1
|
Ahmad J, Ikram S, Hafeez AB, Durdagi S. Physics-driven identification of clinically approved and investigation drugs against human neutrophil serine protease 4 (NSP4): A virtual drug repurposing study. J Mol Graph Model 2020; 101:107744. [PMID: 33032202 DOI: 10.1016/j.jmgm.2020.107744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 01/19/2023]
Abstract
Neutrophils synthesize four immune associated serine proteases: Cathepsin G (CTSG), Elastase (ELANE), Proteinase 3 (PRTN3) and Neutrophil Serine Protease 4 (NSP4). While previously considered to be immune modulators, overexpression of neutrophil serine proteases correlates with various disease conditions. Therefore, identifying novel small molecules that can potentially control or inhibit the proteolytic activity of these proteases is crucial to revert or temper the aggravated disease phenotype. To the best of our knowledge, although there is limited data for inhibitors of other neutrophil protease members, there is no previous clinical study of a synthetic small molecule inhibitor targeting NSP4. In this study, an integrated molecular modeling algorithm was performed within a virtual drug repurposing study to identify novel inhibitors for NSP4, using clinically approved and investigation drugs library (∼8000 compounds). Based on our rigorous filtration, we found that following molecules Becatecarin, Iogulamide, Delprostenate and Iralukast are predicted to block the activity of NSP4 by interacting with core catalytic residues. The selected ligands were energetically more favorable compared to the reference molecule. The result of this study identifies promising molecules as potential lead candidates.
Collapse
Affiliation(s)
- Jamshaid Ahmad
- Center of Biotechnology & Microbiology, University of Peshawar, Pakistan.
| | - Saima Ikram
- Center of Biotechnology & Microbiology, University of Peshawar, Pakistan; Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Ahmer Bin Hafeez
- Center of Biotechnology & Microbiology, University of Peshawar, Pakistan
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey.
| |
Collapse
|
2
|
Wu CH, Li J, Li L, Sun J, Fabbri M, Wayne AS, Seeger RC, Jong AY. Extracellular vesicles derived from natural killer cells use multiple cytotoxic proteins and killing mechanisms to target cancer cells. J Extracell Vesicles 2019; 8:1588538. [PMID: 30891164 PMCID: PMC6419691 DOI: 10.1080/20013078.2019.1588538] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 01/01/2023] Open
Abstract
Extracellular vesicles (EVs) are secreted membrane vesicles, which play complex physiological and pathological functions in intercellular communication. Recently, we isolated natural killer (NK) cell-derived EVs (NK-EVs) from ex vivo expansion of NK cell cultures. The isolated NK-EVs contained cytotoxic proteins and several activated caspases, and they induced apoptosis in target cells. In this report, the protein levels of cytotoxic proteins from NK-EV isolates were analysed by ELISA. The mean values of perforin (PFN, 550 ng/mL), granzyme A (GzmA, 185 ng/mL), granzyme B (GzmB, 23.4 ng/mL), granulysin (GNLY, 56 ng/mL), and FasL (2.5 ng/mL) were obtained from >60 isolations using dot plots. The correlation between cytotoxicity and cytotoxic protein levels was examined by linear regression. PFN, GzmA, GzmB, GNLY all had a positive, moderate correlation with cytotoxicity, suggesting that there is not a single cytotoxic protein dominantly involved in killing and that all of these proteins may contribute to cytotoxicity. To further explore the possible killing mechanisms, cells were treated with NK-EVs, proteins extracted and lysates assessed by Western blotting. The levels of Gzm A substrates, SET and HMG2, were diminished in targeted cells, indicating that GzmA may induce a caspase-independent death pathway. Also, cytochrome C was released from mitochondria, a central hallmark of caspase-dependent death pathways. In addition, several ER-associated proteins were altered, suggesting that NK-EVs may induce ER stress resulting in cell death. Our results indicate that multiple killing mechanisms are activated by NK-derived EVs, including caspase-independent and -dependent cell death pathways, which can mediate cytotoxicity against cancer cells. Abbreviations: NK: natural killer cells; aNK: activated NK cells; EV: extracellular vesicles; ER: endoplasmic reticulum; ALL: acute lymphoblastic leukaemia; FBS: foetal bovine serum. GzmA: granzyme A; GzmB: granzyme B; GNLY: granulysin; PFN: perforin.
Collapse
Affiliation(s)
- Chun-Hua Wu
- Children’s Center for Cancer and Blood Diseases and Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jingbo Li
- Children’s Center for Cancer and Blood Diseases and Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li Li
- Children’s Center for Cancer and Blood Diseases and Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jianping Sun
- Children’s Center for Cancer and Blood Diseases and Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Muller Fabbri
- Children’s Center for Cancer and Blood Diseases and Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alan S. Wayne
- Children’s Center for Cancer and Blood Diseases and Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert C. Seeger
- Children’s Center for Cancer and Blood Diseases and Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ambrose Y. Jong
- Children’s Center for Cancer and Blood Diseases and Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Akula S, Thorpe M, Boinapally V, Hellman L. Granule Associated Serine Proteases of Hematopoietic Cells - An Analysis of Their Appearance and Diversification during Vertebrate Evolution. PLoS One 2015; 10:e0143091. [PMID: 26569620 PMCID: PMC4646688 DOI: 10.1371/journal.pone.0143091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/20/2015] [Indexed: 12/02/2022] Open
Abstract
Serine proteases are among the most abundant granule constituents of several hematopoietic cell lineages including mast cells, neutrophils, cytotoxic T cells and NK cells. These proteases are stored in their active form in the cytoplasmic granules and in mammals are encoded from four different chromosomal loci: the chymase locus, the met-ase locus, the T cell tryptase and the mast cell tryptase locus. In order to study their appearance during vertebrate evolution we have performed a bioinformatic analysis of related genes and gene loci from a large panel of metazoan animals from sea urchins to placental mammals for three of these loci: the chymase, met-ase and granzyme A/K loci. Genes related to mammalian granzymes A and K were the most well conserved and could be traced as far back to cartilaginous fish. Here, the granzyme A and K genes were found in essentially the same chromosomal location from sharks to humans. However in sharks, no genes clearly identifiable as members of the chymase or met-ase loci were found. A selection of these genes seemed to appear with bony fish, but sometimes in other loci. Genes related to mammalian met-ase locus genes were found in bony fish. Here, the most well conserved member was complement factor D. However, genes distantly related to the neutrophil proteases were also identified in this locus in several bony fish species, indicating that this locus is also old and appeared at the base of bony fish. In fish, a few of the chymase locus-related genes were found in a locus with bordering genes other than the mammalian chymase locus and some were found in the fish met-ase locus. This indicates that a convergent evolution rather than divergent evolution has resulted in chymase locus-related genes in bony fish.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Michael Thorpe
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Vamsi Boinapally
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
4
|
Edgar CE, Terrell DR, Vesely SK, Wren JD, Dozmorov IM, Niewold TB, Brown M, Zhou F, Frank MB, Merrill JT, Kremer Hovinga JA, Lämmle B, James JA, George JN, Farris AD. Ribosomal and immune transcripts associate with relapse in acquired ADAMTS13-deficient thrombotic thrombocytopenic purpura. PLoS One 2015; 10:e0117614. [PMID: 25671313 PMCID: PMC4324966 DOI: 10.1371/journal.pone.0117614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/29/2014] [Indexed: 11/18/2022] Open
Abstract
Approximately 40% of patients who survive acute episodes of thrombotic thrombocytopenic purpura (TTP) associated with severe acquired ADAMTS13 deficiency experience one or more relapses. Risk factors for relapse other than severe ADAMTS13 deficiency and ADAMTS13 autoantibodies are unknown. ADAMTS13 autoantibodies, TTP episodes following infection or type I interferon treatment and reported ensuing systemic lupus erythematosus in some patients suggest immune dysregulation. This cross-sectional study asked whether autoantibodies against RNA-binding proteins or peripheral blood gene expression profiles measured during remission are associated with history of prior relapse in acquired ADAMTS13-deficient TTP. Peripheral blood from 38 well-characterized patients with autoimmune ADAMTS13-deficient TTP in remission was examined for autoantibodies and global gene expression. A subset of TTP patients (9 patients, 24%) exhibited a peripheral blood gene signature composed of elevated ribosomal transcripts that associated with prior relapse. A non-overlapping subset of TTP patients (9 patients, 24%) displayed a peripheral blood type I interferon gene signature that associated with autoantibodies to RNA-binding proteins but not with history of relapse. Patients who had relapsed bimodally expressed higher HLA transcript levels independently of ribosomal transcripts. Presence of any one potential risk factor (ribosomal gene signature, elevated HLA-DRB1, elevated HLA-DRB5) associated with relapse (OR = 38.4; p = 0.0002) more closely than any factor alone or all factors together. Levels of immune transcripts typical of natural killer (NK) and T lymphocytes positively correlated with ribosomal gene expression and number of prior episodes but not with time since the most recent episode. Flow cytometry confirmed elevated expression of cell surface markers encoded by these transcripts on T and/or NK cell subsets of patients who had relapsed. These data associate elevated ribosomal and immune transcripts with relapse history in acquired, ADAMTS13-deficient TTP.
Collapse
Affiliation(s)
- Contessa E. Edgar
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, United States of America
| | - Deirdra R. Terrell
- Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States of America
| | - Sara K. Vesely
- Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States of America
| | - Jonathan D. Wren
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, United States of America
| | - Igor M. Dozmorov
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, United States of America
| | - Timothy B. Niewold
- Division of Rheumatology and Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael Brown
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, United States of America
| | - Fang Zhou
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, United States of America
| | - Mark Barton Frank
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, United States of America
| | - Joan T. Merrill
- Clinical Pharmacology Program, OMRF, Oklahoma City, Oklahoma, United States of America
| | - Johanna A. Kremer Hovinga
- Department of Hematology & Central Hematology Laboratory, Inselspital, Bern University Hospital & University of Bern, Bern, Switzerland
| | - Bernhard Lämmle
- Department of Hematology & Central Hematology Laboratory, Inselspital, Bern University Hospital & University of Bern, Bern, Switzerland
| | - Judith A. James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, United States of America
- Department of Medicine, OUHSC, Oklahoma City, Oklahoma, United States of America
| | - James N. George
- Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States of America
- Department of Medicine, OUHSC, Oklahoma City, Oklahoma, United States of America
| | - A. Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
5
|
Xue M, Jackson CJ. Activated protein C and its potential applications in prevention of islet β-cell damage and diabetes. VITAMINS AND HORMONES 2014; 95:323-63. [PMID: 24559924 DOI: 10.1016/b978-0-12-800174-5.00013-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activated protein C (APC) is derived from its precursor, protein C (PC). Originally thought to be synthesized exclusively by the liver, recent reports have shown that PC is also produced by many other cells including pancreatic islet β cells. APC functions as a physiological anticoagulant with anti-inflammatory, anti-apoptotic, and barrier-stabilizing properties. APC exerts its protective effects via an intriguing mechanism requiring combinations of endothelial PC receptor, protease-activated receptors, epidermal growth factor receptor, Tie2 or CD11b, depending on cell types. Diabetes is a chronic condition resulted from the body's inability to produce and/or properly use insulin. The prevalence of diabetes has risen dramatically and has become one of the major causes of premature mortality and morbidity worldwide. Diabetes prevention is an ideal approach to reduce this burden. Type 1 and type 2 diabetes are the major forms of diabetes mellitus, and both are characterized by an autoimmune response, intraislet inflammation, β-cell apoptosis, and progressive β-cell loss. Protecting β-cell from damage is critical in both prevention and treatment of diabetes. Recent in vitro and animal studies show that APC's strong anti-inflammatory and anti-apoptotic properties are beneficial in preventing β-cell destruction and diabetes in the NOD mouse model of type 1 diabetes. Future preventive and therapeutic uses of APC in diabetes look very promising.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratories, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia.
| | - Christopher J Jackson
- Sutton Arthritis Research Laboratories, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
6
|
Dilek AR, Dilek N, Saral Y, Yüksel D. The relationship between severity of the disease and circulating nucleosomes in psoriasis patients. Arch Dermatol Res 2013; 305:483-7. [PMID: 23567920 DOI: 10.1007/s00403-013-1347-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 12/11/2022]
Abstract
Psoriasis was initially considered to represent a disease of abnormal epidermal keratinocyte proliferation. Proliferation of keratinocytes is restricted by apoptotic cell death to maintain a constant thickness of epidermis. Nucleosomes are mainly released by apoptotic cells. Tumor necrosis factor-α (TNF-α) is an important factor affecting the apoptosis. In the present study, the relationship between TNF-α, nucleosome and the Psoriasis Area and Severity Index (PASI) score was investigated. The patients were divided according to PASI score into three groups (mild, moderately, severe). Serum TNF-α and nucleosome levels were measured using Enzyme-linked immunosorbent assay (ELISA) method. Our findings show a correct relationship between PASI scores and TNF-α and an inverse relationship between nucleosome and PASI score. According to the results obtained from the study, we believe that serum nucleosome levels can be used as a new indicator in follow-up of patients with psoriasis and monitoring of the effectiveness of drugs which used in the treatment of psoriasis.
Collapse
Affiliation(s)
- Aziz Ramazan Dilek
- Microbiology Department of Recep Tayyip Erdoğan University, Medical Faculty Hospital, Rize, 53000, Turkey.
| | | | | | | |
Collapse
|
7
|
Iłżecka J. Granzymes A and B levels in serum of patients with amyotrophic lateral sclerosis. Clin Biochem 2011; 44:650-3. [PMID: 21349256 DOI: 10.1016/j.clinbiochem.2011.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 02/07/2011] [Accepted: 02/13/2011] [Indexed: 01/20/2023]
Abstract
OBJECTIVES There are evidences that immuno-inflammatory mechanisms and apoptosis may play a role in the pathophysiology of amyotrophic lateral sclerosis (ALS). It is known that Granzyme A (GzmA) and granzyme B (GzmB) are implicated in these mechanisms. The aim of the study was to investigate serum GzmA and GzmB levels in patients with ALS. DESIGN AND METHODS The study included 30 patients with ALS and 30 patients from the control group. Serum GzmA and GzmB levels were measured using the enzyme-linked immunosorbent method. RESULTS The study showed that GzmA and GzmB levels are significantly increased in serum of patients with ALS when compared to the control group (p<0.05). There was a significant correlation of serum GzmB levels with severity of clinical state of ALS patients (p<0.05). CONCLUSION The results indicate that GzmA and GzmB are implicated in mechanisms of neurodegeneration in ALS.
Collapse
Affiliation(s)
- Joanna Iłżecka
- Department of Neurological Rehabilitation, Medical University, ul. Chodźki 6, 20–953 Lublin, Poland.
| |
Collapse
|