their contents by fusion to lysosomes. In tumors, autophagy has dichotomous functions via preventing tumor initiation but promoting tumor progression. The basic helix-loop-helix leucine zipper transcription factor EB (TFEB) activates the promoters of genes encoding for proteins, which participate in this cellular degradative system by regulating lysosomal biogenesis, lysosomal acidification, lysosomal exocytosis and autophagy. In humans, disturbances of ALP are related to various pathological conditions. Recently, TFEB dysregulation was found to have a crucial pathogenic role in different tumors by modulating tumor cell autophagy. Notably, in renal cell carcinomas, different TFEB gene fusions were reported to promote oncogenic features. In this review, we discuss the role of TFEB in human cancers with a special focus on potential diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Hossein M Orafai
- Department of Pharmaceutics, Faculty of Pharmacy, University of Ahl Al Bayt, Karbala, Iraq; Department of Pharmaceutics, Faculty of Pharmacy, Al-Zahraa University, Karbala, Iraq
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Dolgachev V, Panicker S, Balijepalli S, McCandless LK, Yin Y, Swamy S, Suresh MV, Delano MJ, Hemmila MR, Raghavendran K, Machado-Aranda D. Electroporation-mediated delivery of FER gene enhances innate immune response and improves survival in a murine model of pneumonia. Gene Ther 2018; 25:359-375. [PMID: 29907877 PMCID: PMC6195832 DOI: 10.1038/s41434-018-0022-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 12/23/2022]
Abstract
Previously, we reported that electroporation-mediated (EP) delivery of the FER gene improved survival in a combined trauma-pneumonia model. The mechanism of this protective effect is unknown. In this paper, we performed a pneumonia model in C57/BL6 mice with 500 CFU of Klebsiella pneumoniae. After inoculation, a plasmid encoding human FER was delivered by EP into the lung (PNA/pFER-EP). Survival of FER-treated vs. controls (PNA; PNA/EP-pcDNA) was recorded. In parallel cohorts, bronchial alveolar lavage (BAL) and lung were harvested at 24 and 72 h with markers of infection measured. FER-EP-treated animals reduced bacterial counts and had better 5-day survival compared to controls (80 vs. 20 vs. 25%; p < 0.05). Pre-treatment resulted in 100% survival. With FER, inflammatory monocytes were quickly recruited into BAL. These cells had increased surface expression for Toll-receptor 2 and 4, and increased phagocytic and myeloperoxidase activity at 24 h. Samples from FER electroporated animals had increased phosphorylation of STAT transcription factors, varied gene expression of IL1β, TNFα, Nrf2, Nlrp3, Cxcl2, HSP90 and increased cytokine production of TNF-α, CCL-2, KC, IFN-γ, and IL-1RA. In a follow-up experiment, using Methicillin-resistant Staphylococcus aureus (MRSA) similar bacterial reduction effects were obtained with FER gene delivery. We conclude that FER overexpression improves survival through STAT activation enhancing innate immunity and accelerating bacterial clearance in the lung. This constitutes a novel mechanism of inflammatory regulation with therapeutic potential in the setting of hospital-acquired pneumonia.
Collapse
Affiliation(s)
- Vladislav Dolgachev
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA
| | - Sreehari Panicker
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA
| | - Sanjay Balijepalli
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA
| | - Lane Kelly McCandless
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA
| | - Yue Yin
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA
| | - Samantha Swamy
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA
| | - M V Suresh
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA
| | - Matthew J Delano
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA
| | - Mark R Hemmila
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA
| | - Krishnan Raghavendran
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA
| | - David Machado-Aranda
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA.
| |
Collapse
|
5
|
Yeh CC, Chang CJ, Twu YC, Hung ST, Tsai YJ, Liao JC, Huang JT, Kao YH, Lin SW, Yu LC. The differential expression of the blood group P1
-A4GALT
and P2
-A4GALT
alleles is stimulated by the transcription factor early growth response 1. Transfusion 2018; 58:1054-1064. [DOI: 10.1111/trf.14515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/29/2017] [Accepted: 12/20/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Chih-Chun Yeh
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University; Taipei Taiwan
| | - Ching-Jin Chang
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University; Taipei Taiwan
- Institute of Biological Chemistry, Academia Sinica; Taipei Taiwan
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine; School of Biomedical Science and Engineering, National Yang-Ming University; Taipei Taiwan
| | - Shu-Ting Hung
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University; Taipei Taiwan
| | - Yi-Jui Tsai
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University; Taipei Taiwan
| | - Jia-Ching Liao
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University; Taipei Taiwan
| | - Ji-Ting Huang
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University; Taipei Taiwan
| | - Yu-Hsin Kao
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University; Taipei Taiwan
| | - Sheng-Wei Lin
- Institute of Biological Chemistry, Academia Sinica; Taipei Taiwan
| | - Lung-Chih Yu
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University; Taipei Taiwan
- Institute of Biological Chemistry, Academia Sinica; Taipei Taiwan
| |
Collapse
|
6
|
Osato N. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes. BMC Genomics 2018; 19:957. [PMID: 29363429 PMCID: PMC5780744 DOI: 10.1186/s12864-017-4339-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. RESULTS Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. CONCLUSIONS Human putative transcriptional target genes showed significant functional enrichments. Functional enrichments were related to the cellular functions. The normalized number of functional enrichments of human putative transcriptional target genes changed according to the criteria of enhancer-promoter assignments and correlated with the median expression level of the target genes. These analyses and characters of human putative transcriptional target genes would be useful to examine the criteria of enhancer-promoter assignments and to predict the novel mechanisms and factors such as DNA binding proteins and DNA sequences of enhancer-promoter interactions.
Collapse
Affiliation(s)
- Naoki Osato
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
DNA methylation at enhancers identifies distinct breast cancer lineages. Nat Commun 2017; 8:1379. [PMID: 29123100 PMCID: PMC5680222 DOI: 10.1038/s41467-017-00510-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Breast cancers exhibit genome-wide aberrant DNA methylation patterns. To investigate how these affect the transcriptome and which changes are linked to transformation or progression, we apply genome-wide expression-methylation quantitative trait loci (emQTL) analysis between DNA methylation and gene expression. On a whole genome scale, in cis and in trans, DNA methylation and gene expression have remarkably and reproducibly conserved patterns of association in three breast cancer cohorts (n = 104, n = 253 and n = 277). The expression-methylation quantitative trait loci associations form two main clusters; one relates to tumor infiltrating immune cell signatures and the other to estrogen receptor signaling. In the estrogen related cluster, using ChromHMM segmentation and transcription factor chromatin immunoprecipitation sequencing data, we identify transcriptional networks regulated in a cell lineage-specific manner by DNA methylation at enhancers. These networks are strongly dominated by ERα, FOXA1 or GATA3 and their targets were functionally validated using knockdown by small interfering RNA or GRO-seq analysis after transcriptional stimulation with estrogen.
Collapse
|
8
|
Chen W, Lv X, Liu C, Chen R, Liu J, Dai H, Zou G. Hematopoietic stem/progenitor cell differentiation towards myeloid lineage is modulated by LIGHT/LIGHT receptor signaling. J Cell Physiol 2017; 233:1095-1103. [DOI: 10.1002/jcp.25967] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/18/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Weikai Chen
- Xinhua HospitalShanghai Institute of Pediatric ResearchShanghaiChina
- Stem Cell Research Unit, Shanghai Cancer Institute, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Changlong Liu
- Stem Cell Research Unit, Shanghai Cancer Institute, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Ruoping Chen
- Department of NeurosurgeryShanghai Children HospitalShanghaiChina
| | - Jianhe Liu
- Department of Surgery, Xin Hua HospitalShangghai Jiao Tong UniversityShanghaiChina
| | - Haiyan Dai
- Department of Obstetrics and GynecologyShanghai Pudong HospitalShanghaiChina
| | - Gang‐Ming Zou
- Xinhua HospitalShanghai Institute of Pediatric ResearchShanghaiChina
- Stem Cell Research Unit, Shanghai Cancer Institute, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Hawaii Gangze Inc.HonoluluHawaii
| |
Collapse
|
9
|
Cirilli M, Bereshchenko O, Ermakova O, Nerlov C. Insights into specificity, redundancy and new cellular functions of C/EBPa and C/EBPb transcription factors through interactome network analysis. Biochim Biophys Acta Gen Subj 2016; 1861:467-476. [PMID: 27746211 DOI: 10.1016/j.bbagen.2016.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 09/13/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND C/EBPa and C/EBPb are transcription factors with tissue specific expression regulating several important cellular processes. They work by recruiting protein complexes to a common DNA recognition motif and both are able to compensate each other's absence in many cell types, thus showing functional redundancy. They also play distinct roles in specific cellular pathways and their abnormal functioning gives raise to different human pathologies. METHODS To investigate the molecular basis of C/EBPa and C/EBPb specificity and redundancy we characterized their in vivo protein-protein interaction networks by Tandem Affinity Purification (TAP) and Mass Spectrometry (MS). To unravel the functional features of C/EBPa and C/EBPb proteomes we studied the statistical enrichment of binding partners related to Gene Ontology (GO) terms and KEGG pathways. RESULTS Our data confirmed that the C/EBPa and C/EBPb regulate biological processes like cell proliferation, apoptosis and transformation. We found that both C/EBPa and C/EBPb are involved in other cellular pathways such as RNA maturation, RNA splicing and DNA repair. Specific interactions of C/EBPa with MRE11, RUVBL1 and RUVBL2 components of DNA repair system were confirmed by co-immunoprecipitation assays. CONCLUSIONS Our comparative analysis of the C/EBPa and C/EBPb proteomes provides an insight for understanding both their redundant and specific roles in cells indicating their involvement in new pathways. Such novel predicted functions are relevant to normal cellular processes and disease phenotypes controlled by these transcription factors. GENERAL SIGNIFICANCE Functional characterization of C/EBPa and C/EBPb proteomes suggests they can regulate novel pathways and indicate potential molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- Maurizio Cirilli
- Institute of Cell Biology and Neurobiology (IBCN), CNR, via Ramarini 32, 00015 Monterotondo, Italy
| | - Oxana Bereshchenko
- Mouse Biology Unit, European Molecular Biology Laboratory, via Ramarini 32, 00015 Monterotondo, Italy; Department of Medicine, University of Perugia, Perugia 06132, Italy
| | - Olga Ermakova
- Mouse Biology Unit, European Molecular Biology Laboratory, via Ramarini 32, 00015 Monterotondo, Italy.
| | - Claus Nerlov
- Mouse Biology Unit, European Molecular Biology Laboratory, via Ramarini 32, 00015 Monterotondo, Italy; MRC Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| |
Collapse
|
10
|
Liu XD, Qian Y, Jung YS, Chen PY. Isolation and immunomodulatory activity of bursal peptide, a novel bursal peptide from the chicken bursa of Fabricius. J Vet Sci 2016; 16:501-7. [PMID: 26119163 PMCID: PMC4701743 DOI: 10.4142/jvs.2015.16.4.501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/04/2015] [Accepted: 06/02/2015] [Indexed: 11/21/2022] Open
Abstract
The bursa of Fabricius (BF), which is unique to birds, serves as the central humoral immune organ and plays a significant role in B lymphocyte differentiation. In this study, a new bursal peptide (BP-IV) was isolated from BF, which promoted colony-forming unit pre-B formation and regulated B cell differentiation. BP-IV also exerted immunomodulatory effects on antigen-specific immune responses via both humoral and cellular immunity in chicken and mice that had been immunized with inactivated avian influenza virus (AIV; H9N2 subtype), including enhancing AIV-specific antibody and cytokine production. The results of this study provided novel insights into the use of a potential candidate reagent for B cell development and future immuno-pharmacological use.
Collapse
Affiliation(s)
- Xiao-Dong Liu
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yingjuan Qian
- Division of Key Lab of Animal Disease Diagnosis and Immunology of China's Department of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong-Sam Jung
- Division of Key Lab of Animal Disease Diagnosis and Immunology of China's Department of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Pu-Yan Chen
- Division of Key Lab of Animal Disease Diagnosis and Immunology of China's Department of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Reddy MA, Chen Z, Park JT, Wang M, Lanting L, Zhang Q, Bhatt K, Leung A, Wu X, Putta S, Sætrom P, Devaraj S, Natarajan R. Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA. Diabetes 2014; 63:4249-61. [PMID: 25008173 PMCID: PMC4238007 DOI: 10.2337/db14-0298] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mechanisms by which macrophages mediate the enhanced inflammation associated with diabetes complications are not completely understood. We used RNA sequencing to profile the transcriptome of bone marrow macrophages isolated from diabetic db/db mice and identified 1,648 differentially expressed genes compared with control db/+ mice. Data analyses revealed that diabetes promoted a proinflammatory, profibrotic, and dysfunctional alternatively activated macrophage phenotype possibly via transcription factors involved in macrophage function. Notably, diabetes altered levels of several long noncoding RNAs (lncRNAs). Because the role of lncRNAs in diabetes complications is unknown, we further characterized the function of lncRNA E330013P06, which was upregulated in macrophages from db/db and diet-induced insulin-resistant type 2 diabetic (T2D) mice, but not from type 1 diabetic mice. It was also upregulated in monocytes from T2D patients. E330013P06 was also increased along with inflammatory genes in mouse macrophages treated with high glucose and palmitic acid. E330013P06 overexpression in macrophages induced inflammatory genes, enhanced responses to inflammatory signals, and increased foam cell formation. In contrast, small interfering RNA-mediated E330013P06 gene silencing inhibited inflammatory genes induced by the diabetic stimuli. These results define the diabetic macrophage transcriptome and novel functional roles for lncRNAs in macrophages that could lead to lncRNA-based therapies for inflammatory diabetes complications.
Collapse
Affiliation(s)
- Marpadga A Reddy
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| | - Zhuo Chen
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| | - Jung Tak Park
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| | - Mei Wang
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| | - Linda Lanting
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| | - Qiang Zhang
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| | - Kirti Bhatt
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| | - Amy Leung
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| | - Xiwei Wu
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| | - Sumanth Putta
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| | - Pål Sætrom
- Departments of Computer and Information Science and Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sridevi Devaraj
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Rama Natarajan
- Department of Diabetes and Division of Molecular Diabetes Research, Beckman Research Institute of City of Hope, Duarte, CA
| |
Collapse
|
12
|
Karpurapu M, Ranjan R, Deng J, Chung S, Lee YG, Xiao L, Nirujogi TS, Jacobson JR, Park GY, Christman JW. Krüppel like factor 4 promoter undergoes active demethylation during monocyte/macrophage differentiation. PLoS One 2014; 9:e93362. [PMID: 24695324 PMCID: PMC3973678 DOI: 10.1371/journal.pone.0093362] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/05/2014] [Indexed: 11/25/2022] Open
Abstract
The role of different lineage specific transcription factors in directing hematopoietic cell fate towards myeloid lineage is well established but the status of epigenetic modifications has not been defined during this important developmental process. We used non proliferating, PU.1 inducible myeloid progenitor cells and differentiating bone marrow derived macrophages to study the PU.1 dependent KLF4 transcriptional regulation and its promoter demethylation during monocyte/macrophage differentiation. Expression of KLF4 was regulated by active demethylation of its promoter and PU.1 specifically bound to KLF4 promoter oligo harboring the PU.1 consensus sequence. Methylation specific quantitative PCR and Bisulfite sequencing indicated demethylation of CpG residues most proximal to the transcription start site of KLF4 promoter. Cloned KLF4 promoter in pGL3 Luciferase and CpG free pcpgf-bas vectors showed accentuated reporter activity when co-transfected with the PU.1 expression vector. In vitro methylation of both KLF4 promoter oligo and cloned KLF4 promoter vectors showed attenuated in vitro DNA binding activity and Luciferase/mouse Alkaline phosphotase reporter activity indicating the negative influence of KLF4 promoter methylation on PU.1 binding. The Cytosine deaminase, Activation Induced Cytidine Deaminase (AICDA) was found to be critical for KLF4 promoter demethylation. More importantly, knock down of AICDA resulted in blockade of KLF4 promoter demethylation, decreased F4/80 expression and other phenotypic characters of macrophage differentiation. Our data proves that AICDA mediated active demethylation of the KLF4 promoter is necessary for transcriptional regulation of KLF4 by PU.1 during monocyte/macrophage differentiation.
Collapse
Affiliation(s)
- Manjula Karpurapu
- Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| | - Ravi Ranjan
- Section of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jing Deng
- Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| | - Sangwoon Chung
- Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| | - Yong Gyu Lee
- Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| | - Lei Xiao
- Section of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Teja Srinivas Nirujogi
- Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| | - Jeffrey R. Jacobson
- Institute for Personalized Respiratory Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Gye Young Park
- Section of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - John W Christman
- Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| |
Collapse
|
13
|
Liu XD, Zhou B, Cao RB, Feng XL, Li XF, Chen PY. Comparison of immunomodulatory functions of three peptides from the chicken bursa of Fabricius. ACTA ACUST UNITED AC 2013; 186:57-61. [PMID: 23892032 DOI: 10.1016/j.regpep.2013.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022]
Abstract
The bursa of Fabricius (BF) is the acknowledged central humoral immune organ unique to birds which plays important roles in B cell development and antibody production. Little information on immunomodulatory functions of BF is reported, except for several reported active bursal-derived peptides. Three peptides were identified and characterized from BF through RP-HPLC and MADIL-TOF methods. They are named as bursal peptide (BP)-I, BP-II, BP-III. These peptides promoted CFU pre-B formation and decreased PU.1 expression. The different immunomodulatory activities of these three bursal peptides on antibody and cytokine productions were verified by the immunization comparative experiment. The results showed the three bursal peptides enhanced AIV-specific antibody and cytokine production, T-cell immunophenotyping at reachable concentrations. These results indicate the important orientations for the comprehensive understanding of the humoral central immune system, and provide a novel insight on new experimental reagents for immuno-adjuvant or immunopharmacological.
Collapse
Affiliation(s)
- Xiao-Dong Liu
- Division of Key Lab of Animal Disease Diagnosis and Immunology of China's Department of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
14
|
Dave RK, Dinger ME, Andrew M, Askarian-Amiri M, Hume DA, Kellie S. Regulated expression of PTPRJ/CD148 and an antisense long noncoding RNA in macrophages by proinflammatory stimuli. PLoS One 2013; 8:e68306. [PMID: 23840844 PMCID: PMC3695918 DOI: 10.1371/journal.pone.0068306] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/28/2013] [Indexed: 12/28/2022] Open
Abstract
PTPRJ/CD148 is a tyrosine phosphatase that has tumour suppressor-like activity. Quantitative PCR of various cells and tissues revealed that it is preferentially expressed in macrophage-enriched tissues. Within lymphoid tissues immunohistochemistry revealed that PTPRJ/CD148 co-localised with F4/80, indicating that macrophages most strongly express the protein. Macrophages express the highest basal level of ptprj, and this is elevated further by treatment with LPS and other Toll-like receptor ligands. In contrast, CSF-1 treatment reduced basal and stimulated Ptprj expression in human and mouse cells, and interferon also repressed Ptprj expression. We identified a 1006 nucleotide long noncoding RNA species, Ptprj-as1 that is transcribed antisense to Ptprj. Ptprj-as1 was highly expressed in macrophage-enriched tissue and was transiently induced by Toll-like receptor ligands with a similar time course to Ptprj. Finally, putative transcription factor binding sites in the promoter region of Ptprj were identified.
Collapse
Affiliation(s)
- Richa K. Dave
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
- The University of Queensland, Cooperative Research Centre for Chronic Inflammatory Diseases (CRC-CID), Brisbane, Australia
- The University of Queensland, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, Australia
| | - Marcel E. Dinger
- The University of Queensland Diamantina Institute, Brisbane, Australia
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Megan Andrew
- The University of Queensland, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, Australia
| | - Marjan Askarian-Amiri
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
| | - David A. Hume
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
- The University of Queensland, Cooperative Research Centre for Chronic Inflammatory Diseases (CRC-CID), Brisbane, Australia
- The Roslin Institute, University of Edinburgh, Roslin, Scotland, United Kingdom
| | - Stuart Kellie
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
- The University of Queensland, Cooperative Research Centre for Chronic Inflammatory Diseases (CRC-CID), Brisbane, Australia
- The University of Queensland, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, Australia
| |
Collapse
|
15
|
Jaguin M, Houlbert N, Fardel O, Lecureur V. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cell Immunol 2013; 281:51-61. [DOI: 10.1016/j.cellimm.2013.01.010] [Citation(s) in RCA: 300] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 11/26/2012] [Accepted: 01/24/2013] [Indexed: 12/21/2022]
|
16
|
Liu CX, Zhou HC, Yin QQ, Wu YL, Chen GQ. Targeting peroxiredoxins against leukemia. Exp Cell Res 2013; 319:170-6. [DOI: 10.1016/j.yexcr.2012.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/11/2012] [Accepted: 06/11/2012] [Indexed: 12/18/2022]
|
17
|
Regulation of Leukemic Cell Differentiation through the Vitamin D Receptor at the Levels of Intracellular Signal Transduction, Gene Transcription, and Protein Trafficking and Stability. LEUKEMIA RESEARCH AND TREATMENT 2012; 2012:713243. [PMID: 23213549 PMCID: PMC3505923 DOI: 10.1155/2012/713243] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/29/2012] [Indexed: 01/03/2023]
Abstract
1α,25-Dihydroxyvitamin D3 (1,25(OH)2D) exerts its biological activities through vitamin D receptor (VDR), which is a member of the superfamily of steroid receptors, that act as ligand-dependent transcription factors. Ligated VDR in complex with retinoid X receptor (RXR) binds to regulatory regions of 1,25(OH)2D-target genes. 1,25(OH)2D is able to induce differentiation of leukemic blasts towards macrophage-like cells. Many different acute myeloid leukemia (AML) cell lines respond to 1,25(OH)2D by increasing CD14 cell surface receptor, some additionally upregulate CD11b and CD11c integrins. In untreated AML cells VDR protein is present in cytosol at a very low level, even though its mRNA is continuously expressed. Ligation of VDR causes protein stabilization and translocation to the cell nuclei, where it regulates transcription of target genes. Several important groups of genes are regulated by 1,25(OH)2D in HL60 cells. These genes include differentiation-related genes involved in macrophage function, as well as a gene regulating degradation of 1,25(OH)2D, namely CYP24A1. We summarize here the data which demonstrate that though some cellular responses to 1,25(OH)2D in AML cells are transcription-dependent, there are many others which depend on intracellular signal transduction, protein trafficking and stabilization. The final effect of 1,25(OH)2D action in leukemic cells requires all these acting together.
Collapse
|
18
|
Liu XD, Feng XL, Zhou B, Cao RB, Li XF, Ma ZY, Chen PY. Isolation, modulatory functions on murine B cell development and antigen-specific immune responses of BP11, a novel peptide from the chicken bursa of Fabricius. Peptides 2012; 35:107-13. [PMID: 22429726 DOI: 10.1016/j.peptides.2012.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 11/28/2022]
Abstract
The bursa of Fabricius (BF) is the central humoral immune organ unique to birds which plays important roles in B lymphocyte differentiation. Here, a new bursal peptide (BP11) with the amino acid sequence DVAGKLPDNRT was identified and characterized from BF. It was proved that BP11 promoted CFU pre-B formation, and regulated B cell differentiation, including increase the percentage of immature and mature B cells in BM cells co-cultured with IL-7. BP11 also exerted immunomodulatory function on antigen-specific immune responses in BALB/c mice immunized with inactivated influence virus (AIV, H9N2 subtype) vaccine, including enhancing AIV-specific antibody and cytokine production. Furthermore, it was noteworthy that BP11 stimulated antibody productions and potentiates the Th1 and Th2-type immune responses in dose-dependent manner in chicken. These results suggested that BP11 might be highly relevant for the development of avian immune system.
Collapse
Affiliation(s)
- Xiao-Dong Liu
- Division of Key Lab of Animal Disease Diagnosis and Immunology of China's Department of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Adenanthin targets peroxiredoxin I and II to induce differentiation of leukemic cells. Nat Chem Biol 2012; 8:486-93. [PMID: 22484541 DOI: 10.1038/nchembio.935] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 02/28/2012] [Indexed: 12/12/2022]
Abstract
Peroxiredoxins (Prxs) are potential therapeutic targets for major diseases such as cancers. However, isotype-specific inhibitors remain to be developed. We report that adenanthin, a diterpenoid isolated from the leaves of Rabdosia adenantha, induces differentiation of acute promyelocytic leukemia (APL) cells. We show that adenanthin directly targets the conserved resolving cysteines of Prx I and Prx II and inhibits their peroxidase activities. Consequently, cellular H(2)O(2) is elevated, leading to the activation of extracellular signal-regulated kinases and increased transcription of CCAAT/enhancer-binding protein β, which contributes to adenanthin-induced differentiation. Adenanthin induces APL-like cell differentiation, represses tumor growth in vivo and prolongs the survival of mouse APL models that are sensitive and resistant to retinoic acid. Thus, adenanthin can serve as what is to our knowledge the first lead natural compound for the development of Prx I- and Prx II-targeted therapeutic agents, which may represent a promising approach to inducing differentiation of APL cells.
Collapse
|
20
|
Stewart TJ, Greeneltch KM, Reid JE, Liewehr DJ, Steinberg SM, Liu K, Abrams SI. Interferon regulatory factor-8 modulates the development of tumour-induced CD11b+Gr-1+ myeloid cells. J Cell Mol Med 2011; 13:3939-50. [PMID: 20196788 PMCID: PMC3858838 DOI: 10.1111/j.1582-4934.2009.00685.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tumour-induced myeloid-derived suppressor cells (MDSC) promote immune suppression and mediate tumour progression. However, the molecular basis for the generation of MDSC, which in mice co-express the CD11b+ and Gr-1+ cell surface markers remains unclear. Because CD11b+Gr-1+ cells expand during progressive tumour growth, this suggests that tumour-induced events alter signalling pathways that affect normal myeloid cell development. Interferon regulatory factor-8 (IRF-8), a member of the IFN-γ regulatory factor family, is essential for normal myelopoiesis. We therefore examined whether IRF-8 modulated tumour-induced CD11b+Gr-1+ cell development or accumulation using both implantable (4T1) and transgenic (MMTV-PyMT) mouse models of mammary tumour growth. In the 4T1 model, both splenic and bone marrow-derived CD11b+Gr-1+ cells of tumour-bearing mice displayed a marked reduction in IRF-8 expression compared to control populations. A causal link between IRF-8 expression and the emergence of tumour-induced CD11b+Gr-1+ cells was explored in vivo using a double transgenic (dTg) mouse model designed to express transgenes for both IRF-8 and mammary carcinoma development. Despite the fact that tumour growth was unaffected, splenomegaly, as well as the frequencies and absolute numbers of CD11b+Gr-1+ cells were significantly lower in dTg mice when compared with single transgenic tumour-bearing mice. Overall, these data reveal that IRF-8 plays an important role in tumour-induced development and/or accumulation of CD11b+Gr-1+ cells, and establishes a molecular basis for the potential manipulation of these myeloid populations for cancer therapy.
Collapse
Affiliation(s)
- Trina J Stewart
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Weaver BP, Andrews GK. Regulation of zinc-responsive Slc39a5 (Zip5) translation is mediated by conserved elements in the 3'-untranslated region. Biometals 2011; 25:319-35. [PMID: 22113231 PMCID: PMC3299966 DOI: 10.1007/s10534-011-9508-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/19/2011] [Indexed: 12/13/2022]
Abstract
Translation of the basolateral zinc transporter ZIP5 is repressed during zinc deficiency but Zip5 mRNA remains associated with polysomes and can be rapidly translated when zinc is repleted. Herein, we examined the mechanisms regulating translation of Zip5. The 3′-untranslated region (UTR) of Zip5 mRNA is well conserved among mammals and is predicted by mFOLD to form a very stable stem-loop structure. Three algorithms predict this structure to be flanked by repeated seed sites for miR-328 and miR-193a. RNAse footprinting supports the notion that a stable stem-loop structure exists in this 3′-UTR and electrophoretic mobility shift assays detect polysomal protein(s) binding specifically to the stem-loop structure in the Zip5 3′-UTR. miR-328 and miR-193a are expressed in tissues known to regulate Zip5 mRNA translation in response to zinc availability and both are polysome-associated consistent with Zip5 mRNA localization. Transient transfection assays using native and mutant Zip5 3′-UTRs cloned 3′ to luciferase cDNA revealed that the miRNA seed sites and the stem-loop function together to augment translation of Zip5 mRNA when zinc is replete.
Collapse
Affiliation(s)
- Benjamin P Weaver
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160-7421, USA.
| | | |
Collapse
|
22
|
Functional PU.1 in macrophages has a pivotal role in NF-κB activation and neutrophilic lung inflammation during endotoxemia. Blood 2011; 118:5255-66. [PMID: 21937699 DOI: 10.1182/blood-2011-03-341123] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although the role of ETS family transcriptional factor PU.1 is well established in macrophage maturation, its role in mature macrophages with reference to sepsis- related animal model has not been elucidated. Here, we report the in vivo function of PU.1 in mediating mature macrophage inflammatory phenotype by using bone marrow chimera mice with conditional PU.1 knockout. We observed that the expression of monocyte/macrophage-specific markers CD 11b, F4/80 in fetal liver cells, and bone marrow-derived macrophages were dependent on functional PU.1. Systemic inflammation as measured in terms of NF-κB reporter activity in lung, liver, and spleen tissues was significantly decreased in PU.1-deficient chimera mice compared with wild-type chimeras on lipopolysaccharide (LPS) challenge. Unlike wild-type chimera mice, LPS challenge in PU.1-deficient chimera mice resulted in decreased lung neu-trophilic inflammation and myeloperoxidase activity. Similarly, we found attenuated inflammatory gene expression (cyclooxygenase-2, inducible nitric-oxide synthase, and TLR4) and inflammatory cytokine secretion (IL-6, MCP-1, IL-1β, TNF-α, and neutrophilic chemokine keratinocyte-derived chemokine) in PU.1-deficient mice. Most importantly, this attenuated lung and systemic inflammatory phenotype was associated with survival benefit in LPS-challenged heterozygotic PU.1-deficient mice, establishing a novel protective mechanistic role for the lineage-specific transcription factor PU.1.
Collapse
|
23
|
The transcription factor PU.1 regulates γδ T cell homeostasis. PLoS One 2011; 6:e22189. [PMID: 21779390 PMCID: PMC3136513 DOI: 10.1371/journal.pone.0022189] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/17/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND T cell development results in the generation of both mature αβ and γδ T cells. While αβ T cells predominate in secondary lymphoid organs, γδ T cells are more abundant in mucosal tissues. PU.1, an Ets family transcription factor, also identified as the spleen focus forming virus proviral integration site-1 (Sfpi1) is essential for early stages of T cell development, but is down regulated during the DN T-cell stage. METHODOLOGY/PRINCIPAL FINDINGS In this study, we show that in mice specifically lacking PU.1 in T cells using an lck-Cre transgene with a conditional Sfpi1 allele (Sfpi1(lck-/-)) there are increased numbers of γδ T cells in spleen, thymus and in the intestine when compared to wild-type mice. The increase in γδ T cell numbers in PU.1-deficient mice is consistent in γδ T cell subsets identified by TCR variable regions. PU.1-deficient γδ T cells demonstrate greater proliferation in vivo and in vitro. CONCLUSIONS/SIGNIFICANCE The increase of γδ T cell numbers in Lck-Cre deleter strains, where deletion occurs after PU.1 expression is diminished, as well as the observation that PU.1-deficient γδ T cells have greater proliferative responses than wild type cells, suggests that PU.1 effects are not developmental but rather at the level of homeostasis. Thus, our data shows that PU.1 has a negative influence on γδ T cell expansion.
Collapse
|
24
|
Abstract
Vascular inflammation is associated with and in large part driven by changes in the leukocyte compartment of the vessel wall. Here, we focus on monocyte influx during atherosclerosis, the most common form of vascular inflammation. Although the arterial wall contains a large number of resident macrophages and some resident dendritic cells, atherosclerosis drives a rapid influx of inflammatory monocytes (Ly-6C(+) in mice) and other monocytes (Ly-6C(-) in mice, also known as patrolling monocytes). Once in the vessel wall, Ly-6C(+) monocytes differentiate to a phenotype consistent with inflammatory macrophages and inflammatory dendritic cells. The phenotype of these cells is modulated by lipid uptake, Toll-like receptor ligands, hematopoietic growth factors, cytokines, and chemokines. In addition to newly recruited macrophages, it is likely that resident macrophages also change their phenotype. Monocyte-derived inflammatory macrophages have a short half-life. After undergoing apoptosis, they may be taken up by surrounding macrophages or, if the phagocytic capacity is overwhelmed, can undergo secondary necrosis, a key event in forming the necrotic core of atherosclerotic lesions. In this review, we discuss these and other processes associated with monocytic cell dynamics in the vascular wall and their role in the initiation and progression of atherosclerosis.
Collapse
Affiliation(s)
- Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
25
|
Smith PD, Smythies LE, Shen R, Greenwell-Wild T, Gliozzi M, Wahl SM. Intestinal macrophages and response to microbial encroachment. Mucosal Immunol 2011; 4:31-42. [PMID: 20962772 PMCID: PMC3821935 DOI: 10.1038/mi.2010.66] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages in the gastrointestinal mucosa represent the largest pool of tissue macrophages in the body. In order to maintain mucosal homeostasis, resident intestinal macrophages uniquely do not express the lipopolysaccharide (LPS) co-receptor CD14 or the IgA (CD89) and IgG (CD16, 32, and 64) receptors, yet prominently display Toll-like receptors (TLRs) 3-9. Remarkably, intestinal macrophages also do not produce proinflammatory cytokines in response to TLR ligands, likely because of extracellular matrix (stromal) transforming growth factor-β (TGF-β) dysregulation of nuclear factor (NF)-κB signal proteins and, via Smad signaling, expression of IκBα, thereby inhibiting NF-κB-mediated activities. Thus, in noninflamed mucosa, resident macrophages are inflammation anergic but retain avid scavenger and host defense function, an ideal profile for macrophages in close proximity to gut microbiota. In the event of impaired epithelial integrity during intestinal infection or inflammation, however, blood monocytes also accumulate in the lamina propria and actively pursue invading microorganisms through uptake and degradation of the organism and release of inflammatory mediators. Consequently, resident intestinal macrophages are inflammation adverse, but when the need arises, they receive assistance from newly recruited circulating monocytes.
Collapse
Affiliation(s)
- PD Smith
- Department of Medicine (Gastroenterology) University of Alabama at Birmingham Birmingham, Alabama 35294-2182, USA
| | - LE Smythies
- Department of Medicine (Gastroenterology) University of Alabama at Birmingham Birmingham, Alabama 35294-2182, USA
| | - R Shen
- Department of Medicine (Gastroenterology) University of Alabama at Birmingham Birmingham, Alabama 35294-2182, USA
| | - T Greenwell-Wild
- Oral Infection and Immunity Branch National Institute of Dental and Craniofacial Research National Institutes of Health Bethesda, MD 20892-4352, USA
| | - M Gliozzi
- Oral Infection and Immunity Branch National Institute of Dental and Craniofacial Research National Institutes of Health Bethesda, MD 20892-4352, USA
| | - SM Wahl
- Oral Infection and Immunity Branch National Institute of Dental and Craniofacial Research National Institutes of Health Bethesda, MD 20892-4352, USA
| |
Collapse
|
26
|
Dostalova Merkerova M, Krejcik Z, Votavova H, Belickova M, Vasikova A, Cermak J. Distinctive microRNA expression profiles in CD34+ bone marrow cells from patients with myelodysplastic syndrome. Eur J Hum Genet 2010; 19:313-9. [PMID: 21150891 DOI: 10.1038/ejhg.2010.209] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs functioning as regulators of hematopoiesis. Their differential expression patterns have been linked with various pathological processes originating from hematopoietic stem cells (HSCs). However, limited information is available regarding the role of miRNAs in myelodysplastic syndrome (MDS). Using miRNA arrays, we measured expression of 1,145 miRNAs in CD34+ bone marrow cells obtained from 39 MDS and acute myeloid leukemia (AML) evolved from MDS patients, and compared them with those of six healthy donors. Differential miRNA expression was analyzed and a panel of upregulated (n=13) and downregulated (n=9) miRNAs were found (P<0.001) in MDS/AML patients. An increased expression of a large miRNA cluster mapped within the 14q32 locus was detected. Differences in miRNA expression of MDS subtypes showed a distinction between early and advanced MDS; an apparent dissimilarity was observed between RAEB-1 and RAEB-2 subtypes. In early MDS, we monitored upregulation of proapoptotic miR-34a, which may contribute to the increased apoptosis of HSCs. Patients with 5q deletion were characterized by decreased levels of miR-143(*) and miR-378 mapped within the commonly deleted region at 5q32. This is an early report describing differential expression in MDS CD34+ cells, likely reflecting their disease-specific regulation.
Collapse
|
27
|
Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F, Venturini E, Gregory L, Lonie L, Chew A, Wei CL, Ragoussis J, Natoli G. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 2010; 32:317-28. [PMID: 20206554 DOI: 10.1016/j.immuni.2010.02.008] [Citation(s) in RCA: 512] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 01/29/2023]
Abstract
Enhancers determine tissue-specific gene expression programs. Enhancers are marked by high histone H3 lysine 4 mono-methylation (H3K4me1) and by the acetyl-transferase p300, which has allowed genome-wide enhancer identification. However, the regulatory principles by which subsets of enhancers become active in specific developmental and/or environmental contexts are unknown. We exploited inducible p300 binding to chromatin to identify, and then mechanistically dissect, enhancers controlling endotoxin-stimulated gene expression in macrophages. In these enhancers, binding sites for the lineage-restricted and constitutive Ets protein PU.1 coexisted with those for ubiquitous stress-inducible transcription factors such as NF-kappaB, IRF, and AP-1. PU.1 was required for maintaining H3K4me1 at macrophage-specific enhancers. Reciprocally, ectopic expression of PU.1 reactivated these enhancers in fibroblasts. Thus, the combinatorial assembly of tissue- and signal-specific transcription factors determines the activity of a distinct group of enhancers. We suggest that this may represent a general paradigm in tissue-restricted and stimulus-responsive gene regulation.
Collapse
Affiliation(s)
- Serena Ghisletti
- Department of Experimental Oncology, European Institute of Oncology (IEO), IFOM-IEO Campus, Via Adamello 16, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jerke U, Tkachuk S, Kiyan J, Stepanova V, Kusch A, Hinz M, Dietz R, Haller H, Fuhrman B, Dumler I. Stat1 nuclear translocation by nucleolin upon monocyte differentiation. PLoS One 2009; 4:e8302. [PMID: 20011528 PMCID: PMC2788426 DOI: 10.1371/journal.pone.0008302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 11/19/2009] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Members of the signal transducer and activator of transcription (Stat) family of transcription factors traverse the nuclear membrane through a specialized structure, called the nuclear pore complex (NPC), which represents a selective filter for the import of proteins. Karyophilic molecules can bind directly to a subset of proteins of the NPC, collectively called nucleoporins. Alternatively, the transport is mediated via a carrier molecule belonging to the importin/karyopherin superfamily, which transmits the import into the nucleus through the NPC. METHODOLOGY/PRINCIPAL FINDINGS In this study, we provide evidence for an alternative Stat1 nuclear import mechanism, which is mediated by the shuttle protein nucleolin. We observed Stat1-nucleolin association, nuclear translocation and specific binding to the regulatory DNA element GAS. Using expression of nucleolin transgenes, we found that the nuclear localization signal (NLS) of nucleolin is responsible for Stat1 nuclear translocation. We show that this mechanism is utilized upon differentiation of myeloid cells and is specific for the differentiation step from monocytes to macrophages. CONCLUSIONS/SIGNIFICANCE Our data add the nucleolin-Stat1 complex as a novel functional partner for the cell differentiation program, which is uniquely poised to regulate the transcription machinery via Stat1 and nuclear metabolism via nucleolin.
Collapse
Affiliation(s)
- Uwe Jerke
- Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kim WK, Sun Y, Do H, Autissier P, Halpern EF, Piatak M, Lifson JD, Burdo TH, McGrath MS, Williams K. Monocyte heterogeneity underlying phenotypic changes in monocytes according to SIV disease stage. J Leukoc Biol 2009; 87:557-67. [PMID: 19843579 DOI: 10.1189/jlb.0209082] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Infection by HIV is associated with the expansion of monocytes expressing CD16 antigens, but the significance of this in HIV pathogenesis is largely unknown. In rhesus macaques, at least three subpopulations of blood monocytes were identified based on their expression of CD14 and CD16: CD14(high)CD16(-), CD14(high)CD16(low), and CD14(low)CD16(high). The phenotypes and functions of these subpopulations, including CD16(+) monocytes, were investigated in normal, uninfected rhesus macaques and macaques that were infected with SIV or chimeric SHIV. To assess whether these different monocyte subpopulations expand or contract in AIDS pathogenesis, we conducted a cross-sectional study of 54 SIV- or SHIV-infected macaques and 48 uninfected controls. The absolute numbers of monocyte populations were examined in acutely infected animals, chronically infected animals with no detectable plasma virus RNA, chronically infected animals with detectable plasma virus RNA, and animals that died with AIDS. The absolute numbers of CD14(high)CD16(low) and CD14(low)CD16(high) monocytes were elevated significantly in acutely infected animals and chronically infected animals with detectable plasma virus RNA compared with uninfected controls. Moreover, a significant, positive correlation was evident between the number of CD14(high)CD16(low) or CD14(low)CD16(high) monocytes and plasma viral load in the infected cohort. These data show the dynamic changes of blood monocytes, most notably, CD14(high)CD16(low) monocytes during lentiviral infection, which are specific to disease stage.
Collapse
Affiliation(s)
- Woong-Ki Kim
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Guilhot F, Roy L, Saulnier PJ, Guilhot J. Interferon in chronic myeloid leukaemia: past and future. Best Pract Res Clin Haematol 2009; 22:315-29. [DOI: 10.1016/j.beha.2009.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Transcriptional regulation of a myeloid-lineage specific gene lysozyme C during zebrafish myelopoiesis. Mech Dev 2009; 126:314-23. [PMID: 19275935 DOI: 10.1016/j.mod.2009.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 02/26/2009] [Accepted: 02/27/2009] [Indexed: 11/24/2022]
Abstract
lysozyme C (lyz), a glycoside hydrolase expressed exclusively in myeloid cells, is involved in the host defense against bacterial infection. We isolated a 2.4kb zebrafish lyz promoter region and established transgenic lines that drive enhanced green fluorescent protein (EGFP) to examine how lyz expression is regulated during myelopoiesis. We found that the 2.4kb lyz promoter is sufficient to drive myeloid-specific expression of EGFP in zebrafish. We identified potential transcriptional regulatory elements including a Runx element (TGTGGT at -1.70kb) and a C/ebp element (TTTGGCAAT at -1.46kb) in the lyz promoter, and showed that they are required for myeloid-specific expression of EGFP. We found that the myeloid-lineage transcription factors C/ebp1, Runx1 and Pu.1 can bind to the 2.4kb lyz promoter. Forced expression of runx1, c/ebp1 and pu.1 together induced ectopic lyz expression in the intermediated cell mass (ICM). Thus, we propose that c/ebp1 and runx1 presumably cooperated with pu.1 in the transcriptional regulation of lyz during zebrafish myelopoiesis.
Collapse
|
32
|
Miura H, Tomaru Y, Nakanishi M, Kondo S, Hayashizaki Y, Suzuki M. Identification of DNA regions and a set of transcriptional regulatory factors involved in transcriptional regulation of several human liver-enriched transcription factor genes. Nucleic Acids Res 2008; 37:778-92. [PMID: 19074951 PMCID: PMC2647325 DOI: 10.1093/nar/gkn978] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mammalian tissue- and/or time-specific transcription is primarily regulated in a combinatorial fashion through interactions between a specific set of transcriptional regulatory factors (TRFs) and their cognate cis-regulatory elements located in the regulatory regions. In exploring the DNA regions and TRFs involved in combinatorial transcriptional regulation, we noted that individual knockdown of a set of human liver-enriched TRFs such as HNF1A, HNF3A, HNF3B, HNF3G and HNF4A resulted in perturbation of the expression of several single TRF genes, such as HNF1A, HNF3G and CEBPA genes. We thus searched the potential binding sites for these five TRFs in the highly conserved genomic regions around these three TRF genes and found several putative combinatorial regulatory regions. Chromatin immunoprecipitation analysis revealed that almost all of the putative regulatory DNA regions were bound by the TRFs as well as two coactivators (CBP and p300). The strong transcription-enhancing activity of the putative combinatorial regulatory region located downstream of the CEBPA gene was confirmed. EMSA demonstrated specific bindings of these HNFs to the target DNA region. Finally, co-transfection reporter assays with various combinations of expression vectors for these HNF genes demonstrated the transcriptional activation of the CEBPA gene in a combinatorial manner by these TRFs.
Collapse
Affiliation(s)
- Hisashi Miura
- RIKEN Omics Science Center, RIKEN Yokohama Institute 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Moeenrezakhanlou A, Shephard L, Lam L, Reiner NE. Myeloid cell differentiation in response to calcitriol for expression CD11b and CD14 is regulated by myeloid zinc finger-1 protein downstream of phosphatidylinositol 3-kinase. J Leukoc Biol 2008; 84:519-28. [PMID: 18495781 DOI: 10.1189/jlb.1207833] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Immature cells of the mononuclear phagocyte series differentiate in response to calcitriol. This is accompanied by increased expression of both CD11b and CD14 and has been shown to be phosphatidylinositol 3-kinase (PI3K) dependent. The events downstream of PI3K that regulate mononuclear phagocyte gene expression, however, remain to be fully understood. In the present study, we show that incubation of THP-1 cells with calcitriol brings about activation of the myeloid zinc finger-1 (MZF-1) transcription factor dependent upon PI3K. In addition, we show that the proximal promoter regions of both CD11b and CD14 contain functional MZF-1 binding sites that are calcitriol responsive. Site-directed mutagenesis of the putative MZF-1 elements abolished MZF-1 binding to the promoters of both CD11b and CD14. Not only did calcitriol treatment increase MZF-1 DNA binding activity to these sites, but it also up-regulated cellular levels of MZF-1. Silencing of MZF-1 resulted in a markedly blunted response to calcitriol for induction of both CD11b and CD14 mRNA transcript levels. Cell surface expression of CD11b and CD14 was also reduced, but to a lesser extent. Taken together, these results show that MZF-1 is involved downstream of PI3K in a calcitriol-induced signaling pathway leading to myeloid cell differentiation and activation of CD11b and CD14.
Collapse
Affiliation(s)
- Alireza Moeenrezakhanlou
- Department of Medicine (Division of Infectious Diseases), University of British Columbia, Rm. 452D, 2733 Heather St., Vancouver, BC V5Z 3J5, Canada
| | | | | | | |
Collapse
|
34
|
Haine V, Fischer-Smith T, Rappaport J. Macrophage colony-stimulating factor in the pathogenesis of HIV infection: potential target for therapeutic intervention. J Neuroimmune Pharmacol 2007; 1:32-40. [PMID: 18040789 DOI: 10.1007/s11481-005-9003-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Macrophage colony stimulating factor (M-CSF) appears to play a major role in promoting and maintaining reservoirs of human immunodeficiency virus type 1 (HIV-1) in infected individuals. HIV-1 infection induces production of M-CSF by macrophages, which in turn promotes further infection of macrophages via increases in CD4 and CCR5 receptors, as well as increases in virus gene expression. M-CSF promotes the ontogeny and survival of macrophages, contributing to both the number and longevity of these infected cells. M-CSF dysregulation promotes the differentiation of monocytes toward macrophages and osteoclasts and at the same time may inhibit differentiation toward dendritic cells, resulting in immune impairment. The potential role of M-CSF in HIV-associated end organ diseases including HIV-associated dementia, HIV-associated nephropathy, and osteoporosis is discussed. This review emphasizes the need for developing M-CSF antagonists for treatment of HIV-1-infected patients.
Collapse
Affiliation(s)
- Valerie Haine
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 1900 N. 12th Street, Philadelphia, PA 19122, USA
| | | | | |
Collapse
|
35
|
Yang L, Jiang Y, Wu SF, Zhou MY, Wu YL, Chen GQ. CCAAT/enhancer-binding protein alpha antagonizes transcriptional activity of hypoxia-inducible factor 1 alpha with direct protein-protein interaction. Carcinogenesis 2007; 29:291-8. [PMID: 18024476 DOI: 10.1093/carcin/bgm262] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1), a master heterodimeric transcriptional regulator consisting of HIF-1alpha and HIF-1beta subunits for cellular response to hypoxia, plays an important role in carcinogenesis, while CCAAT/enhancer-binding protein alpha (C/EBPalpha) is proposed to act as a tumor suppressor in C/EBPalpha-expressing tissues. Previously, we reported that ectopically expressed HIF-1alpha protein interacts with and enhances transcriptional activity of C/EBPalpha, which favors leukemic cell differentiation. Here we further showed that such an interaction also occurred in their endogenously expressing state of leukemic U937 cells. Glutathione S-transferase pull-down assay proposed that the protein-protein interaction was direct, and transactivation domains of C/EBPalpha and the basic helix-loop-helix domain of HIF-1alpha were essential for such an interaction. More intriguingly, we provided the first demonstration that C/EBPalpha competed with HIF-1beta for direct binding to HIF-1alpha protein. Correspondingly, C/EBPalpha overexpression significantly inhibited the DNA-binding ability of HIF-1 and expressions of hypoxia-responsive element-driven luciferase and HIF-1-targeted genes vascular endothelial growth factor, glucose transporter-1 and phosphoglycerate kinase 1. In parallel, suppression of C/EBPalpha expression by specific small hairpin RNA increased DNA-binding ability of HIF-1 and expression of these HIF-1-targeted genes in leukemic U937 cells. These results would provide new insights for antitumor potential of C/EBPalpha protein.
Collapse
Affiliation(s)
- L Yang
- Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences-Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | |
Collapse
|
36
|
Cai Q, McReynolds MR, Keck M, Greer KA, Hoying JB, Brooks HL. Vasopressin receptor subtype 2 activation increases cell proliferation in the renal medulla of AQP1 null mice. Am J Physiol Renal Physiol 2007; 293:F1858-64. [PMID: 17913837 DOI: 10.1152/ajprenal.00068.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aquaporin (AQP) 1 null mice have a defect in the renal concentrating gradient because of their inability to generate a hyperosmotic medullary interstitium. To determine the effect of vasopressin on renal medullary gene expression, in the absence of high local osmolarity, we infused 1-deamino-8-d-arginine vasopressin (dDAVP), a V(2) receptor (V(2)R)-specific agonist, in AQP1 null mice for 7 days. cDNA microarray analysis was performed on the renal medullary tissue, and 5,140 genes of the possible 12,000 genes on the array were included in the analysis. In the renal medulla of AQP1 null mice, 245 transcripts were identified as increased by dDAVP infusion and 200 transcripts as decreased (1.5-fold or more). Quantitative real-time PCR measurements confirmed the increases seen for cyclin D1, early growth response gene 1, and activating transcription factor 3, genes associated with changes in cell cycle/growth. Changes in mRNA expression were correlated with changes in protein expression by semiquantitative immunoblotting; cyclin D1 and ATF3 were increased significantly in abundance following dDAVP infusion in the renal medulla of AQP1 null mice (161 and 461%, respectively). A significant increase in proliferation of medullary collecting ducts cells, following V(2)R activation, was identified by proliferating cell nuclear antigen immunohistochemistry; colocalization studies with AQP2 indicated that the increase in proliferation was primarily observed in principal cells of the inner medullary collecting duct (IMCD). V(2)R activation, via dDAVP, increased AQP2 and AQP3 protein abundance in the cortical collecting ducts of AQP1 null mice. However, V(2)R activation did not increase AQP2 protein abundance in the IMCD of AQP1 null mice.
Collapse
MESH Headings
- Animals
- Antidiuretic Hormone Receptor Antagonists
- Aquaporin 1/genetics
- Blotting, Western
- Cell Proliferation/drug effects
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Deamino Arginine Vasopressin/pharmacology
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Immunohistochemistry
- In Situ Hybridization
- Kidney Medulla/cytology
- Kidney Medulla/drug effects
- Kidney Tubules, Collecting/cytology
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/metabolism
- Mice
- Mice, Knockout
- Oligonucleotide Array Sequence Analysis
- Osmolar Concentration
- Proliferating Cell Nuclear Antigen/metabolism
- Proliferating Cell Nuclear Antigen/physiology
- RNA/biosynthesis
- RNA/genetics
- Receptors, Vasopressin/physiology
- Renal Agents/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Qi Cai
- Dept. of Physiology, College of Medicine, 1501 N. Campbell Ave., Univ. of Arizona, Tucson, AZ 85724-5051, USA
| | | | | | | | | | | |
Collapse
|
37
|
Yang L, Wang L, Kalfa TA, Cancelas JA, Shang X, Pushkaran S, Mo J, Williams DA, Zheng Y. Cdc42 critically regulates the balance between myelopoiesis and erythropoiesis. Blood 2007; 110:3853-61. [PMID: 17702896 PMCID: PMC2190607 DOI: 10.1182/blood-2007-03-079582] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Rho GTPase Cdc42 regulates adhesion, migration, and homing, as well as cell cycle progression, of hematopoietic stem cells, but its role in multilineage blood development remains unclear. We report here that inducible deletion of cdc42 in cdc42-floxed mouse bone marrow by the interferon-responsive, Mx1-Cre-mediated excision led to myeloid and erythroid developmental defects. Cdc42 deletion affected the number of early myeloid progenitors while suppressing erythroid differentiation. Cdc42-deficient mice developed a fatal myeloproliferative disorder manifested by significant leukocytosis with neutrophilia, myeloid hyperproliferation, and myeloid cell infiltration into distal organs. Concurrently, Cdc42 deficiency caused anemia and splenomegaly accompanied with decreased bone marrow erythroid burst-forming units (BFU-Es) and colony-forming units-erythroid (CFU-Es) activities and reduced immature erythroid progenitors, suggesting that Cdc42 deficiency causes a block in the early stage of erythropoiesis. Cdc42 activity is responsive to stimulation by SCF, IL3, SDF-1alpha, and fibronectin. The increased myelopoiesis and decreased erythropoiesis of the knockout mice are associated with an altered gene transcription program in hematopoietic progenitors, including up-regulation of promyeloid genes such as PU.1, C/EBP1alpha, and Gfi-1 in the common myeloid progenitors and granulocyte-macrophage progenitors and down-regulation of proerythroid gene such as GATA-2 in the megakaryocyte-erythroid progenitors. Thus, Cdc42 is an essential regulator of the balance between myelopoiesis and erythropoiesis.
Collapse
Affiliation(s)
- Linda Yang
- Division of Experimental Hematology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lehtonen A, Ahlfors H, Veckman V, Miettinen M, Lahesmaa R, Julkunen I. Gene expression profiling during differentiation of human monocytes to macrophages or dendritic cells. J Leukoc Biol 2007; 82:710-20. [PMID: 17595377 DOI: 10.1189/jlb.0307194] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macrophages and dendritic cells (DC) are APC, which regulate innate and adaptive immune responses. Macrophages function locally mainly, maintaining inflammatory responses in tissues, whereas DC take up microbes, mature, and migrate to local lymph nodes to present microbial antigens to naïve T cells to elicit microbe-specific immune responses. Blood monocytes can be differentiated in vitro to macrophages or DC by GM-CSF or GM-CSF + IL-4, respectively. In the present study, we performed global gene expression analyses using Affymetrix HG-U133A Gene Chip oligonucleotide arrays during macrophage and DC differentiation. During the differentiation process, 340 and 350 genes were up-regulated, and 190 and 240 genes were down-regulated in macrophages and DC, respectively. There were also more that 200 genes, which were expressed differentially in fully differentiated macrophages and DC. Macrophage-specific genes include, e.g., CD14, CD163, C5R1, and FcgammaR1A, and several cell surface adhesion molecules, cytokine receptors, WNT5A and its receptor of the Frizzled family FZD2, fibronectin, and FcepsilonR1A were identified as DC-specific. Our results reveal significant differences in gene expression profiles between macrophages and DC, and these differences can partially explain the functional differences between these two important cell types.
Collapse
Affiliation(s)
- Anne Lehtonen
- Department of Viral Diseases and Immunology, National Public Health Institute, Mannerheimintie 166, FI-00300 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
39
|
Guilhot F, Roy L, Martineua G, Guilhot J, Millot F. Immunotherapy in chronic myelogenous leukemia. ACTA ACUST UNITED AC 2007; 7 Suppl 2:S64-70. [PMID: 17382015 DOI: 10.3816/clm.2007.s.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chronic myelogenous leukemia is one of the leukemic disorders more responsive to immunotherapy. Interferon-based regimens were the first treatment to produce complete cytogenetic responses, and this agent has been classified as an immunotherapeutic agent. Although most patients are now treated with imatinib as first-line therapy, a combination of interferon and imatinib could increase the rate of molecular responses and prevent patients from experiencing relapse. Thus, large phase III trials are currently exploring this strategy. Allogeneic stem cell transplantation also involves the immune system, with fewer patients in relapse in case they experience graft-versushost disease. Vaccine strategies are also promising with phase II ongoing trials. These vaccine strategies include the use of oligopeptides derived from the Bcr-Abl junction. Initial results indicate a good safety profile of these therapies in patients exhibiting complete cytogenetic response and molecular responses. These 3 different approaches of immunotherapy are described herein. Although these results obtained with imatinib are promising, this tyrosine kinase inhibitor does not eradicate leukemic stem cells. Thus, immunotherapeutic strategies are still being investigated in chronic myelogenous leukemia.
Collapse
Affiliation(s)
- François Guilhot
- Department of Oncology-Hematology and Cell Therapy, Clinical Research Centre, Centre Hospitalier Universitaire de Poitiers, France. e-mail:
| | | | | | | | | |
Collapse
|
40
|
Zhang J, Chen X. DeltaNp73 modulates nerve growth factor-mediated neuronal differentiation through repression of TrkA. Mol Cell Biol 2007; 27:3868-80. [PMID: 17353261 PMCID: PMC1899982 DOI: 10.1128/mcb.02112-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
p73, a member of the p53 family, expresses two classes of proteins: the full-length TAp73 and the N-terminally truncated DeltaNp73. While TAp73 possesses many p53-like features, DeltaNp73 is dominant negative towards TAp73 and p53 and appears to have distinct functions in tumorigenesis and neuronal development. Given its biological importance, we investigated the role of DeltaNp73 in nerve growth factor (NGF)-mediated neuronal differentiation in PC12 cells. We show that overexpression of DeltaNp73alpha or DeltaNp73beta inhibits NGF-mediated neuronal differentiation in both p53-dependent and -independent manners. In line with this, we showed that the level of endogenous DeltaNp73 is progressively diminished in differentiating PC12 cells upon NGF treatment and knockdown of DeltaNp73 promotes NGF-mediated neuronal differentiation. Interestingly, we found that the ability of DeltaNp73 to suppress NGF-mediated neuronal differentiation is correlated with its ability to regulate the expression of TrkA, the high-affinity NGF receptor. Specifically, we found that DeltaNp73 directly binds to the TrkA promoter and transcriptionally represses TrkA expression, which in turn attenuates the NGF-mediated mitogen-activated protein kinase pathway. Conversely, the steady-state level of TrkA is increased upon knockdown of DeltaNp73. Furthermore, we found that histone deacetylase 1 (HDAC1) and HDAC2 are recruited by DeltaNp73 to the TrkA promoter and act as corepressors to suppress TrkA expression, which can be relieved by trichostatin A, an HDAC inhibitor. Taken together, we conclude that DeltaNp73 negatively regulates NGF-mediated neuronal differentiation by transrepressing TrkA.
Collapse
Affiliation(s)
- Jin Zhang
- Center for Comparative Oncology, 2128 Tupper Hall, University of California at Davis, Davis, CA 95616, USA
| | | |
Collapse
|
41
|
Abstract
Although cell-lineage and differentiation models dominate tumour classification and treatment, the recognition that cancer is also a genomic disease has prompted a reconfiguration of cancer taxonomies according to molecular criteria. Recent evidence indicates that a synthesis of lineage-based and genetic paradigms might offer new insights into crucial and therapeutically pliable tumour dependencies. For example, MITF (microphthalmia-associated transcription factor), which is a master regulator of the melanocyte lineage, might become a melanoma oncogene when deregulated in certain genetic contexts. MITF and other lineage-survival genes therefore implicate lineage dependency (or lineage addiction) as a newly recognized mechanism that is affected by tumour genetic alterations.
Collapse
Affiliation(s)
- Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
42
|
Ma SL, Sørensen AB, Kunder S, Sørensen KD, Quintanilla-Martinez L, Morris DW, Schmidt J, Pedersen FS. The Icsbp locus is a common proviral insertion site in mature B-cell lymphomas/plasmacytomas induced by exogenous murine leukemia virus. Virology 2006; 352:306-18. [PMID: 16780917 DOI: 10.1016/j.virol.2006.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 02/16/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
ICSBP (interferon consensus sequence binding protein)/IRF8 (interferon regulatory factor 8) is an interferon gamma-inducible transcription factor expressed predominantly in hematopoietic cells, and down-regulation of this factor has been observed in chronic myelogenous leukemia and acute myeloid leukemia in man. By screening about 1200 murine leukemia virus (MLV)-induced lymphomas, we found proviral insertions at the Icsbp locus in 14 tumors, 13 of which were mature B-cell lymphomas or plasmacytomas. Only one was a T-cell lymphoma, although such tumors constituted about half of the samples screened. This indicates that the Icsbp locus can play a specific role in the development of mature B-lineage malignancies. Two proviral insertions in the last Icsbp exon were found to act by a poly(A)-insertion mechanism. The remaining insertions were found within or outside Icsbp. Since our results showed expression of Icsbp RNA and protein in all end-stage tumor samples, a simple tumor suppressor function of ICSBP is not likely. Interestingly, proviral insertions at Icsbp have not been reported from previous extensive screenings of mature B-cell lymphomas induced by endogenous MLVs. We propose that ICSBP might be involved in an early modulation of an immune response to exogenous MLVs that might also play a role in proliferation of the mature B-cell lymphomas.
Collapse
MESH Headings
- Animals
- Base Sequence
- Interferon Regulatory Factors/genetics
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/virology
- Mice
- Plasmacytoma/etiology
- Plasmacytoma/genetics
- Plasmacytoma/pathology
- Plasmacytoma/virology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Virus Integration/genetics
Collapse
Affiliation(s)
- Shi Liang Ma
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Alle, Bldg. 130, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zineh I, Aquilante CL, Langaee TY, Beitelshees AL, Arant CB, Wessel TR, Schofield RS. CXCL5 gene polymorphisms are related to systemic concentrations and leukocyte production of epithelial neutrophil-activating peptide (ENA-78). Cytokine 2006; 33:258-63. [PMID: 16567110 DOI: 10.1016/j.cyto.2006.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 01/04/2006] [Accepted: 02/02/2006] [Indexed: 11/22/2022]
Abstract
Data exist linking elevated epithelial neutrophil activating peptide (ENA-78) concentrations with myriad inflammatory conditions. ENA-78 is encoded by the CXCL5 gene which has recently been shown to be polymorphic in nature (rs352046 and rs425535). No functional data on these polymorphisms exist. We investigated whether CXCL5 polymorphisms are associated with differences in plasma ENA-78 concentrations or leukocyte production of ENA-78 from cultured leukocytes in relatively healthy adults. We genotyped 114 adults for the above polymorphisms. Variant alleles at both loci were highly linked (D'=1, r2=0.94). The rs352046 variant allele was associated with significantly higher ENA-78 plasma concentrations. A genotype effect was also demonstrated for this polymorphism and leukocyte production of ENA-78. Both polymorphisms were predicted to have functional consequences by in silico analyses, with the rs352046 polymorphism found to occur at a transcription factor binding site for myeloid zinc finger proteins and the rs425535 polymorphism found to be located in an exon splicing enhancer site. Our findings add to the strength of CXCL5 as candidate gene in future disease-gene and pharmacogenetic association studies.
Collapse
Affiliation(s)
- Issam Zineh
- University of Florida College of Pharmacy, Department of Pharmacy Practice, 1600 SW Archer Road., Room PG-06, PO Box 100486, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Wu MY, Wu XY, Li QS, Zheng RM. Expression of Egr-1 gene and its correlation with the oncogene proteins in non-irradiated and irradiated esophageal squamous cell carcinoma. Dis Esophagus 2006; 19:267-72. [PMID: 16866858 DOI: 10.1111/j.1442-2050.2006.00575.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We study the expression of early growth response gene-1 (Egr-1 gene) in non-irradiated and irradiated human esophageal cancer tissues, and its relationship with the expression of C-fos, C-jun onco-proteins as well as Egr-1 target gene proteins P53, Rb and Bax expression. In situ hybridization (ISH) and immunohistochemistry (IHC) were used respectively to detect Egr-1 mRNA, Egr-1, C-fos, C-jun, P53, Rb and Bax proteins in 80 surgically resected non-irradiated and irradiated tumor specimens of esophageal squamous cell carcinoma. Egr-1 gene mRNA and Bax protein were located in the cytoplasm, whereas Egr-1, C-fos, C-jun, P53, Rb proteins were located in the nuclei. Egr-1 was expressed in nine out of 40 cases (22.5%) of non-irradiated and 23 of 40 cases (57.5%) of irradiated tumor specimens. No correlation was found between Egr-1 gene expression and C-fos, C-jun onco-proteins expression, neither was any correlation disclosed between Egr-1 gene expression with its target gene protein expression. Patients who underwent radiotherapy with Egr-1 overexpressed in their cancer tissue had better prognosis. Radiotherapy up-regulates Egr-1 expression in esophageal carcinoma. Egr-1 overexpression may be a potential radiation response gene marker and may play an important role in prognosis of esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- M-Y Wu
- Department of Pathology, Shantou University Medical College, The key immunopathology laboratory of Guangdong Province, Shantou, Guangdong Province, China.
| | | | | | | |
Collapse
|
45
|
Rehli M, Sulzbacher S, Pape S, Ravasi T, Wells CA, Heinz S, Söllner L, El Chartouni C, Krause SW, Steingrimsson E, Hume DA, Andreesen R. Transcription factor Tfec contributes to the IL-4-inducible expression of a small group of genes in mouse macrophages including the granulocyte colony-stimulating factor receptor. THE JOURNAL OF IMMUNOLOGY 2005; 174:7111-22. [PMID: 15908341 DOI: 10.4049/jimmunol.174.11.7111] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of the mouse transcription factor EC (Tfec) is restricted to the myeloid compartment, suggesting a function for Tfec in the development or function of these cells. However, mice lacking Tfec develop normally, indicating a redundant role for Tfec in myeloid cell development. We now report that Tfec is specifically induced in bone marrow-derived macrophages upon stimulation with the Th2 cytokines, IL-4 and IL-13, or LPS. LPS induced a rapid and transient up-regulation of Tfec mRNA expression and promoter activity, which was dependent on a functional NF-kappaB site. IL-4, however, induced a rapid, but long-lasting, increase in Tfec mRNA, which, in contrast to LPS stimulation, also resulted in detectable levels of Tfec protein. IL-4-induced transcription of Tfec was absent in macrophages lacking Stat6, and its promoter depended on two functional Stat6-binding sites. A global comparison of IL-4-induced genes in both wild-type and Tfec mutant macrophages revealed a surprisingly mild phenotype with only a few genes affected by Tfec deficiency. These included the G-CSFR (Csf3r) gene that was strongly up-regulated by IL-4 in wild-type macrophages and, to a lesser extent, in Tfec mutant macrophages. Our study also provides a general definition of the transcriptome in alternatively activated mouse macrophages and identifies a large number of novel genes characterizing this cell type.
Collapse
Affiliation(s)
- Michael Rehli
- Department of Hematology and Oncology, University of Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ramanathan B, Minton JE, Ross CR, Blecha F. PU.1-mediated transcriptional regulation of prophenin-2 in primary bone marrow cells. Gene 2005; 352:1-9. [PMID: 15922520 DOI: 10.1016/j.gene.2005.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 03/24/2005] [Accepted: 04/07/2005] [Indexed: 11/26/2022]
Abstract
Prophenin-2 (PF-2) is a cathelicidin, 97-amino-acid antimicrobial protein stored in neutrophil secondary granules. PF-2 is expressed specifically in porcine immature myeloid cells; however, little is known about its regulation. In this study, we characterized the 5' regulatory regions of the PF-2 gene to understand the molecular mechanisms regulating its expression. Using bioinformatic approaches, site-directed mutagenesis, and transactivation experiments, we found that the PF-2 gene was regulated by transcription factor PU.1. In addition, PF-2 expression also is regulated by the cytokines GM-CSF and IL-3. Taken together, these results identify cis- and trans-acting factors involved in the regulation of PF-2 and clarify mechanisms of cathelidicin gene regulation.
Collapse
Affiliation(s)
- Balaji Ramanathan
- Coles Hall 228, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5802, USA
| | | | | | | |
Collapse
|
47
|
Takahashi K, Matsumoto C, Ra C. FHL3 negatively regulates human high-affinity IgE receptor beta-chain gene expression by acting as a transcriptional co-repressor of MZF-1. Biochem J 2005; 386:191-200. [PMID: 15453830 PMCID: PMC1134781 DOI: 10.1042/bj20040775] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The high-affinity IgE receptor FcepsilonRI plays a key role in triggering allergic reactions. We recently reported that human FcepsilonRI beta-chain gene expression was down-regulated by a transcription factor, MZF-1, through an element in the fourth intron. In the present study, we found that this transcriptional repression by MZF-1 required FHL3 (four and a half LIM domain protein 3) as a cofactor. Yeast two-hybrid and immunoprecipitation assays demonstrated that FHL3 bound MZF-1 in vitro and in vivo. Overexpression of FHL3 in KU812 cells suppressed the beta-chain promoter activity through the element in the fourth intron in an MZF-1-dependent manner. Furthermore, results from pull-down assays and gel-filtration chromatography employing nuclear extracts indicated that MZF-1 and FHL3 formed a complex of high molecular mass with some additional proteins in the nucleus. Granulocyte-macrophage colony-stimulating factor, which was reported to decrease FcepsilonRI expression, induced the accumulation of FHL3 in the nucleus, in accordance with the repressive role of FHL3 in beta-chain gene expression.
Collapse
MESH Headings
- Cell Line, Tumor
- Cell Nucleus/chemistry
- Chromatography, Gel
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Genes, Reporter
- Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology
- Humans
- Interleukin-3/pharmacology
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/physiology
- Introns/genetics
- Kruppel-Like Transcription Factors
- LIM Domain Proteins
- Leukemia, Basophilic, Acute/pathology
- Molecular Sequence Data
- Multigene Family
- Promoter Regions, Genetic/genetics
- Protein Binding
- Protein Interaction Mapping
- Protein Structure, Tertiary
- Protein Transport
- Receptors, IgE/biosynthesis
- Receptors, IgE/genetics
- Recombinant Fusion Proteins/physiology
- Repressor Proteins/genetics
- Repressor Proteins/physiology
- Saccharomyces cerevisiae/metabolism
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
- Transformation, Genetic
- Two-Hybrid System Techniques
- Zinc Fingers/genetics
- Zinc Fingers/physiology
Collapse
Affiliation(s)
- Kyoko Takahashi
- *Department of Molecular Cell Immunology and Allergology, Advanced Medical Research Center, Nihon University Graduate School of Medical Sciences, 30-1 Oyaguchi, Kami-machi, Itabashi-ku, Toyko 173-8610, Japan
| | - Chiyuki Matsumoto
- *Department of Molecular Cell Immunology and Allergology, Advanced Medical Research Center, Nihon University Graduate School of Medical Sciences, 30-1 Oyaguchi, Kami-machi, Itabashi-ku, Toyko 173-8610, Japan
- †Department of Dermatology, Surugadai Nihon University Hospital, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8309, Japan
| | - Chisei Ra
- *Department of Molecular Cell Immunology and Allergology, Advanced Medical Research Center, Nihon University Graduate School of Medical Sciences, 30-1 Oyaguchi, Kami-machi, Itabashi-ku, Toyko 173-8610, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
48
|
Xue ZH, Jiang Y, Yu Y, Wang LS, Chen GQ, Zhao Q. Metavanadate suppresses desferrioxamine-induced leukemic cell differentiation with reduced hypoxia-inducible factor-1α protein. Biochem Biophys Res Commun 2005; 332:1140-5. [PMID: 15935329 DOI: 10.1016/j.bbrc.2005.05.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 05/12/2005] [Indexed: 11/19/2022]
Abstract
We recently showed that moderate hypoxia and hypoxia-mimetic agents CoCl(2) and desferrioxamine (DFO) induce differentiation of acute myeloid leukemic cells via hypoxia-inducible factor-1alpha (HIF-1alpha) that interacts with and increases the transcriptional activity of CCAAT/enhancer-binding protein alpha (C/EBPalpha), a critical factor for granulocytic differentiation. Here, we show that metavanadate antagonizes DFO-induced growth arrest and differentiation with the inhibition of HIF-1alpha protein accumulation in leukemic cells. Furthermore, DFO also increased C/EBPalpha expression rapidly but transiently, which was inhibited by metavanadate. Taken together, these findings provide further evidence for the role of HIF-1alpha and C/EBPalpha in DFO-induced leukemic cell differentiation.
Collapse
Affiliation(s)
- Zhi-Hong Xue
- Department of Pathophysiology, Rui-Jin Hospital, Shanghai Second Medical University (SSMU), Shanghai 200025, China
| | | | | | | | | | | |
Collapse
|
49
|
Feriotto G, Finotti A, Volpe P, Treves S, Ferrari S, Angelelli C, Zorzato F, Gambari R. Myocyte enhancer factor 2 activates promoter sequences of the human AbetaH-J-J locus, encoding aspartyl-beta-hydroxylase, junctin, and junctate. Mol Cell Biol 2005; 25:3261-75. [PMID: 15798210 PMCID: PMC1069596 DOI: 10.1128/mcb.25.8.3261-3275.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing of the locus AbetaH-J-J generates three functionally distinct proteins: an enzyme, AbetaH (aspartyl-beta-hydroxylase), a structural protein of the sarcoplasmic reticulum membrane (junctin), and an integral membrane calcium binding protein (junctate). Junctin and junctate are two important proteins involved in calcium regulation in eukaryotic cells. To understand the regulation of these two proteins, we identified and functionally characterized one of the two promoter sequences of the AbetaH-J-J locus. We demonstrate that the P2 promoter of the AbetaH-J-J locus contains (i) a minimal sequence localized within a region -159 bp from the transcription initiation site, which is sufficient to activate transcription of both mRNAs; (ii) sequences which bind known transcriptional factors such as those belonging to the myocyte enhancer factor 2 (MEF-2), MEF-3, and NF-kappaB protein families; and (iii) sequences bound by unknown proteins. The functional characterization of the minimal promoter in C2C12 cells and in the rat soleus muscle in vivo model indicates the existence of cis elements having positive and negative effects on transcription. In addition, our data demonstrate that in striated muscle cells the calcium-dependent transcription factor MEF-2 is crucial for the transcription activity directed by the P2 promoter. The transcription directed by the AbetaH-J-J P2 promoter is induced by high expression of MEF-2, further stimulated by calcineurin and Ca2+/calmodulin-dependent protein kinase I, and inhibited by histone deacetylase 4.
Collapse
Affiliation(s)
- Giordana Feriotto
- Biotechnology Center, Biology, University of Ferrara, Via Borsari 46, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Leeanansaksiri W, Wang H, Gooya JM, Renn K, Abshari M, Tsai S, Keller JR. IL-3 Induces Inhibitor of DNA-Binding Protein-1 in Hemopoietic Progenitor Cells and Promotes Myeloid Cell Development. THE JOURNAL OF IMMUNOLOGY 2005; 174:7014-21. [PMID: 15905544 DOI: 10.4049/jimmunol.174.11.7014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hemopoiesis depends on the expression and regulation of transcription factors, which control the maturation of specific cell lineages. We found that the helix-loop-helix transcription factor inhibitor of DNA-binding protein 1 (Id1) is not expressed in hemopoietic stem cells (HSC), but is increased in more committed myeloid progenitors. Id1 levels decrease during neutrophil differentiation, but remain high in differentiated macrophages. Id1 is expressed at low levels or is absent in developing lymphoid or erythroid cells. Id1 expression can be induced by IL-3 in HSC during myeloid differentiation, but not by growth factors that promote erythroid and B cell development. HSC were transduced with retroviral vectors that express Id1 and were transplanted in vivo to evaluate their developmental potential. Overexpression of Id1 in HSC promotes myeloid but impairs B and erythroid cell development. Enforced expression of Id1 in committed myeloid progenitor cells inhibits granulocyte but not macrophage differentiation. Therefore, Id1 may be part of the mechanism regulating myeloid vs lymphoid/erythroid cell fates, and macrophage vs neutrophil maturation.
Collapse
Affiliation(s)
- Wilairat Leeanansaksiri
- Basic Research Program, Science Applications International Corporation (SAIC)-Frederick, National Cancer Institute-Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|