1
|
Jiang Z, Kang Q, Qian H, Xu Z, Tong H, Yang J, Li L, Li R, Li G, Chen F, Lin N, Zhao Y, Shi H, Huang J, Ma X. Revealing the crucial roles of suppressive immune microenvironment in cardiac myxoma progression. Signal Transduct Target Ther 2024; 9:193. [PMID: 39090109 PMCID: PMC11294589 DOI: 10.1038/s41392-024-01912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2023] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Cardiac myxoma is a commonly encountered tumor within the heart that has the potential to be life-threatening. However, the cellular composition of this condition is still not well understood. To fill this gap, we analyzed 75,641 cells from cardiac myxoma tissues based on single-cell sequencing. We defined a population of myxoma cells, which exhibited a resemblance to fibroblasts, yet they were distinguished by an increased expression of phosphodiesterases and genes associated with cell proliferation, differentiation, and adhesion. The clinical relevance of the cell populations indicated a higher proportion of myxoma cells and M2-like macrophage infiltration, along with their enhanced spatial interaction, were found to significantly contribute to the occurrence of embolism. The immune cells surrounding the myxoma exhibit inhibitory characteristics, with impaired function of T cells characterized by the expression of GZMK and TOX, along with a substantial infiltration of tumor-promoting macrophages expressed growth factors such as PDGFC. Furthermore, in vitro co-culture experiments showed that macrophages promoted the growth of myxoma cells significantly. In summary, this study presents a comprehensive single-cell atlas of cardiac myxoma, highlighting the heterogeneity of myxoma cells and their collaborative impact on immune cells. These findings shed light on the complex pathobiology of cardiac myxoma and present potential targets for intervention.
Collapse
Affiliation(s)
- Zedong Jiang
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Qianlong Kang
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Qian
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huan Tong
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaqing Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Renwei Li
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangqi Li
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Chen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nan Lin
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunuo Zhao
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huashan Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Juan Huang
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Khalafallah SA, Eltayeb Ahmed EA, Elnour LS, Mohammed R, Makawi A, Mohamed AK, Balla A, Alamin MF, Alfaki M. Bioinformatic Analysis Reveals Bone Marrow Kinase as a Potential Diagnostic and Prognostic Biomarker for Multiple Cancer Types. Cureus 2024; 16:e68093. [PMID: 39347140 PMCID: PMC11437519 DOI: 10.7759/cureus.68093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
INTRODUCTION Bone marrow kinase, or BMX, is alternatively referred to as endothelial tyrosine kinase (Etk). It plays a vital role in the processes of cell proliferation, survival, immune activation, and the modulation of diverse signaling pathways. Since there are few direct comprehensive studies linking BMX role with multiple cancers, this study aimed to utilize bioinformatic tools to conduct a comprehensive analysis of BMX across multiple cancers, assessing its potential role. METHODS Multiple databases including the Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA), and University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN), have been used to explore BMX expression across different cancers, which has been further validated by using Gene Expression Omnibus (GEO) public datasets. In addition, we used the Kaplan-Meier plotter to estimate overall survival and cBioPortal for genetic alterations analysis. This study accommodates several other analyses like clinical parameters, immune cell infiltration, and DNA promoter methylation profiles to evaluate the general role of BMX in several cancers. Results: The present investigation revealed that the BMX gene expression was significantly downregulated and could serve as an effective diagnostic biomarker in five types of cancers, namely breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and rectum adenocarcinoma (READ) (all p < 0.05). Detailed analyses revealed notable downregulation of BMX in various clinical parameters such as age, gender, race, and cancer stage (all p < 0.05). To better understand the immunotherapeutic role of BMX, this investigation further examined the immune infiltration which exhibited positive correlations between BMX expression and the infiltration of immunological cells such as B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells, especially in COAD, LUAD, and LUSC (all p < 0.05). In addition, the present study has demonstrated that diminished BMX gene expression is correlated with an unfavorable prognosis in kidney renal clear cell carcinoma (KIRC), liver hepatocellular carcinoma (LIHC), sarcoma (SARC), and uterine corpus endometrial carcinoma (UCEC); thus BMX gene expression can be used as a prognostic target for these specific cancers. Also, the results showed that the promoter methylation level of BMX was significantly elevated in LUAD and LUSC, whereas it was significantly decreased in BRCA (all p < 0.001). Importantly, our findings of significantly low BMX expression in LUAD and LUSC, along with their methylation profiles suggest that the low expression of BMX across these cancers is due to epigenetic factors. However, genetic alteration analysis revealed that mutations existed in only approximately 2% of the TCGA samples. CONCLUSION Our study revealed BMX as a diagnostic biomarker in BRCA, COAD, LUAD, LUSC, and READ and a prognostic biomarker in KIRC, LIHC, SARC, and UCEC. Furthermore, epigenetic variables may have a greater impact on BMX expression levels especially in LUAD and LUSC. This study also emphasized the role of BMX in the infiltration of immune cells, such as B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells, in certain cancers. The BMX expression level highlights the prognostic value and potential therapeutic potential of BMX.
Collapse
Affiliation(s)
| | - Ethar A Eltayeb Ahmed
- Hematology, Faculty of Health Sciences, National University of Malaysia, Kuala Lumpur, MYS
| | | | - Rihab Mohammed
- Medical Microbiology, College of Medical Laboratory Sciences, University of Dongola, Al Dabbah, SDN
| | - Amna Makawi
- Pediatrics, College of Medicine, Elrazi University, Khartoum, SDN
| | - Aml K Mohamed
- Medicine and Surgery, International University of Africa, Khartoum, SDN
| | - Amna Balla
- Bioinformatics, University of Bahri, Khartoum, SDN
| | - Marwa F Alamin
- Molecular Biology, Institute of Endemic Diseases, Khartoum University, Khartoum, SDN
| | | |
Collapse
|
3
|
Zheng D, Ning J, Deng H, Ruan Y, Cheng F. TRIM26 inhibits clear cell renal cell carcinoma progression through destabilizing ETK and thus inactivation of AKT/mTOR signaling. J Transl Med 2024; 22:481. [PMID: 38773612 PMCID: PMC11110379 DOI: 10.1186/s12967-024-05273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Tripartite motif-containing 26 (TRIM26), a member of the TRIM protein family, exerts dual function in several types of cancer. Nevertheless, the precise role of TRIM26 in clear cell renal cell carcinoma (ccRCC) has not been investigated. METHODS The expression of TRIM26 in ccRCC tissues and cell lines were examined through the use of public resources and experimental validation. The impacts of TRIM26 on cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) process were determined via CCK-8, colony formation, EdU incorporation, wound healing, Transwell invasion, Western blot, and Immunofluorescence assays. RNA-seq followed by bioinformatic analyses were used to identify the downstream pathway of TRIM26. The interaction between TRIM26 and ETK was assessed by co-immunoprecipitation, qRT-PCR, Western blot, cycloheximide (CHX) chase, and in vivo ubiquitination assays. RESULTS We have shown that TRIM26 exhibits a downregulation in both ccRCC tissues and cell lines. Furthermore, this decreased expression of TRIM26 is closely linked to unfavorable overall survival and diseases-free survival outcomes among ccRCC patients. Gain- and loss-of-function experiments demonstrated that increasing the expression of TRIM26 suppressed the proliferation, migration, invasion, and EMT process of ccRCC cells. Conversely, reducing the expression of TRIM26 had the opposite effects. RNA sequencing, coupled with bioinformatic analysis, revealed a significant enrichment of the mTOR signaling pathway in the control group compared to the group with TRIM26 overexpression. This finding was then confirmed by a western blot assay. Subsequent examination revealed that TRMI26 had a direct interaction with ETK, a non-receptor tyrosine kinase. This interaction facilitated the ubiquitination and degradation of ETK, resulting in the deactivation of the AKT/mTOR signaling pathway in ccRCC. ETK overexpression counteracted the inhibitory effects of TRIM26 overexpression on cell proliferation, migration, and invasion. CONCLUSION Our results have shown a novel mechanism by which TRIM26 hinders the advancement of ccRCC by binding to and destabilizing ETK, thus leading to the deactivation of AKT/mTOR signaling. TRIM26 shows promise as both a therapeutic target and prognostic biomarker for ccRCC patients.
Collapse
Affiliation(s)
- Di Zheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P. R. China
| | - Jinzhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P. R. China
| | - Hao Deng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P. R. China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P. R. China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P. R. China.
| |
Collapse
|
4
|
Pastrovic F, Novak R, Grgurevic I, Hrkac S, Salai G, Zarak M, Grgurevic L. Serum proteomic profiling of patients with compensated advanced chronic liver disease with and without clinically significant portal hypertension. PLoS One 2024; 19:e0301416. [PMID: 38603681 PMCID: PMC11008873 DOI: 10.1371/journal.pone.0301416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2023] [Accepted: 03/16/2024] [Indexed: 04/13/2024] Open
Abstract
INTRODUCTION Portal hypertension (PH) drives the progression of liver cirrhosis to decompensation and death. Hepatic venous pressure gradient (HVPG) measurement is the standard of PH quantification, and HVPG≥10 mmHg defines clinically significant PH (CSPH). We performed proteomics-based serum profiling to search for a proteomic signature of CSPH in patients with compensated advanced chronic liver disease (cACLD). MATERIALS AND METHODS Consecutive patients with histologically confirmed cACLD and results of HVPG measurements were prospectively included. Serum samples were pooled according to the presence/absence of CSPH and analysed by liquid chromatography-mass spectrometry. Gene set enrichment analysis was performed, followed by comprehensive literature review for proteins identified with the most striking difference between the groups. RESULTS We included 48 patients (30 with, and 18 without CSPH). Protein CD44, involved in the inflammatory response, vascular endothelial growth factor C (VEGF-C) and lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), both involved in lymphangiogenesis were found solely in the CSPH group. Although identified in both groups, proteins involved in neutrophil extracellular traps (NET) formation, as well as tenascin C, autotaxin and nephronectin which mediate vascular contractility and lymphangiogenesis were more abundant in CSPH. DISCUSSION AND CONCLUSION We propose that altered inflammatory response, including NET formation, vascular contractility and formation of new lymph vessels are key steps in PH development. Proteins such as CD44, VEGF-C, LYVE-1, tenascin C, Plasminogen activator inhibitor 1, Nephronectin, Bactericidal permeability-increasing protein, Autotaxin, Myeloperoxidase and a disintegrin and metalloproteinase with thrombospondin motifs-like protein 4 might be considered for further validation as potential therapeutic targets and candidate biomarkers of CSPH in cACLD.
Collapse
Affiliation(s)
- Frane Pastrovic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, Laboratory for Liver Diseases and Portal Hypertension, University Hospital Dubrava, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Rudjer Novak
- Department of Proteomics, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
- University of Zagreb, School of Medicine, Zagreb, Croatia
- Biomedical Research Center Salata, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, Laboratory for Liver Diseases and Portal Hypertension, University Hospital Dubrava, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Stela Hrkac
- Department of Clinical Immunology, Allergology and Rheumatology, University Hospital Dubrava, Zagreb, Croatia
| | - Grgur Salai
- Department of Pulmonology, University Hospital Dubrava, Zagreb, Croatia
| | - Marko Zarak
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
- Clinical Department of Laboratory Diagnostics, University Hospital Dubrava, Zagreb, Croatia
| | - Lovorka Grgurevic
- Department of Proteomics, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Biomedical Research Center Salata, University of Zagreb, School of Medicine, Zagreb, Croatia
- Department of Anatomy, ˝Drago Perovic˝, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
5
|
Huang G, Zhang S, Liao J, Qin Y, Hong Y, Chen Q, Lin Y, Li Y, Lan L, Hu W, Huang K, Tang F, Tang N, Jiang L, Shen C, Cui L, Zhong H, Li M, Lu P, Shu Q, Wei Y, Xu F. BMX deletion mitigates neuroinflammation induced by retinal ischemia/reperfusion through modulation of the AKT/ERK/STAT3 signaling cascade. Heliyon 2024; 10:e27114. [PMID: 38434304 PMCID: PMC10907772 DOI: 10.1016/j.heliyon.2024.e27114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
Aims Retinal ischemia/reperfusion (I/R) injury is implicated in the etiology of various ocular disorders. Prior research has demonstrated that bone marrow tyrosine kinase on chromosome X (BMX) contributes to the advancement of ischemic disease and inflammatory reactions. Consequently, the current investigation aims to evaluate BMX's impact on retinal I/R injury and clarify its implied mechanism of action. Main methods This study utilized male and female systemic BMX knockout (BMX-/-) mice to conduct experiments. The utilization of Western blot assay and immunofluorescence labeling techniques was employed to investigate variations in the expression of protein and tissue localization. Histomorphological changes were observed through H&E staining and SD-OCT examination. Visual function changes were assessed through electrophysiological experiments. Furthermore, apoptosis in the retina was identified using the TUNEL assay, as well as the ELISA technique, which has been utilized to determine the inflammatory factors level. Key findings Our investigation results revealed that the knockdown of BMX did not yield a significant effect on mouse retina. In mice, BMX knockdown mitigated the negative impact of I/R injury on retinal tissue structure and visual function. BMX knockdown effectively reduced apoptosis, suppressed inflammatory responses, and decreased inflammatory factors subsequent to I/R injury. The outcomes of the current investigation revealed that BMX knockdown partially protected the retina through downregulating phosphorylation of AKT/ERK/STAT3 pathway. Significance Our investigation showed that BMX-/- reduces AKT, ERK, and STAT3 phosphorylation, reducing apoptosis and inflammation. Thus, this strategy protected the retina from structural and functional damage after I/R injury.
Collapse
Affiliation(s)
- Guangyi Huang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Shaoyang Zhang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Jing Liao
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Yuanjun Qin
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Yiyi Hong
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Qi Chen
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Yunru Lin
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Yue Li
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Lin Lan
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Wen Hu
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Kongqian Huang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Fen Tang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Ningning Tang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Li Jiang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Chaolan Shen
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Ling Cui
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Haibin Zhong
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Min Li
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Peng Lu
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Qinmeng Shu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Yantao Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 7 Jinsui Road, Guangzhou, 510060, China
| | - Fan Xu
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| |
Collapse
|
6
|
Elsanhoury R, Alasmari A, Parupathi P, Jumaa M, Al-Fayoumi S, Kumar A, Khashan R, Nazzal S, Fayyad AA. AI & experimental-based discovery and preclinical IND-enabling studies of selective BMX inhibitors for development of cancer therapeutics. Int J Pharm 2023; 645:123384. [PMID: 37678472 DOI: 10.1016/j.ijpharm.2023.123384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
The current work aims to design and provide a preliminary IND-enabling study of selective BMX inhibitors for cancer therapeutics development. BMX is an emerging target, more notably in oncological and immunological diseases. In this work, we have employed a predictive AI-based platform to design the selective inhibitors considering the novelty, IP prior protection, and drug-likeness properties. Furthermore, selected top candidates from the initial iteration of the design were synthesized and chemically characterized utilizing 1H NMR and LC-MS. Employing a panel of biochemical (enzymatic) and cancer cell lines, the selected molecules were tested against these assays. In addition, we used artificial intelligence to predict and evaluate several critical IND-focused physicochemical and pharmacokinetics values of the selected molecules. A secondary objective of the current work was also to validate the sole role of BMX in animal models known to be mediated by BMX. More than 50 molecules were designed in the present study employing five novel discovered scaffolds. Two molecules were nominated for further IND-focused studies. Compound II showed promising in-vitro activity against BMX in both enzymatic assays compared to other kinases and in cancer cell lines with known BMX overexpression. Interestingly, compound II showed very favorable physicochemical and pharmacokinetics properties as predicted by the used platforms. The animal study further confirmed the sole role of BMX in the disease model. The current work provides promising data on a selective BMX inhibitor as a potential lead for therapeutics development, and the asset is currently in the optimization stage. Notably, the current study shows a framework for a combined approach employing both AI and experimentation that can be used by academic labs in their research programs to more streamline programs into IND-focused to be bridged easily for further clinical development with industrial partners.
Collapse
Affiliation(s)
- Rwan Elsanhoury
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Abdulaziz Alasmari
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Prashanth Parupathi
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | | | | | - Avinash Kumar
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Raed Khashan
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Sami Nazzal
- College of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX, USA
| | - Ahmed Abu Fayyad
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA.
| |
Collapse
|
7
|
Green JR, Mahalingaiah PKS, Gopalakrishnan SM, Liguori MJ, Mittelstadt SW, Blomme EAG, Van Vleet TR. Off-target pharmacological activity at various kinases: Potential functional and pathological side effects. J Pharmacol Toxicol Methods 2023; 123:107468. [PMID: 37553032 DOI: 10.1016/j.vascn.2023.107468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
In drug discovery, during the lead optimization and candidate characterization stages, novel small molecules are frequently evaluated in a battery of in vitro pharmacology assays to identify potential unintended, off-target interactions with various receptors, transporters, ion channels, and enzymes, including kinases. Furthermore, these screening panels may also provide utility at later stages of development to provide a mechanistic understanding of unexpected safety findings. Here, we present a compendium of the most likely functional and pathological outcomes associated with interaction(s) to a panel of 95 kinases based on an extensive curation of the scientific literature. This panel of kinases was designed by AbbVie based on safety-related data extracted from the literature, as well as from over 20 years of institutional knowledge generated from discovery efforts. For each kinase, the scientific literature was reviewed using online databases and the most often reported functional and pathological effects were summarized. This work should serve as a practical guide for small molecule drug discovery scientists and clinical investigators to predict and/or interpret adverse effects related to pharmacological interactions with these kinases.
Collapse
Affiliation(s)
- Jonathon R Green
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States.
| | | | - Sujatha M Gopalakrishnan
- Drug Discovery Science and Technology, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Michael J Liguori
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Scott W Mittelstadt
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Eric A G Blomme
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Terry R Van Vleet
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| |
Collapse
|
8
|
Wang L, Zhang Z, Yu D, Yang L, Li L, He Y, Shi J. Recent research of BTK inhibitors: Methods of structural design, pharmacological activities, manmade derivatives and structure-activity relationship. Bioorg Chem 2023; 138:106577. [PMID: 37178649 DOI: 10.1016/j.bioorg.2023.106577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Protein kinases constitute the largest group within the kinase family, and mutations and translocations of protein kinases due to genetic alterations are intimately linked to the pathogenesis of numerous diseases. Bruton's tyrosine kinase (BTK) is a member of the protein kinases and plays a pivotal role in the development and function of B cells. BTK belongs to the tyrosine TEC family. The aberrant activation of BTK is closely associated with the pathogenesis of B-cell lymphoma. Consequently, BTK has always been a critical target for treating hematological malignancies. To date, two generations of small-molecule covalent irreversible BTK inhibitors have been employed to treat malignant B-cell tumors, and have exhibited clinical efficacy in hitherto refractory diseases. However, these drugs are covalent BTK inhibitors, which inevitably lead to drug resistance after prolonged use, resulting in poor tolerance in patients. The third-generation non-covalent BTK inhibitor Pirtobrutinib has obtained approval for marketing in the United States, thereby circumventing drug resistance caused by C481 mutation. Currently, enhancing safety and tolerance constitutes the primary issue in developing novel BTK inhibitors. This article systematically summarizes recently discovered covalent and non-covalent BTK inhibitors and classifies them according to their structures. This article also provides a detailed discussion of binding modes, structural features, pharmacological activities, advantages and limitations of typical compounds within each structure type, providing valuable references and insights for developing safer, more effective and more targeted BTK inhibitors in future studies.
Collapse
Affiliation(s)
- Lin Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhengjie Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Liuqing Yang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ling Li
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan 610039, China.
| | - Yuxin He
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
9
|
Osborn J, Mourya R, Thanekar U, Su W, Fei L, Shivakumar P, Bezerra JA. Serum Proteomics Uncovers Biomarkers of Clinical Portal Hypertension in Children With Biliary Atresia. Hepatol Commun 2022; 6:995-1004. [PMID: 34962102 PMCID: PMC9035582 DOI: 10.1002/hep4.1878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/15/2021] [Accepted: 11/21/2021] [Indexed: 11/17/2022] Open
Abstract
Children with biliary atresia (BA) often develop portal hypertension (PHT) and its complications, which are associated with high morbidity and mortality. The goal of this study was to identify serum biomarkers of PHT by using large-scale proteomics. We applied the slow off-rate modified aptamer scan (SOMAscan) to measure 1,305 proteins in serum samples of children with BA with and without clinical evidence of PHT in validation and discovery cohorts enrolled in the Biliary Atresia Study of Infants and Children. Serum proteomics data was analyzed using logistic regression to identify protein(s) with an area under the receiver operating characteristic curve (AUROC) ≥ 0.90. Immunostaining was used to characterize the cellular localization of the new biomarker proteins in liver tissues. We identified nine proteins in the discovery cohort (n = 40 subjects) and five proteins in the validation cohort (n = 80 subjects) that individually or in combination predicted clinical PHT with AUROCs ≥ 0.90. Merging the two cohorts, we found that semaphorin 6B (SEMA6B) alone and three other protein combinations (SEMA6B+secreted frizzle protein 3 [SFRP3], SEMA6B+COMM domain containing 7 [COMMD7], and vascular cell adhesion molecule 1 [VCAM1]+BMX nonreceptor tyrosine kinase [BMX]) had AUROCs ≥ 0.90 in both cohorts, with high positive- and negative-predictive values. Immunostaining of the new protein biomarkers showed increased expression in hepatic endothelial cells, cholangiocytes, and immune cells within portal triads in BA livers with clinical PHT compared to healthy livers. Conclusion: Large-scale proteomics identified SEMA6B, SFRP3, COMMD7, BMX, and VCAM1 as biomarkers highly associated with clinical PHT in BA. The expression of the biomarkers in hepatic epithelial, endothelial, and immune cells support their potential role in the pathophysiology of PHT.
Collapse
Affiliation(s)
- Julie Osborn
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Reena Mourya
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Unmesha Thanekar
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Weizhe Su
- Division of Biostatistics and EpidemiologyCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Lin Fei
- Division of Biostatistics and EpidemiologyCincinnati Children's Hospital Medical CenterCincinnatiOHUSA.,Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOHUSA.,Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| | - Jorge A Bezerra
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOHUSA.,Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| |
Collapse
|
10
|
Kohs TCL, Olson SR, Pang J, Jordan KR, Zheng TJ, Xie A, Hodovan J, Muller M, McArthur C, Johnson J, Sousa BB, Wallisch M, Kievit P, Aslan JE, Seixas JD, Bernardes GJL, Hinds MT, Lindner JR, McCarty OJT, Puy C, Shatzel JJ. Ibrutinib Inhibits BMX-Dependent Endothelial VCAM-1 Expression In Vitro and Pro-Atherosclerotic Endothelial Activation and Platelet Adhesion In Vivo. Cell Mol Bioeng 2022; 15:231-243. [PMID: 35611166 PMCID: PMC9124262 DOI: 10.1007/s12195-022-00723-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/12/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022] Open
Abstract
Introduction Inflammatory activation of the vascular endothelium leads to overexpression of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), contributing to the pro-thrombotic state underpinning atherogenesis. While the role of TEC family kinases (TFKs) in mediating inflammatory cell and platelet activation is well defined, the role of TFKs in vascular endothelial activation remains unclear. We investigated the role of TFKs in endothelial cell activation in vitro and in a nonhuman primate model of diet-induced atherosclerosis in vivo. Methods and Results In vitro, we found that ibrutinib blocked activation of the TFK member, BMX, by vascular endothelial growth factors (VEGF)-A in human aortic endothelial cells (HAECs). Blockade of BMX activation with ibrutinib or pharmacologically distinct BMX inhibitors eliminated the ability of VEGF-A to stimulate VCAM-1 expression in HAECs. We validated that treatment with ibrutinib inhibited TFK-mediated platelet activation and aggregation in both human and primate samples as measured using flow cytometry and light transmission aggregometry. We utilized contrast-enhanced ultrasound molecular imaging to measure platelet GPIbα and endothelial VCAM-1 expression in atherosclerosis-prone carotid arteries of obese nonhuman primates. We observed that the TFK inhibitor, ibrutinib, inhibited platelet deposition and endothelial cell activation in vivo. Conclusion Herein we found that VEGF-A signals through BMX to induce VCAM-1 expression in endothelial cells, and that VCAM-1 expression is sensitive to ibrutinib in vitro and in atherosclerosis-prone carotid arteries in vivo. These findings suggest that TFKs may contribute to the pathogenesis of atherosclerosis and could represent a novel therapeutic target.
Collapse
Affiliation(s)
- Tia C. L. Kohs
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
| | - Sven R. Olson
- Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | - Jiaqing Pang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
| | - Kelley R. Jordan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
| | - Tony J. Zheng
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
| | - Aris Xie
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR USA
| | - James Hodovan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR USA
| | - Matthew Muller
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR USA
| | - Carrie McArthur
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR USA
| | - Jennifer Johnson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
| | - Bárbara B. Sousa
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Michael Wallisch
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA ,Aronora, Inc., Portland, OR USA
| | - Paul Kievit
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR USA
| | - Joseph E. Aslan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA ,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR USA
| | - João D. Seixas
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Gonçalo J. L. Bernardes
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal ,Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
| | - Jonathan R. Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR USA ,Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR USA
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA ,Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | - Cristina Puy
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA ,Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | - Joseph J. Shatzel
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA ,Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| |
Collapse
|
11
|
Fas signaling in adipocytes promotes low-grade inflammation and lung metastasis of colorectal cancer through interaction with Bmx. Cancer Lett 2021; 522:93-104. [PMID: 34536556 DOI: 10.1016/j.canlet.2021.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2021] [Revised: 07/29/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022]
Abstract
Obesity is a global public health issue. Obesity-related chronic low-grade inflammation (meta-inflammation) can lead to aberrant adipokine release and promote cardiometabolic diseases and obesity-related tumors. However, the mechanisms involved in the initiation of inflammatory responses in obesity and obesity-related tumors as well as metastasis are not fully understood. In this study, we found that the increased tumor necrosis factor-alpha (TNF-α) in adipocytes promoted the lung metastasis of MC38 colon cancer cells via Fas signaling. The release of TNF-α and interleukin (IL)-6 by Fas signaling in adipocytes was caused by the activation of the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways mediated by the interaction of Fas with Bmx, a non-receptor tyrosine kinase. Moreover, the Fas/Bmx complex is involved in the inflammation of adipocytes via Fas at the Tyr189 site and SH2 domain of Bmx. This is the first study to report the interaction between Fas and Bmx in adipocyte inflammation, which may provide clues for the development of potential new treatment strategies for obesity-related diseases.
Collapse
|
12
|
Ringheim GE, Wampole M, Oberoi K. Bruton's Tyrosine Kinase (BTK) Inhibitors and Autoimmune Diseases: Making Sense of BTK Inhibitor Specificity Profiles and Recent Clinical Trial Successes and Failures. Front Immunol 2021; 12:662223. [PMID: 34803999 PMCID: PMC8595937 DOI: 10.3389/fimmu.2021.662223] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Clinical development of BTK kinase inhibitors for treating autoimmune diseases has lagged behind development of these drugs for treating cancers, due in part from concerns over the lack of selectivity and associated toxicity profiles of first generation drug candidates when used in the long term treatment of immune mediated diseases. Second generation BTK inhibitors have made great strides in limiting off-target activities for distantly related kinases, though they have had variable success at limiting cross-reactivity within the more closely related TEC family of kinases. We investigated the BTK specificity and toxicity profiles, drug properties, disease associated signaling pathways, clinical indications, and trial successes and failures for the 13 BTK inhibitor drug candidates tested in phase 2 or higher clinical trials representing 7 autoimmune and 2 inflammatory immune-mediated diseases. We focused on rheumatoid arthritis (RA), multiple sclerosis (MS), and systemic lupus erythematosus (SLE) where the majority of BTK nonclinical and clinical studies have been reported, with additional information for pemphigus vulgaris (PV), Sjogren’s disease (SJ), chronic spontaneous urticaria (CSU), graft versus host disease (GVHD), and asthma included where available. While improved BTK selectivity versus kinases outside the TEC family improved clinical toxicity profiles, less profile distinction was evident within the TEC family. Analysis of genetic associations of RA, MS, and SLE biomarkers with TEC family members revealed that BTK and TEC family members may not be drivers of disease. They are, however, mediators of signaling pathways associated with the pathophysiology of autoimmune diseases. BTK in particular may be associated with B cell and myeloid differentiation as well as autoantibody development implicated in immune mediated diseases. Successes in the clinic for treating RA, MS, PV, ITP, and GVHD, but not for SLE and SJ support the concept that BTK plays an important role in mediating pathogenic processes amenable to therapeutic intervention, depending on the disease. Based on the data collected in this study, we propose that current compound characteristics of BTK inhibitor drug candidates for the treatment of autoimmune diseases have achieved the selectivity, safety, and coverage requirements necessary to deliver therapeutic benefit.
Collapse
Affiliation(s)
- Garth E Ringheim
- Clinical Pharmacology and Translational Medicine, Eisai Inc, Woodcliff Lake, NJ, United States
| | | | - Kinsi Oberoi
- Science Group, Clarivate, Philadelphia, PA, United States
| |
Collapse
|
13
|
Progress in the development of small molecular inhibitors of the Bruton's tyrosine kinase (BTK) as a promising cancer therapy. Bioorg Med Chem 2021; 47:116358. [PMID: 34479103 DOI: 10.1016/j.bmc.2021.116358] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022]
Abstract
Bruton tyrosine kinase (BTK) is a key kinase in the B cell antigen receptor signal transduction pathway, which is involved in the regulation of the proliferation, differentiation and apoptosis of B cells. BTK has become a significant target for the treatment of hematological malignancies and autoimmune diseases. Ibrutinib, the first-generation BTK inhibitor, has made a great contribution to the treatment of B cell malignant tumors, but there are still some problems such as resistance or miss target of site mutation. Therefore, there is an imperative need to develop novel BTK inhibitors to overcome these problems. Besides, proteolysis targeting chimera (PROTAC) technology has been successfully applied to the development of BTK degradation agents, which has opened a fresh way for the BTK targeted treatment. This paper reviews the biological function of BTK, the discovery and development of BTK targeted drugs as a promising cancer therapy. It mainly reviews the binding sites and structural characteristics of BTK, structure-activity relationships, activity and drug resistance of BTK inhibitors, as well as potential treatment strategies to overcome the resistance of BTK, which provides a reference for the rational design and development of new powerful BTK inhibitors.
Collapse
|
14
|
Negative Regulation of Tec Kinase Alleviates LPS-Induced Acute Kidney Injury in Mice via theTLR4/NF- κB Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3152043. [PMID: 32685466 PMCID: PMC7322586 DOI: 10.1155/2020/3152043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/10/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
Tec kinase is an important mediator in inflammatory immune response that enhances the activity of neutrophils and macrophages. However, information on its function in lipopolysaccharide- (LPS-) induced acute kidney injury (AKI) is limited. This study is aimed at determining whether Tec kinase was a regulator in AKI. An AKI model in mice was successfully established using intraperitoneal LPS. Results showed that the serum levels of creatinine (Cr), blood urea nitrogen (BUN), and cystatin-C (Cys-C) increased after intraperitoneal LPS injection. Renal tissue sustained significantly severe injury as measured by pathological scores. Pretreatment with LFM-A13 improved the function of the kidney in mice and decreased the renal injury score. Enzyme-linked immunosorbent assay showed that LFM-A13 significantly reduced the release of IL-1β and TNF-α in mice exposed to LPS. LFM-A13 can evidently abrogate the expression of Tec protein, MyD88, TLR4, NF-κB p65, and Tec's phosphorylated protein as determined by Western blot. Immunohistochemistry analysis revealed that LFM-A13 markedly downregulated the expression of Tec kinase in renal tubular epithelial cells. In vitro, Tec kinase protein was expressed highly in NRK-52E cells after LPS exposure. Tec-siRNA also decreased IL-1β and TNF-α production and obviously abolished phospho-p65 and phospho-IκBα expression in NRK-52E cell stimulated by LPS; however, Tec-siRNA increased the IκBα level. Altogether, these data suggested that Tec kinase can be a modulating protein in AKI through TLR4/NF-κB activation.
Collapse
|
15
|
Jordaens S, Cooksey L, Freire Boullosa L, Van Tendeloo V, Smits E, Mills KI, Orchard KH, Guinn BA. New targets for therapy: antigen identification in adults with B-cell acute lymphoblastic leukaemia. Cancer Immunol Immunother 2020; 69:867-877. [PMID: 31970440 PMCID: PMC7183504 DOI: 10.1007/s00262-020-02484-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2019] [Accepted: 01/04/2020] [Indexed: 12/11/2022]
Abstract
Acute lymphoblastic leukaemia (ALL) in adults is a rare and difficult-to-treat cancer that is characterised by excess lymphoblasts in the bone marrow. Although many patients achieve remission with chemotherapy, relapse rates are high and the associated impact on survival devastating. Most patients receive chemotherapy and for those whose overall fitness supports it, the most effective treatment to date is allogeneic stem cell transplant that can improve overall survival rates in part due to a 'graft-versus-leukaemia' effect. However, due to the rarity of this disease, and the availability of mature B-cell antigens on the cell surface, few new cancer antigens have been identified in adult B-ALL that could act as targets to remove residual disease in first remission or provide alternative targets for escape variants if and when current immunotherapy strategies fail. We have used RT-PCR analysis, literature searches, antibody-specific profiling and gene expression microarray analysis to identify and prioritise antigens as novel targets for the treatment of adult B-ALL.
Collapse
Affiliation(s)
- Stephanie Jordaens
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hardy Building, Room 111, Hull, HU7 6RX, UK
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Leah Cooksey
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hardy Building, Room 111, Hull, HU7 6RX, UK
| | | | - Viggo Van Tendeloo
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Evelien Smits
- Centre for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Ken I Mills
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Lisburn Road, Belfast, UK
| | - Kim H Orchard
- Department of Haematology, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Barbara-Ann Guinn
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hardy Building, Room 111, Hull, HU7 6RX, UK.
| |
Collapse
|
16
|
Arroyo M, Larrosa R, Gómez-Maldonado J, Cobo MÁ, Claros MG, Bautista R. Expression-based, consistent biomarkers for prognosis and diagnosis in lung cancer. Clin Transl Oncol 2020; 22:1867-1874. [PMID: 32180209 DOI: 10.1007/s12094-020-02328-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2020] [Accepted: 02/24/2020] [Indexed: 12/27/2022]
Abstract
OVERVIEW Lung cancer is one of the deadliest cancers in the world. Its histological classification depends on early diagnosis and successful treatment. Therefore, having specific biomarkers for a quick sorting widens the successful output of lung cancer treatment. MATERIAL AND METHODS High-throughput sequencing (RNA-seq) was performed of small cohorts of BioBanco samples from healthy and tumour cells from lung adenocarcinoma (LUAD) and squamous cell carcinoma of the lung (lSCC). RNA-seq samples from small cell lung cancer (SCLC) were downloaded from databases. A bioinformatic workflow has been programmed for the identification of differentially expressed genes (DEGs). RESULTS A total of 4777 DEGs were differentially expressed in SCLC, 3676 DEGs were in lSCC, while the lowest number of DEGs, 2819, appeared in LUAD. Among them, 945 DEGs were common to the three histological types. Once validated their expression profile and their survival predictive capacity in large, public cohorts, three DEGs can be exclusively considered as diagnostic biomarkers, three as prognosis biomarkers, and other three exhibit both diagnosis and prognosis capabilities. CONCLUSIONS This prospective study presents evidences for the diagnostic and prognostic capabilities of expression changes in CAPN8-2, TMC5 and MUC1 in LUAD, while they are non-significant in SCLC and lSCC. Their translation to clinical practice is proposed.
Collapse
Affiliation(s)
- M Arroyo
- U.G.C. Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - R Larrosa
- Department of Computer Architecture, Universidad de Málaga, Málaga, Spain
| | - J Gómez-Maldonado
- Sequencing and Genomics Unit at SCBI, Universidad de Málaga, Málaga, Spain
| | - M Á Cobo
- Unidad Intercentro, Hospital Regional Universitario de Málaga y VV. IBIMA, Málaga, Spain
| | - M G Claros
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, Málaga, Spain.
| | - R Bautista
- Andalusian Platform for Bioinformatics at SCBI, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
17
|
Li Z, Yin M, Zhang H, Ni W, Pierce RW, Zhou HJ, Min W. BMX Represses Thrombin-PAR1-Mediated Endothelial Permeability and Vascular Leakage During Early Sepsis. Circ Res 2020; 126:471-485. [PMID: 31910739 DOI: 10.1161/circresaha.119.315769] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
RATIONALE BMX (bone marrow kinase on the X chromosome) is highly expressed in the arterial endothelium from the embryonic stage to the adult stage in mice. It is also expressed in microvessels and the lymphatics in response to pathological stimuli. However, its role in endothelial permeability and sepsis remains unknown. OBJECTIVE We aimed to delineate the function of BMX in thrombin-mediated endothelial permeability and the vascular leakage that occurs with sepsis in cecal ligation and puncture models. METHODS AND RESULTS The cecal ligation and puncture model was applied to WT (wild type) and BMX-KO (BMX global knockout) mice to induce sepsis. Meanwhile, the electric cell-substrate impedance sensing assay was used to detect transendothelial electrical resistance in vitro and, the modified Miles assay was used to evaluate vascular leakage in vivo. We showed that BMX loss caused lung injury and inflammation in early cecal ligation and puncture-induced sepsis. Disruption of BMX increased thrombin-mediated permeability in mice and cultured endothelial cells by 2- to 3-fold. The expression of BMX in macrophages, neutrophils, platelets, and lung epithelial cells was undetectable compared with that in endothelial cells, indicating that endothelium dysfunction, rather than leukocyte and platelet dysfunction, was involved in vascular permeability and sepsis. Mechanistically, biochemical and cellular analyses demonstrated that BMX specifically repressed thrombin-PAR1 (protease-activated receptor-1) signaling in endothelial cells by directly phosphorylating PAR1 and promoting its internalization and deactivation. Importantly, pretreatment with the selective PAR1 antagonist SCH79797 rescued BMX loss-mediated endothelial permeability and pulmonary leakage in early cecal ligation and puncture-induced sepsis. CONCLUSIONS Acting as a negative regulator of PAR1, BMX promotes PAR1 internalization and signal inactivation through PAR1 phosphorylation. Moreover, BMX-mediated PAR1 internalization attenuates endothelial permeability to protect vascular leakage during early sepsis.
Collapse
Affiliation(s)
- Zhao Li
- From the The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (Z.L.).,Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (Z.L., M.Y., H.Z., W.N., R.W.P., H.J.Z., W.M.)
| | - Mingzhu Yin
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (Z.L., M.Y., H.Z., W.N., R.W.P., H.J.Z., W.M.).,Department of Dermatology, Hunan Engineering Research, Center of Skin Health and Disease, Xiangya Hospital, Central South University, China (M.Y.)
| | - Haifeng Zhang
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (Z.L., M.Y., H.Z., W.N., R.W.P., H.J.Z., W.M.)
| | - Weiming Ni
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (Z.L., M.Y., H.Z., W.N., R.W.P., H.J.Z., W.M.)
| | - Richard W Pierce
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (Z.L., M.Y., H.Z., W.N., R.W.P., H.J.Z., W.M.)
| | - Huanjiao Jenny Zhou
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (Z.L., M.Y., H.Z., W.N., R.W.P., H.J.Z., W.M.)
| | - Wang Min
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (Z.L., M.Y., H.Z., W.N., R.W.P., H.J.Z., W.M.)
| |
Collapse
|
18
|
Li K, Pan WT, Ma YB, Xu XL, Gao Y, He YQ, Wei L, Zhang JW. BMX activates Wnt/β-catenin signaling pathway to promote cell proliferation and migration in breast cancer. Breast Cancer 2019; 27:363-371. [PMID: 31728872 DOI: 10.1007/s12282-019-01024-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2019] [Accepted: 11/10/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Breast cancer has become a dangerous killer for the female, which seriously threatened women's life, leading to huge pressures to society. The present study assessed the mechanism underlying the involvement of bone marrow tyrosine kinase on chromosome X (BMX) in breast cancer development. METHODS The expression of BMX was examined by qPCR and immunohistochemistry. The effect of BMX on cell proliferation and migration was detected by Clone formation assay and Transwell assay. In vitro study, the correlation of BMX with Wnt/β-catenin pathway was explored by western blot and TOP/FOP flash assay. RESULTS In the present study, we found that BMX was up-regulated in breast cancer, which was associated with the tumor differentiation and TNM stage. Oncogenic BMX enhanced the ability of breast cancer cell proliferation and migration. Furthermore, BMX could up-regulate the protein expression levels of p-β-catenin (Y142), p-β-catenin(Y654) and inhibit the expression level of p-β-catenin (S33/37), thus activating Wnt/β-catenin pathway in MCF-7 and MDA-MB-231 cells. In addition, we revealed that BMX promoted GSK3β phosphorylation, which suppressed the degradation of β-catenin. CONCLUSIONS In this study, we identified that BMX-activated Wnt/β-catenin signaling pathway, playing an oncogenic role in breast cancer, suggesting that BMX could become a potential treatment target of breast cancer.
Collapse
Affiliation(s)
- Kai Li
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Wen-Ting Pan
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yan-Bin Ma
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Xiao-Long Xu
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yang Gao
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yan-Qi He
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Lei Wei
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Jing-Wei Zhang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, China.
| |
Collapse
|
19
|
Affiliation(s)
- Shih-Hsin Liang
- Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan.,China Medical University Hospital, Taichung, Taiwan
| | - Chang-Fang Chiu
- China Medical University Hospital, Taichung, Taiwan.,China Medical University, Taichung, Taiwan
| | - Li-Yuan Bai
- China Medical University Hospital, Taichung, Taiwan.,China Medical University, Taichung, Taiwan
| |
Collapse
|
20
|
Xu XF, Gao F, Wang JJ, Long C, Chen X, Tao L, Yang L, Ding L, Ji Y. BMX-ARHGAP fusion protein maintains the tumorigenicity of gastric cancer stem cells by activating the JAK/STAT3 signaling pathway. Cancer Cell Int 2019; 19:133. [PMID: 31130822 PMCID: PMC6525346 DOI: 10.1186/s12935-019-0847-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2018] [Accepted: 05/02/2019] [Indexed: 12/19/2022] Open
Abstract
Background Cancer stem cells (CSCs), drug-resistant cancer cell subsets, are known to be responsible for tumor metastasis and relapse. The JAK/STAT pathway, activated by SH2 domain, is known to regulate the tumor growth in gastric cancer (GC). Now, this study was designed to examine whether BMX-ARHGAP affects the GC stem cell properties and the underlying regulatory network via JAK/STAT axis. Methods BMX-ARHGAP expression was characterized in GC tissues and cells by RT-qPCR and western blot assay. When BMX-ARHGAP was overexpressed or silenced via plasmids or siRNA transfection, the stem cell properties were assessed by determining stem cell markers CD133, CD44, SOX2 and Nanog, followed by cell sphere and colony formation assays. Subsequently, cell proliferation and invasion were examined by conducting EdU and Transwell assays. The JAK/STAT3 signaling pathway activation was inhibited using AG490. ARHGAP12, BMX exon 10-11, BXM-SH2, JAK2 and STAT3 expression patterns were all determined to examine the regulatory network. The stem cell property in nude mice was also tested. Results BMX-ARHGAP was determined to be enriched in the GC. Overexpression of BMX-ARHGAP resulted in increased expression of CD133, CD44, SOX2 and Nanog protein, and accelerated proliferation and invasion of CD133+CD44+ cells as well as facilitated self-renewal potential of GC cells. However, the inhibition of the JAK/STAT3 signaling pathway reversed the stimulating effect of BMX-ARHGAP on proliferative and invasion abilities of CD133+CD44+ cells. The overexpression of BMX-ARHGAP was suggested to increase the BMX-SH2 protein expression via ARHGAP 5'UTR, and activate the JAK/STAT3 signaling pathway. Also, BMX-ARHGAP promoted tumor growth in nude mice. Conclusions The aforementioned results demonstrated that the BMX-ARHGAP-dependent SH2 domain-JAK/STAT3 axis mediates the maintenance of GC stem cells, benefiting the development of new potential therapeutic targets for GC.
Collapse
Affiliation(s)
- Xiao-Feng Xu
- Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, 214500 People's Republic of China
| | - Feng Gao
- Department of Surgery, Jingjiang People's Hospital, No. 28, Zhongzhou Road, Jingjiang, 214500 Jiangsu People's Republic of China
| | - Jian-Jiang Wang
- Department of Surgery, Jingjiang People's Hospital, No. 28, Zhongzhou Road, Jingjiang, 214500 Jiangsu People's Republic of China
| | - Cong Long
- Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, 214500 People's Republic of China
| | - Xing Chen
- Department of Surgery, Jingjiang People's Hospital, No. 28, Zhongzhou Road, Jingjiang, 214500 Jiangsu People's Republic of China
| | - Lan Tao
- Central Laboratory, Jingjiang People's Hospital, Jingjiang, 214500 People's Republic of China
| | - Liu Yang
- Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, 214500 People's Republic of China
| | - Li Ding
- Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, 214500 People's Republic of China
| | - Yong Ji
- Department of Surgery, Jingjiang People's Hospital, No. 28, Zhongzhou Road, Jingjiang, 214500 Jiangsu People's Republic of China
| |
Collapse
|
21
|
Rossetti RAM, Lorenzi NPC, Yokochi K, Rosa MBSDF, Benevides L, Margarido PFR, Baracat EC, Carvalho JP, Villa LL, Lepique AP. B lymphocytes can be activated to act as antigen presenting cells to promote anti-tumor responses. PLoS One 2018; 13:e0199034. [PMID: 29975708 PMCID: PMC6033398 DOI: 10.1371/journal.pone.0199034] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2017] [Accepted: 05/30/2018] [Indexed: 12/22/2022] Open
Abstract
Immune evasion by tumors includes several different mechanisms, including the inefficiency of antigen presenting cells (APCs) to trigger anti-tumor T cell responses. B lymphocytes may display a pro-tumoral role but can also be modulated to function as antigen presenting cells to T lymphocytes, capable of triggering anti-cancer immune responses. While dendritic cells, DCs, are the best APC population to activate naive T cells, DCs or their precursors, monocytes, are frequently modulated by tumors, displaying a tolerogenic phenotype in cancer patients. In patients with cervical cancer, we observed that monocyte derived DCs are tolerogenic, inhibiting allogeneic T cell activation compared to the same population obtained from patients with precursor lesions or cervicitis. In this work, we show that B lymphocytes from cervical cancer patients respond to treatment with sCD40L and IL-4 by increasing the CD80+CD86+ population, therefore potentially increasing their ability to activate T cells. To test if B lymphocytes could actually trigger anti-tumor T cell responses, we designed an experimental model where we harvested T and B lymphocytes, or dendritic cells, from tumor bearing donors, and after APC stimulation, transplanted them, together with T cells into RAG1-/- recipients, previously injected with tumor cells. We were able to show that anti-CD40 activated B lymphocytes could trigger secondary T cell responses, dependent on MHC-II expression. Moreover, we showed that dendritic cells were resistant to the anti-CD40 treatment and unable to stimulate anti-tumor responses. In summary, our results suggest that B lymphocytes may be used as a tool for immunotherapy against cancer.
Collapse
Affiliation(s)
| | | | - Kaori Yokochi
- Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
| | | | - Luciana Benevides
- Department of Immunology and Biochemistry, Faculdade de Medicina de Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | | | - Edmund Chada Baracat
- Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
- Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jesus Paula Carvalho
- Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luisa Lina Villa
- Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Radiologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula Lepique
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Li Y, Cui N, Zheng PS, Yang WT. BMX/Etk promotes cell proliferation and tumorigenicity of cervical cancer cells through PI3K/AKT/mTOR and STAT3 pathways. Oncotarget 2018; 8:49238-49252. [PMID: 28514765 PMCID: PMC5564764 DOI: 10.18632/oncotarget.17493] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2017] [Accepted: 04/17/2017] [Indexed: 11/25/2022] Open
Abstract
Bone marrow X-linked kinase (BMX, also known as Etk) has been reported to be involved in cell proliferation, differentiation, apoptosis, migration and invasion in several types of tumors, but its role in cervical carcinoma remains poorly understood. In this study, we showed that BMX expression exhibits a gradually increasing trend from normal cervical tissue to cervical cancer in situ and then to invasive cervical cancer tissue. Through BMX-IN-1, a potent and irreversible BMX kinase inhibitor, inhibited the expression of BMX, the cell proliferation was significantly decreased. Knockdown of BMX in HeLa and SiHa cervical cancer cell lines using two different silencing technologies, TALEN and shRNA, inhibited cell growth in vitro and suppressed xenograft tumor formation in vivo, whereas overexpression of BMX in the cell line C-33A significantly increased cell proliferation. Furthermore, a mechanism study showed that silencing BMX blocked cell cycle transit from G0/G1 to S or G2/M phase, and knockdown of BMX inhibited the expression of p-AKT and p-STAT3. These results suggested that BMX can promote cell proliferation through PI3K/AKT/mTOR and STAT3 signaling pathways in cervical cancer cells.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Reproductive Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Nan Cui
- Department of Reproductive Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of The People's Republic of China, Xi'an, People's Republic of China
| | - Wen-Ting Yang
- Department of Reproductive Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
23
|
Watson CT, Cohain AT, Griffin RS, Chun Y, Grishin A, Hacyznska H, Hoffman GE, Beckmann ND, Shah H, Dawson P, Henning A, Wood R, Burks AW, Jones SM, Leung DYM, Sicherer S, Sampson HA, Sharp AJ, Schadt EE, Bunyavanich S. Integrative transcriptomic analysis reveals key drivers of acute peanut allergic reactions. Nat Commun 2017; 8:1943. [PMID: 29203772 PMCID: PMC5715016 DOI: 10.1038/s41467-017-02188-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023] Open
Abstract
Mechanisms driving acute food allergic reactions have not been fully characterized. We profile the dynamic transcriptome of acute peanut allergic reactions using serial peripheral blood samples obtained from 19 children before, during, and after randomized, double-blind, placebo-controlled oral challenges to peanut. We identify genes with changes in expression triggered by peanut, but not placebo, during acute peanut allergic reactions. Network analysis reveals that these genes comprise coexpression networks for acute-phase response and pro-inflammatory processes. Key driver analysis identifies six genes (LTB4R, PADI4, IL1R2, PPP1R3D, KLHL2, and ECHDC3) predicted to causally modulate the state of coregulated networks in response to peanut. Leukocyte deconvolution analysis identifies changes in neutrophil, naive CD4+ T cell, and macrophage populations during peanut challenge. Analyses in 21 additional peanut allergic subjects replicate major findings. These results highlight key genes, biological processes, and cell types that can be targeted for mechanistic study and therapeutic targeting of peanut allergy.
Collapse
Affiliation(s)
- C T Watson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - A T Cohain
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - R S Griffin
- Department of Anesthesia, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Y Chun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - A Grishin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - H Hacyznska
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - G E Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - N D Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - H Shah
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - P Dawson
- eEmmes Corporation, Rockville, MD, 20850, USA
| | - A Henning
- eEmmes Corporation, Rockville, MD, 20850, USA
| | - R Wood
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - A W Burks
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - S M Jones
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AS, 72202, USA
| | - D Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, CO, 80206, USA
| | - S Sicherer
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - H A Sampson
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - A J Sharp
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - E E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - S Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
24
|
Abstract
The availability of reliable biomarkers of aging is important not only to monitor the effect of interventions and predict the timing of pathologies associated with aging but also to understand the mechanisms and devise appropriate countermeasures. Blood cells provide an easily available tissue and gene expression profiles from whole blood samples appear to mirror disease states and some aspects of the aging process itself. We report here a microarray analysis of whole blood samples from two cohorts of healthy adult and elderly subjects, aged 43±3 and 68±4 years, respectively, to monitor gene expression changes in the initial phase of the senescence process. A number of significant changes were found in the elderly compared to the adult group, including decreased levels of transcripts coding for components of the mitochondrial respiratory chain, which correlate with a parallel decline in the maximum rate of oxygen consumption (VO2max), as monitored in the same subjects. In addition, blood cells show age-related changes in the expression of several markers of immunosenescence, inflammation and oxidative stress. These findings support the notion that the immune system has a major role in tissue homeostasis and repair, which appears to be impaired since early stages of the aging process.
Collapse
|
25
|
He L, Li D, Zhang C, Bai P, Chen L. Discovery of (R)-5-(benzo[d][1,3]dioxol-5-yl)-7-((1-(vinylsulfonyl)pyrrolidin-2-yl)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (B6) as a potent Bmx inhibitor for the treatment of NSCLC. Bioorg Med Chem Lett 2017; 27:4171-4175. [PMID: 28734581 DOI: 10.1016/j.bmcl.2017.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
Described as a Btk inhibitor, ibrutinib also potently inhibits Bmx and EGFR, two good targets for lung cancer. Owing to its high CLogP (4.07) and low aqueous solubility (<0.01mg/ml), resulting in unfavorable bioavailability, ibrutinib requires high dosages to achieve good clinical response in the treatment of non-small cell lung cancer (NSCLC). In our effort to improve the CLogP of ibrutinib by structural optimization led to the discovery of a potent anti-cancer agent B6, with beneficial physicochemical parameters (CLogP=2.56, solubility in water≈0.1mg/ml) meeting the principles of oral drugs. B6 exhibited anti-proliferation activities against EGFR-expressing cells, especially the mutant ones, such as H1975 (L858R/T790M, IC50=0.92±0.19μM) and HCC827 (Del119 IC50=0.014±0.01μM). Moreover, B6 significantly slowed down H1975 tumor growth with anti-tumor rate of 73.9% (p<0.01). Enzyme potencies assay demonstrated B6 moderately selectively inhibited Bmx (IC50=35.7±0.1nM) over other kinases. So, as a potent Bmx inhibitor, B6 has the potential to be an efficacious treatment for NSCLC with acquired drug resistance.
Collapse
Affiliation(s)
- Linhong He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, PR China
| | - Da Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, PR China
| | - Chufeng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, PR China
| | - Peng Bai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, PR China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
26
|
Molina-Cerrillo J, Alonso-Gordoa T, Gajate P, Grande E. Bruton's tyrosine kinase (BTK) as a promising target in solid tumors. Cancer Treat Rev 2017. [PMID: 28641100 DOI: 10.1016/j.ctrv.2017.06.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
Bruton's tyrosine kinase (BTK) is a non-receptor intracellular kinase that belongs to the TEC-family tyrosine kinases together with bone marrow-expressed kinase (BMX), redundant-resting lymphocyte kinase (RLK), and IL-2 inducible T-Cell kinase (ITK). All these proteins play a key role in the intracellular signaling of both B and T lymphocytes. Recently, some preclinical data have demonstrated that BTK is present in certain tumor subtypes and in other relevant cells that are contributing to the tumor microenvironment such as dendritic cells, macrophages, myeloid derived suppressor cells and endothelial cells. Ibrutinib (PCI-32765) is an orally available small molecule that acts as an inhibitor of the BTK and is approved for the treatment of patients with some hematological malignancies. It has been suggested that ibrutinib may also have a potential antitumor activity in solid neoplasms. In this sense, ibrutinib has the ability to revert polarization of TCD4+ to Th1 lymphocytes to increase the cytotoxic ability of T CD8+ and to regulate tumor-induced immune tolerance by acting over tumor infiltrating cells activity and immunosuppressive cytokines release. Furthermore, based on its molecular activity and safety, ibrutinib has been considered as a partner for treatment combination with PI3K/AKT/mTOR inhibitors or with immune-checkpoint inhibitors, inhibiting immunosuppressive signals from the tumor microenvironment, and overcoming the immune resistance to current anti-PD1/PDL1 immunotherapeutic drugs by the CXCR4/CXCL2 pathway regulation. Currently, a broad range of different studies are evaluating the activity of ibrutinib either as single agent or in combination in patients with solid tumors.
Collapse
Affiliation(s)
- J Molina-Cerrillo
- Medical Oncology Department, Ramón y Cajal University Hospital, Madrid, Spain.
| | - T Alonso-Gordoa
- Medical Oncology Department, Ramón y Cajal University Hospital, Madrid, Spain
| | - P Gajate
- Medical Oncology Department, Ramón y Cajal University Hospital, Madrid, Spain
| | - E Grande
- Medical Oncology Department, Ramón y Cajal University Hospital, Madrid, Spain
| |
Collapse
|
27
|
Foluso O, Glick A, Stender M, Jaiyesimi I. Ibrutinib as a Bruton Kinase Inhibitor in the Management of Chronic Lymphocytic Leukemia: A New Agent With Great Promise. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2016; 16:63-9. [DOI: 10.1016/j.clml.2015.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/15/2015] [Revised: 09/30/2015] [Accepted: 11/12/2015] [Indexed: 11/24/2022]
|
28
|
Young WB, Barbosa J, Blomgren P, Bremer MC, Crawford JJ, Dambach D, Eigenbrot C, Gallion S, Johnson AR, Kropf JE, Lee SH, Liu L, Lubach JW, Macaluso J, Maciejewski P, Mitchell SA, Ortwine DF, Di Paolo J, Reif K, Scheerens H, Schmitt A, Wang X, Wong H, Xiong JM, Xu J, Yu C, Zhao Z, Currie KS. Discovery of highly potent and selective Bruton’s tyrosine kinase inhibitors: Pyridazinone analogs with improved metabolic stability. Bioorg Med Chem Lett 2016; 26:575-579. [DOI: 10.1016/j.bmcl.2015.11.076] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 11/30/2022]
|
29
|
Abstract
Although emerging roles of protease-activated receptor1&2 (PAR1&2) in cancer are recognized, their underlying signalling events are poorly understood. Here we show signal-binding motifs in PAR1&2 that are critical for breast cancer growth. This occurs via the association of the pleckstrin homology (PH) domain with Akt/PKB as a key signalling event of PARs. Other PH-domain signal-proteins such as Etk/Bmx and Vav3 also associate with PAR1 and PAR2 through their PH domains. PAR1 and PAR2 bind with priority to Etk/Bmx. A point mutation in PAR2, H349A, but not in R352A, abrogates PH-protein association and is sufficient to markedly reduce PAR2-instigated breast tumour growth in vivo and placental extravillous trophoblast (EVT) invasion in vitro. Similarly, the PAR1 mutant hPar1-7A, which is unable to bind the PH domain, reduces mammary tumours and EVT invasion, endowing these motifs with physiological significance and underscoring the importance of these previously unknown PAR1 and PAR2 PH-domain-binding motifs in both pathological and physiological invasion processes. Protease-activated-receptor 1 and 2 (PAR1 and PAR2) are key players in tumor growth. In this study, the authors identify PAR1 and PAR2 domains that bind oncogenic signalling proteins driving breast cancer progression in vivo and placental extravillous trophoblast invasion in vitro.
Collapse
|
30
|
Berglöf A, Hamasy A, Meinke S, Palma M, Krstic A, Månsson R, Kimby E, Österborg A, Smith CIE. Targets for Ibrutinib Beyond B Cell Malignancies. Scand J Immunol 2015; 82:208-17. [PMID: 26111359 PMCID: PMC5347933 DOI: 10.1111/sji.12333] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/15/2015] [Accepted: 06/18/2015] [Indexed: 01/05/2023]
Abstract
Ibrutinib (Imbruvica™) is an irreversible, potent inhibitor of Bruton's tyrosine kinase (BTK). Over the last few years, ibrutinib has developed from a promising drug candidate to being approved by FDA for the treatment of three B cell malignancies, a truly remarkable feat. Few, if any medicines are monospecific and ibrutinib is no exception; already during ibrutinib's initial characterization, it was found that it could bind also to other kinases. In this review, we discuss the implications of such interactions, which go beyond the selective effect on BTK in B cell malignancies. In certain cases, the outcome of ibrutinib treatment likely results from the combined inhibition of BTK and other kinases, causing additive or synergistic, effects. Conversely, there are also examples when the clinical outcome seems unrelated to inhibition of BTK. Thus, more specifically, adverse effects such as enhanced bleeding or arrhythmias could potentially be explained by different interactions. We also predict that during long‐term treatment bone homoeostasis might be affected due to the inhibition of osteoclasts. Moreover, the binding of ibrutinib to molecular targets other than BTK or effects on cells other than B cell‐derived malignancies could be beneficial and result in new indications for clinical applications.
Collapse
Affiliation(s)
- A Berglöf
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - A Hamasy
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - S Meinke
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, and Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - M Palma
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - A Krstic
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - R Månsson
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - E Kimby
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - A Österborg
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - C I E Smith
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Xu X, Xu L, Gao F, Wang J, Ye J, Zhou M, Zhu Y, Tao L. Identification of a novel gene fusion (BMX-ARHGAP) in gastric cardia adenocarcinoma. Diagn Pathol 2014; 9:218. [PMID: 25499959 PMCID: PMC4282731 DOI: 10.1186/s13000-014-0218-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2014] [Accepted: 10/27/2014] [Indexed: 12/31/2022] Open
Abstract
Background Gastric cardia adenocarcinoma (GCA) is one of the major causes of cancer related mortality worldwide. We aim to provide new understanding in the pathogenesis of GCA through investigations on gene expression alterations. Methods We preformed RNA-Seq for one pair of GCA and matched non-tumor tissues. Differentially expressed genes (DEGs) and fusion genes were acquired. PCR and gel analysis in additional 14 pairs of samples were performed to validate the chimeric transcripts. Results 1590 up-regulated and 709 down-regulated genes were detected. Functional analysis revealed that these DEGs were significantly overrepresented in gene ontology items of cell cycle, tumor invasion and proliferation. Moreover, we firstly discovered 3 fusion genes in GCA, including BMX-ARHGAP, LRP5- LITAF and CBX3-C15orf57. The chimeric transcript BMX-ARHGAP was validated and recurrently occurred in 4/15 independent tumor tissues. Conclusions Our results may provide new understanding of GCA and biomarkers for further therapeutic studies. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_218
Collapse
Affiliation(s)
- Xiaofeng Xu
- Clinical Laboratory, People's hospital, Jingjiang, 214500, Jiangsu, China.
| | - Lifang Xu
- Department of Gastroenterology, People's hospital, Jingjiang, 214500, Jiangsu, China.
| | - Feng Gao
- Department of General Surgery, People's hospital, Jingjiang, 214500, Jiangsu, China.
| | - Jianjiang Wang
- Department of General Surgery, People's hospital, Jingjiang, 214500, Jiangsu, China.
| | - Jinsong Ye
- Clinical Laboratory, People's hospital, Jingjiang, 214500, Jiangsu, China.
| | - Mingxian Zhou
- Clinical Laboratory, People's hospital, Jingjiang, 214500, Jiangsu, China.
| | - Yunling Zhu
- Clinical Laboratory, People's hospital, Jingjiang, 214500, Jiangsu, China.
| | - Lan Tao
- Clinical Laboratory, People's hospital, Jingjiang, 214500, Jiangsu, China.
| |
Collapse
|
32
|
Qiu L, Wang F, Liu S, Chen XL. Current understanding of tyrosine kinase BMX in inflammation and its inhibitors. BURNS & TRAUMA 2014; 2:121-4. [PMID: 27602372 PMCID: PMC5012028 DOI: 10.4103/2321-3868.135483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/14/2014] [Revised: 06/05/2014] [Accepted: 06/11/2014] [Indexed: 11/08/2022]
Abstract
Tec family kinases, which include tyrosine kinase expressed in hepatocellular carcinoma (TEC), Bruton’s tyrosine kinase (BTK), interleukin (IL)-2-inducible T-cell kinase (ITK), tyrosine-protein kinase (TXK), and bone marrow tyrosine kinase on chromosome X (BMX), are the second largest group of non-receptor tyrosine kinases and have a highly conserved carboxyl-terminal kinase domain. BMX was identified in human bone marrow cells, and was demonstrated to have been expressed in myeloid hematopoietic lineages cells, endothelial cells, and several types of cancers. Significant progress in this area during the last decade revealed an important role for BMX in inflammation and oncologic disorders. This review focuses on BMX biology, its role in inflammation and possible signaling pathways, and the potential of selective BMX inhibitors.
Collapse
Affiliation(s)
- Le Qiu
- Department of Burns, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022 China
| | - Fei Wang
- Department of Burns, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022 China
| | - Sheng Liu
- Department of Burns, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022 China
| | - Xu-Lin Chen
- Department of Burns, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022 China
| |
Collapse
|
33
|
Abstract
Bruton's tyrosine kinase (BTK) is a key component of B cell receptor (BCR) signalling and functions as an important regulator of cell proliferation and cell survival in various B cell malignancies. Small-molecule inhibitors of BTK have shown antitumour activity in animal models and, recently, in clinical studies. High response rates were reported in patients with chronic lymphocytic leukaemia and mantle cell lymphoma. Remarkably, BTK inhibitors have molecular effects that cannot be explained by the classic role of BTK in BCR signalling. In this Review, we highlight the importance of BTK in various signalling pathways in the context of its therapeutic inhibition.
Collapse
Affiliation(s)
- Rudi W Hendriks
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000 CA Rotterdam, the Netherlands
| | - Saravanan Yuvaraj
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000 CA Rotterdam, the Netherlands
| | - Laurens P Kil
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000 CA Rotterdam, the Netherlands
| |
Collapse
|
34
|
Potter DS, Kelly P, Denneny O, Juvin V, Stephens LR, Dive C, Morrow CJ. BMX acts downstream of PI3K to promote colorectal cancer cell survival and pathway inhibition sensitizes to the BH3 mimetic ABT-737. Neoplasia 2014; 16:147-57. [PMID: 24709422 PMCID: PMC3978395 DOI: 10.1593/neo.131376] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2013] [Revised: 12/12/2013] [Accepted: 01/17/2014] [Indexed: 01/10/2023]
Abstract
Evasion of apoptosis is a hallmark of cancer, and reversing this process by inhibition of survival signaling pathways is a potential therapeutic strategy. Phosphoinositide 3-kinase (PI3K) signaling can promote cell survival and is upregulated in solid tumor types, including colorectal cancer (CRC), although these effects are context dependent. The role of PI3K in tumorigenesis combined with their amenability to specific inhibition makes them attractive drug targets. However, we observed that inhibition of PI3K in HCT116, DLD-1, and SW620 CRC cells did not induce apoptotic cell death. Moreover, these cells were relatively resistant to the Bcl-2 homology domain 3 (BH3) mimetic ABT-737, which directly targets the Bcl-2 family of apoptosis regulators. To test the hypothesis that PI3K inhibition lowers the apoptotic threshold without causing apoptosis per se, PI3K inhibitors were combined with ABT-737. PI3K inhibition enhanced ABT-737-induced apoptosis by 2.3- to 4.5-fold and reduced expression levels of MCL-1, the resistance biomarker for ABT-737. PI3K inhibition enhanced ABT-737-induced apoptosis a further 1.4- to 2.4-fold in CRC cells with small interfering RNA-depleted MCL-1, indicative of additional sensitizing mechanisms. The observation that ABT-737-induced apoptosis was unaffected by inhibition of PI3K downstream effectors AKT and mTOR, implicated a novel PI3K-dependant pathway. To elucidate this, an RNA interference (RNAi) screen of potential downstream effectors of PI3K signaling was conducted, which demonstrated that knockdown of the TEC kinase BMX sensitized to ABT-737. This suggests that BMX is an antiapoptotic downstream effector of PI3K, independent of AKT.
Collapse
Affiliation(s)
- Danielle S Potter
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Paul Kelly
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Olive Denneny
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Veronique Juvin
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Len R Stephens
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Caroline Dive
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom.
| | - Christopher J Morrow
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|