1
|
Cholico GN, Nault R, Zacharewski T. Cell-specific AHR-driven differential gene expression in the mouse liver cell following acute TCDD exposure. BMC Genomics 2024; 25:809. [PMID: 39198768 PMCID: PMC11351262 DOI: 10.1186/s12864-024-10730-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant that disrupts hepatic function leading to steatotic liver disease (SLD)-like pathologies, such as steatosis, steatohepatitis, and fibrosis. These effects are mediated by the aryl hydrocarbon receptor following changes in gene expression. Although diverse cell types are involved, initial cell-specific changes in gene expression have not been reported. In this study, differential gene expression in hepatic cell types was examined in male C57BL/6 mice gavaged with 30 µg/kg of TCDD using single-nuclei RNA-sequencing. Ten liver cell types were identified with the proportions of most cell types remaining unchanged, except for neutrophils which increased at 72 h. Gene expression suggests TCDD induced genes related to oxidative stress in hepatocytes as early as 2 h. Lipid homeostasis was disrupted in hepatocytes, macrophages, B cells, and T cells, characterized by the induction of genes associated with lipid transport, steroid hormone biosynthesis, and the suppression of β-oxidation, while linoleic acid metabolism was altered in hepatic stellate cells (HSCs), B cells, portal fibroblasts, and plasmacytoid dendritic cells. Pro-fibrogenic processes were also enriched, including the induction retinol metabolism genes in HSCs and the early induction of anti-fibrolysis genes in hepatocytes, endothelial cells, HSCs, and macrophages. Hepatocytes also had gene expression changes consistent with hepatocellular carcinoma. Collectively, these findings underscore the effects of TCDD in initiating SLD-like phenotypes and identified cell-specific gene expression changes related to oxidative stress, steatosis, fibrosis, cell proliferation and the development of HCC.
Collapse
Affiliation(s)
- Giovan N Cholico
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Rance Nault
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
- Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Tim Zacharewski
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
2
|
Huszenicza Z, Gilmour BC, Koll L, Kjelstrup H, Chan H, Sundvold V, Granum S, Spurkland A. Interaction of T-cell-specific adapter protein with Src- and Tec-family kinases. Scand J Immunol 2024; 99:e13358. [PMID: 38605535 DOI: 10.1111/sji.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 04/13/2024]
Abstract
Adapter proteins are flexible and dynamic modulators of cellular signalling that are important for immune cell function. One of these, the T-cell-specific adapter protein (TSAd), interacts with the non-receptor tyrosine kinases Src and Lck of the Src family kinases (SFKs) and Itk of the Tec family kinases (TFKs). Three tyrosine residues in the TSAd C-terminus are phosphorylated by Lck and serve as docking sites for the Src homology 2 (SH2) domains of Src and Lck. The TSAd proline-rich region (PRR) binds to the Src homology 3 (SH3) domains found in Lck, Src and Itk. Despite known interactors, the role TSAd plays in cellular signalling remains largely unknown. TSAd's ability to bind both SFKs and TFKs may point to its function as a general scaffold for both kinase families. Using GST-pulldown as well as peptide array experiments, we found that both the SH2 and SH3 domains of the SFKs Fyn and Hck, as well as the TFKs Tec and Txk, interact with TSAd. This contrasts with Itk, which interacts with TSAd only through its SH3 domain. Although our analysis showed that TSAd is both co-expressed and may interact with Fyn, we were unable to co-precipitate Fyn with TSAd from Jurkat cells, as detected by Western blotting and affinity purification mass spectrometry. This may suggest that TSAd-Fyn interaction in intact cells may be limited by other factors, such as the subcellular localization of the two molecules or the co-expression of competing binding partners.
Collapse
Affiliation(s)
- Zsuzsa Huszenicza
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Brian C Gilmour
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Lise Koll
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Hanna Kjelstrup
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Hanna Chan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Vibeke Sundvold
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Stine Granum
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anne Spurkland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Ren W, Yue C, Liu L, Du L, Xu K, Zhou Y. Overexpression of Bruton Tyrosine Kinase Inhibits the Proliferation, Migration, and Invasion of Non-Small Cell Lung Cancer Cells. Anal Cell Pathol (Amst) 2023; 2023:3377316. [PMID: 37638060 PMCID: PMC10457169 DOI: 10.1155/2023/3377316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023] Open
Abstract
Lung cancer is one of the most lethal malignant tumors in the world. Non-small cell lung cancer (NSCLC) is the most common pathological subtype. However, the molecular mechanism of NSCLC progress is still unclear. We extracted the expression data of the Bruton's tyrosine kinase (BTK) gene in NSCLC tissues from the TCGA database. The results of paired t-test showed that the BTK gene was significantly underexpressed in NSCLC tissues. To further verify the above results, we detected the expression of the BTK gene in NSCLC cell lines A549, H1299, and H1650 at the RNA and protein levels by real-time fluorescent quantitative polymerase chain reaction and Western Blot analysis, respectively. The results showed that BTK was low expressed in NSCLC tissues and cells. More importantly, the expression of the BTK gene is also significantly related to the patient's age, gender, tumor range (T), lymph node invasion (N), tumor stage, and prognosis, and its expression level gradually decreases with the progress of the disease. It is speculated that BTK may be an independent prognostic factor of NSCLC. Our experimental results are consistent with the above clinical correlation analysis results. Overexpression of BTK can significantly inhibit the proliferation, migration, and invasion of NSCLC cells and can block the G0/G1 tumor cell cycle, indicating that overexpression of BTK can inhibit the growth, migration, and invasion of NSCLC cells.
Collapse
Affiliation(s)
- Wenjia Ren
- Department of Biotechnology, College of Life Science and Chemistry, Beijing University of Technology, Chaoyang, Beijing, China
| | - Cheng Yue
- Department of Biotechnology, College of Life Science and Chemistry, Beijing University of Technology, Chaoyang, Beijing, China
| | - Linjun Liu
- Department of Biotechnology, College of Life Science and Chemistry, Beijing University of Technology, Chaoyang, Beijing, China
| | - Licheng Du
- Department of Biotechnology, College of Life Science and Chemistry, Beijing University of Technology, Chaoyang, Beijing, China
| | - Ke Xu
- NHC Key Laboratory of biosafety, National Institute for Viral Disease Control and Prevention, Changping, Beijing, China
| | - Yubai Zhou
- Department of Biotechnology, College of Life Science and Chemistry, Beijing University of Technology, Chaoyang, Beijing, China
| |
Collapse
|
4
|
Boulund U, Bastos DM, Ferwerda B, van den Born BJ, Pinto-Sietsma SJ, Galenkamp H, Levin E, Groen AK, Zwinderman AH, Nieuwdorp M. Gut microbiome associations with host genotype vary across ethnicities and potentially influence cardiometabolic traits. Cell Host Microbe 2022; 30:1464-1480.e6. [PMID: 36099924 DOI: 10.1016/j.chom.2022.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/16/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022]
Abstract
Previous studies in mainly European populations have reported that the gut microbiome composition is associated with the human genome. However, the genotype-microbiome interaction in different ethnicities is largely unknown. We performed a large fecal microbiome genome-wide association study of a single multiethnic cohort, the Healthy Life in an Urban Setting (HELIUS) cohort (N = 4,117). Mendelian randomization was performed using the multiethnic Pan-UK Biobank (N = 460,000) to dissect potential causality. We identified ethnicity-specific associations between host genomes and gut microbiota. Certain microbes were associated with genotype in multiple ethnicities. Several of the microbe-associated loci were found to be related to immune functions, interact with glutamate and the mucus layer, or be expressed in the gut or brain. Additionally, we found that gut microbes potentially influence cardiometabolic health factors such as BMI, cholesterol, and blood pressure. This provides insight into the relationship of ethnicity and gut microbiota and into the possible causal effects of gut microbes on cardiometabolic traits.
Collapse
Affiliation(s)
- Ulrika Boulund
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Diogo M Bastos
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Bart Ferwerda
- Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Bert-Jan van den Born
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands; Department of Public and Occupational Health, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Sara-Joan Pinto-Sietsma
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands; Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Henrike Galenkamp
- Department of Public and Occupational Health, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Evgeni Levin
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands; HorAIzon BV, 2645 LT Delfgauw, the Netherlands
| | - Albert K Groen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Maharaj K, Uriepero A, Sahakian E, Pinilla-Ibarz J. Regulatory T cells (Tregs) in lymphoid malignancies and the impact of novel therapies. Front Immunol 2022; 13:943354. [PMID: 35979372 PMCID: PMC9376239 DOI: 10.3389/fimmu.2022.943354] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Regulatory T cells (Tregs) are responsible for maintaining immune homeostasis by controlling immune responses. They can be characterized by concomitant expression of FoxP3, CD25 and inhibitory receptors such as PD-1 and CTLA-4. Tregs are key players in preventing autoimmunity and are dysregulated in cancer, where they facilitate tumor immune escape. B-cell lymphoid malignancies are a group of diseases with heterogenous molecular characteristics and clinical course. Treg levels are increased in patients with B-cell lymphoid malignancies and correlate with clinical outcomes. In this review, we discuss studies investigating Treg immunobiology in B-cell lymphoid malignancies, focusing on clinical correlations, mechanisms of accumulation, phenotype, and function. Overarching trends suggest that Tregs can be induced directly by tumor cells and recruited to the tumor microenvironment where they suppress antitumor immunity to facilitate disease progression. Further, we highlight studies showing that Tregs can be modulated by novel therapeutic agents such as immune checkpoint blockade and targeted therapies. Treg disruption by novel therapeutics may beneficially restore immune competence but has been associated with occurrence of adverse events. Strategies to achieve balance between these two outcomes will be paramount in the future to improve therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Kamira Maharaj
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Angimar Uriepero
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Eva Sahakian
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Javier Pinilla-Ibarz
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- *Correspondence: Javier Pinilla-Ibarz,
| |
Collapse
|
6
|
Sandner L, Alteneder M, Zhu C, Hladik A, Högler S, Rica R, Van Greuningen LW, Sharif O, Sakaguchi S, Knapp S, Kenner L, Trauner M, Ellmeier W, Boucheron N. The Tyrosine Kinase Tec Regulates Effector Th17 Differentiation, Pathogenicity, and Plasticity in T-Cell-Driven Intestinal Inflammation. Front Immunol 2021; 12:750466. [PMID: 35003062 PMCID: PMC8728872 DOI: 10.3389/fimmu.2021.750466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
T helper (Th) 17 cells are not only key in controlling infections mediated by extracellular bacteria and fungi but are also triggering autoimmune responses. Th17 cells comprise heterogeneous subsets, some with pathogenic functions. They can cease to secrete their hallmark cytokine IL-17A and even convert to other T helper lineages, a process known as transdifferentiation relying on plasticity. Both pathogenicity and plasticity are tightly linked to IL-23 signaling. Here, we show that the protein tyrosine kinase Tec is highly induced in Th17 cells. Th17 differentiation was enhanced at low interleukin-6 (IL-6) concentrations in absence of Tec, which correlates with increased STAT3 phosphorylation and higher Il23r expression. Therefore, we uncovered a function for Tec in the IL-6 sensing via STAT3 by CD4+ T cells, defining Tec as a fine-tuning negative regulator of Th17 differentiation. Subsequently, by using the IL-17A fate mapping mouse combined with in vivo adoptive transfer models, we demonstrated that Tec not only restrained effector Th17 differentiation but also pathogenicity and plasticity in a T-cell intrinsic manner. Our data further suggest that Tec regulates inflammatory Th17-driven immune responses directly impacting disease severity in a T-cell-driven colitis model. Notably, consistent with the in vitro findings, elevated levels of the IL-23 receptor (IL-23R) were observed on intestinal pre- and postconversion Th17 cells isolated from diseased Tec-/- mice subjected to adoptive transfer colitis, highlighting a fundamental role of Tec in restraining IL-23R expression, likely via the IL-6-STAT3 signaling axis. Taken together, these findings identify Tec as a negative regulator of Th17 differentiation, pathogenicity, and plasticity, contributing to the mechanisms which help T cells to orchestrate optimal immune protection and to restrain immunopathology.
Collapse
Affiliation(s)
- Lisa Sandner
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marlis Alteneder
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ci Zhu
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria,Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Anastasiya Hladik
- Department of Medicine 1, Research Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Sandra Högler
- Unit of Laboratory Animal Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ramona Rica
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Omar Sharif
- Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria,Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sylvia Knapp
- Department of Medicine 1, Research Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Unit of Laboratory Animal Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria,Department of Pathology, Medical University of Vienna, Vienna, Austria,Division of Experimental and Translational Pathology, Department of Pathology, Medical University Vienna, Vienna, Austria,Center for Biomarker Research in Medicine (CBmed), Graz, Austria,Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nicole Boucheron
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria,*Correspondence: Nicole Boucheron,
| |
Collapse
|
7
|
Nadeem A, Ahmad SF, Al-Harbi NO, Ibrahim KE, Siddiqui N, Al-Harbi MM, Attia SM, Bakheet SA. Inhibition of Bruton's tyrosine kinase and IL-2 inducible T-cell kinase suppresses both neutrophilic and eosinophilic airway inflammation in a cockroach allergen extract-induced mixed granulocytic mouse model of asthma using preventative and therapeutic strategy. Pharmacol Res 2019; 148:104441. [PMID: 31505252 DOI: 10.1016/j.phrs.2019.104441] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 01/10/2023]
Abstract
Asthma is a complex airways disease with a wide spectrum which ranges from eosinophilic (Th2 driven) to mixed granulocytic (Th2/Th17 driven) phenotypes. Mixed granulocytic asthma is a cause of concern as corticosteroids often fail to control this phenotype. Different kinases such as Brutons's tyrosine kinase (BTK) and IL-2 inducible T cell kinase (ITK) play a pivotal role in shaping allergic airway inflammation. Ibrutinib is primarily a BTK inhibitor, however it is reported to be an ITK inhibitor as well. In this study, we sought to determine the effect of Ibrutinib on Th1, Th17 and Th2 immune responses in a cockroach allergen extract (CE)-induced mixed granulocytic (eosinophilic and neutrophilic) mouse model in preventative mode. Ibrutinib attenuated neutrophilic inflammation at a much lower doses (25-75 μg/mouse) in CE-induced mixed granulocytic asthma whereas Th2/Th17 immune responses remained unaffected at these doses. However, at a much higher dose, i.e. 250 μg/mouse, Ibrutinib remarkably suppressed both Th17/Th2 and lymphocytic/neutrophilic/eosinophilic airway inflammation. At molecular level, Ibrutinib suppressed phosphorylation of BTK in neutrophils at lower doses and ITK in CD4 + T cells at higher doses in CE-treated mice. Further, effects of Ibrutinib were compared with dexamethasone on CE-induced mixed granulocytic asthma in therapeutic mode. Ibrutinib was able to control granulocytic inflammation along with Th2/Th17 immune response in therapeutic mode whereas dexamethasone limited only Th2/eosinophilic inflammation. Thus, Ibrutinib has the potential to suppress both Th17/Th2 and neutrophilic/eosinophilic inflammation during mixed granulocytic asthma and therefore may be pursued as alternative therapeutic option in difficult-to-treat asthma which is resistant to corticosteroids.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nahid Siddiqui
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Mohammed M Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Yao X, Sun X, Jin S, Yang L, Xu H, Rao Y. Discovery of 4-Aminoquinoline-3-carboxamide Derivatives as Potent Reversible Bruton’s Tyrosine Kinase Inhibitors for the Treatment of Rheumatoid Arthritis. J Med Chem 2019; 62:6561-6574. [DOI: 10.1021/acs.jmedchem.9b00329] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xia Yao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, P. R. China
| | - Shuyu Jin
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Ling Yang
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing 210023, P. R. China
| | - Hongjiang Xu
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing 210023, P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
9
|
Blass BE. Covalent Inhibitors of the TEC Family of Kinases and Their Methods of Use. ACS Med Chem Lett 2018; 9:587-589. [PMID: 30034582 DOI: 10.1021/acsmedchemlett.8b00178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Indexed: 11/29/2022] Open
Affiliation(s)
- Benjamin E. Blass
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
10
|
Bustos-Villalobos I, Bergstrom JW, Haigh NE, Luna JI, Mitra A, Marusina AI, Merleev AA, Wang EA, Sukhov A, Sultani H, Liu R, Bhardwaj G, Guo W, Kung HJ, Lam KS, Maverakis E. ITK inhibition for the targeted treatment of CTCL. J Dermatol Sci 2017; 87:88-91. [PMID: 28434812 DOI: 10.1016/j.jdermsci.2017.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 03/21/2017] [Accepted: 04/03/2017] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Nathan E Haigh
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Jesus I Luna
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Anupam Mitra
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Alina I Marusina
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Alexander A Merleev
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Elizabeth A Wang
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Andrea Sukhov
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Hawa Sultani
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - Gaurav Bhardwaj
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - Wenchang Guo
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - Hsing-Jien Kung
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA.
| |
Collapse
|
11
|
Liu CC, Lai CY, Yen WF, Lin YH, Chang HH, Tai TS, Lu YJ, Tsao HW, Ho IC, Miaw SC. Reciprocal regulation of C-Maf tyrosine phosphorylation by Tec and Ptpn22. PLoS One 2015; 10:e0127617. [PMID: 25993510 PMCID: PMC4439128 DOI: 10.1371/journal.pone.0127617] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/16/2015] [Indexed: 02/06/2023] Open
Abstract
C-Maf plays an important role in regulating cytokine production in TH cells. Its transactivation of IL-4 is optimized by phosphorylation at Tyr21, Tyr92, and Tyr131. However, the molecular mechanism regulating its tyrosine phosphorylation remains unknown. In this study, we demonstrate that Tec kinase family member Tec, but not Rlk or Itk, is a tyrosine kinase of c-Maf and that Tec enhances c-Maf-dependent IL-4 promoter activity. This effect of Tec is counteracted by Ptpn22, which physically interacts with and facilitates tyrosine dephosphorylation of c-Maf thereby attenuating its transcriptional activity. We further show that phosphorylation of Tyr21/92/131 of c-Maf is also critical for its recruitment to the IL-21 promoter and optimal production of this cytokine by TH17 cells. Thus, manipulating tyrosine phosphorylation of c-Maf through its kinases and phosphatases can have significant impact on TH cell-mediated immune responses.
Collapse
Affiliation(s)
- Chih-Chun Liu
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Yen Lai
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Feng Yen
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Hsien Lin
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hui-Hsin Chang
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tzong-Shyuan Tai
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yu-Jung Lu
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiao-Wei Tsao
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - I-Cheng Ho
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shi-Chuen Miaw
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
12
|
[MUW researcher of the month]. Wien Klin Wochenschr 2015; 127:314-5. [PMID: 25895573 DOI: 10.1007/s00508-015-0790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Menzfeld C, John M, van Rossum D, Regen T, Scheffel J, Janova H, Götz A, Ribes S, Nau R, Borisch A, Boutin P, Neumann K, Bremes V, Wienands J, Reichardt HM, Lühder F, Tischner D, Waetzig V, Herdegen T, Teismann P, Greig I, Müller M, Pukrop T, Mildner A, Kettenmann H, Brück W, Prinz M, Rotshenker S, Weber MS, Hanisch UK. Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism. Glia 2015; 63:1083-99. [PMID: 25731696 DOI: 10.1002/glia.22803] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/20/2015] [Indexed: 01/17/2023]
Abstract
The putative protein tyrosine kinase (PTK) inhibitor tyrphostin AG126 has proven beneficial in various models of inflammatory disease. Yet molecular targets and cellular mechanisms remained enigmatic. We demonstrate here that AG126 treatment has beneficial effects in experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. AG126 alleviates the clinical symptoms, diminishes encephalitogenic Th17 differentiation, reduces inflammatory CNS infiltration as well as microglia activation and attenuates myelin damage. We show that AG126 directly inhibits Bruton's tyrosine kinase (BTK), a PTK associated with B cell receptor and Toll-like receptor (TLR) signaling. However, BTK inhibition cannot account for the entire activity spectrum. Effects on TLR-induced proinflammatory cytokine expression in microglia involve AG126 hydrolysis and conversion of its dinitrile side chain to malononitrile (MN). Notably, while liberated MN can subsequently mediate critical AG126 features, full protection in EAE still requires delivery of intact AG126. Its anti-inflammatory potential and especially interference with TLR signaling thus rely on a dual mechanism encompassing BTK and a novel MN-sensitive target. Both principles bear great potential for the therapeutic management of disturbed innate and adaptive immune functions.
Collapse
|
14
|
Cao JN, Agrawal A, Sharman E, Jia Z, Gupta S. Alterations in gene array patterns in dendritic cells from aged humans. PLoS One 2014; 9:e106471. [PMID: 25191744 PMCID: PMC4156347 DOI: 10.1371/journal.pone.0106471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/30/2014] [Indexed: 01/12/2023] Open
Abstract
Dendritic cells (DCs) are major antigen-presenting cells that play a key role in initiating and regulating innate and adaptive immune responses. DCs are critical mediators of tolerance and immunity. The functional properties of DCs decline with age. The purpose of this study was to define the age-associated molecular changes in DCs by gene array analysis using Affymatrix GeneChips. The expression levels of a total of 260 genes (1.8%) were significantly different (144 down-regulated and 116 upregulated) in monocyte-derived DCs (MoDCs) from aged compared to young human donors. Of the 260 differentially expressed genes, 24% were down-regulated by more than 3-fold, suggesting that a large reduction in expression occurred for a notable number of genes in the aged. Our results suggest that the genes involved in immune response to pathogens, cell migration and T cell priming display significant age-related changes. Furthermore, downregulated genes involved in cell cycle arrest and DNA replication may play a critical role in aging-associated genetic instability. These changes in gene expression provide molecular based evidence for age-associated functional abnormalities in human DCs that may be responsible for the defects in adaptive immunity observed in the elderly.
Collapse
Affiliation(s)
- Jia-ning Cao
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Edward Sharman
- Department of Neurology, University of California Irvine, Irvine, California, United States of America
| | - Zhenyu Jia
- Department of Statistics, University of Akron, Akron, Ohio, United States of America
- Department of Family and Community Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
- Pathology & Laboratory Medicine, University of California Irvine, Irvine, California, United States of America
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Qiu L, Wang F, Liu S, Chen XL. Current understanding of tyrosine kinase BMX in inflammation and its inhibitors. BURNS & TRAUMA 2014; 2:121-4. [PMID: 27602372 PMCID: PMC5012028 DOI: 10.4103/2321-3868.135483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/05/2014] [Accepted: 06/11/2014] [Indexed: 11/08/2022]
Abstract
Tec family kinases, which include tyrosine kinase expressed in hepatocellular carcinoma (TEC), Bruton’s tyrosine kinase (BTK), interleukin (IL)-2-inducible T-cell kinase (ITK), tyrosine-protein kinase (TXK), and bone marrow tyrosine kinase on chromosome X (BMX), are the second largest group of non-receptor tyrosine kinases and have a highly conserved carboxyl-terminal kinase domain. BMX was identified in human bone marrow cells, and was demonstrated to have been expressed in myeloid hematopoietic lineages cells, endothelial cells, and several types of cancers. Significant progress in this area during the last decade revealed an important role for BMX in inflammation and oncologic disorders. This review focuses on BMX biology, its role in inflammation and possible signaling pathways, and the potential of selective BMX inhibitors.
Collapse
Affiliation(s)
- Le Qiu
- Department of Burns, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022 China
| | - Fei Wang
- Department of Burns, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022 China
| | - Sheng Liu
- Department of Burns, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022 China
| | - Xu-Lin Chen
- Department of Burns, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022 China
| |
Collapse
|
16
|
Abdel-Magid AF. Treatment of Immunological or Inflammatory Disorders with ITK Kinase Inhibitors. ACS Med Chem Lett 2014; 5:456-7. [PMID: 24900859 DOI: 10.1021/ml5000838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Indexed: 11/30/2022] Open
|
17
|
Abstract
Bruton's tyrosine kinase (BTK) is a key component of B cell receptor (BCR) signalling and functions as an important regulator of cell proliferation and cell survival in various B cell malignancies. Small-molecule inhibitors of BTK have shown antitumour activity in animal models and, recently, in clinical studies. High response rates were reported in patients with chronic lymphocytic leukaemia and mantle cell lymphoma. Remarkably, BTK inhibitors have molecular effects that cannot be explained by the classic role of BTK in BCR signalling. In this Review, we highlight the importance of BTK in various signalling pathways in the context of its therapeutic inhibition.
Collapse
Affiliation(s)
- Rudi W Hendriks
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000 CA Rotterdam, the Netherlands
| | - Saravanan Yuvaraj
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000 CA Rotterdam, the Netherlands
| | - Laurens P Kil
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000 CA Rotterdam, the Netherlands
| |
Collapse
|
18
|
Joseph RE, Kleino I, Wales TE, Xie Q, Fulton DB, Engen JR, Berg LJ, Andreotti AH. Activation loop dynamics determine the different catalytic efficiencies of B cell- and T cell-specific tec kinases. Sci Signal 2013; 6:ra76. [PMID: 23982207 DOI: 10.1126/scisignal.2004298] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Itk (interleukin-2-inducible T cell kinase) and Btk (Bruton's tyrosine kinase) are nonreceptor tyrosine kinases of the Tec family that signal downstream of the T cell receptor (TCR) and B cell receptor (BCR), respectively. Despite their high sequence similarity and related signaling roles, Btk is a substantially more active kinase than Itk. We showed that substitution of 6 of the 619 amino acid residues of Itk with the corresponding residues of Btk (and vice versa) was sufficient to completely switch the activities of Itk and Btk. The substitutions responsible for the swap in activity are all localized to the activation segment of the kinase domain. Nuclear magnetic resonance and hydrogen-deuterium exchange mass spectrometry analyses revealed that Itk and Btk had distinct protein dynamics in this region, which could explain the differences in catalytic efficiency between these kinases. Introducing Itk with enhanced activity into T cells led to enhanced and prolonged TCR signaling compared to that in cells with wild-type Itk. These findings imply that evolutionary pressures have led to Tec kinases having distinct enzymatic properties, depending on the cellular context. We suggest that the weaker catalytic activities of T cell-specific kinases serve to regulate cellular activation and prevent aberrant immune responses.
Collapse
Affiliation(s)
- Raji E Joseph
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | | | |
Collapse
|