1
|
Zhao M, Lin J, Wang X, Chen C, Li J, Yu J, Zhou T, Liang Y, Shen X, Shi R, Yang S, Zeng S, Deng Y, Duan X, Zhou L, Sun X, Wang Y, Shu Z. Multi-immunometabolomics mining: NP prevents hyperimmune in ALI by inhibiting Leucine/PI3K/Akt/mTOR signaling pathway. Free Radic Biol Med 2024; 225:302-315. [PMID: 39370053 DOI: 10.1016/j.freeradbiomed.2024.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Acute lung injury (ALI) is currently a global health concern. Nicandra physalodes (L.) Gaertn. (NP) holds an important position in traditional Chinese medicine and nutrition. The potential protective mechanisms of NP against ALI remain unknown. The purpose of this study was to investigate the protective effects and molecular mechanisms of NP extract (NPE) on lipopolysaccharide (LPS)-induced ALI in mice. By utilizing network pharmacology to forecast the active ingredients in NP as well as possible signaling pathways. The composition of the NPE was analyzed using UPLC-Q-TOF-MS/MS. In addition, 1H-NMR immunometabolomics was employed to identify alterations in primary metabolic pathways and metabolites in the lung, serum, and fecal tissues. Finally, the protein and gene expression of key pathways were verified by IHC, IF, RT-qPCR, and ELISA. It was found that the main ingredients of NPE were revealed to be nicandrenone, withanolide A, and baicalin. NPE significantly improved lung injury, pulmonary edema, and inflammatory cell infiltration in mice with ALI. In addition, NPE improved autophagic activity and alleviated Th1 and Th17 cell-induced lung inflammation by suppressing the PI3K/Akt/mTOR signaling pathway. Importantly, immunometabolomic analysis of fecal, serum, and lung tissues revealed that NPE reversed ALI-induced leucine resistance by remodeling immunometabolism. We confirmed NPE prevents ALI by remodeling immunometabolism, regulating the Leucine/PI3K/Akt/mTOR signaling pathway, inhibiting Th1/Th17 cell differentiation, and providing a scientific immunological basis for the clinical application of NPE.
Collapse
Affiliation(s)
- Mantong Zhao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiazi Lin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Chengkai Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianhua Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiamin Yu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tong Zhou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yefang Liang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xuejuan Shen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ruixiang Shi
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Simin Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shuting Zeng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongan Deng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaodong Duan
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lichang Zhou
- Ruyuan Yao Autonomous County Agricultural Technology Promotion Center, Shaoguan, 512700, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Yi Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zunpeng Shu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China.
| |
Collapse
|
2
|
van Setten GB. Ocular Surface Allostasis-When Homeostasis Is Lost: Challenging Coping Potential, Stress Tolerance, and Resilience. Biomolecules 2023; 13:1246. [PMID: 37627311 PMCID: PMC10452761 DOI: 10.3390/biom13081246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The loss of ocular surface (OS) homeostasis characterizes the onset of dry eye disease. Resilience defines the ability to withstand this threat, reflecting the ability of the ocular surface to cope with and bounce back after challenging events. The coping capacity of the OS defines the ability to successfully manage cellular stress. Cellular stress, which is central to the outcome of the pathophysiology of dry eye disease, is characterized by intensity, continuity, and receptivity, which lead to the loss of homeostasis, resulting in a phase of autocatalytic dysregulation, an event that is not well-defined. To better define this event, here, we present a model providing a potential approach when homeostasis is challenged and the coping capacities have reached their limits, resulting in the stage of heterostasis, in which the dysregulated cellular stress mechanisms take over, leading to dry eye disease. The main feature of the proposed model is the concept that, prior to the initiation of the events leading to cellular stress, there is a period of intense activation of all available coping mechanisms preventing the imminent dysregulation of ocular surface homeostasis. When the remaining coping mechanisms and resilience potential have been maximally exploited and have, finally, been exceeded, there will be a transition to manifest disease with all the well-known signs and symptoms, with a shift to allostasis, reflecting the establishment of another state of balance. The intention of this review was to show that it is possibly the phase of heterostasis preceding the establishment of allostasis that offers a better chance for therapeutic intervention and optimized recovery. Once allostasis has been established, as a new steady-state of balance at a higher level of constant cell stress and inflammation, treatment may be far more difficult, and the potential for reversal is drastically decreased. Homeostasis, once lost, can possibly not be fully recovered. The processes established during heterostasis and allostasis require different approaches and treatments for their control, indicating that the current treatment options for homeostasis need to be adapted to a more-demanding situation. The loss of homeostasis necessarily implies the establishment of a new balance; here, we refer to such a state as allostasis.
Collapse
Affiliation(s)
- Gysbert-Botho van Setten
- St. Eriks Eye Hospital, 171 04 Solna, Sweden;
- Lab of DOHF and Wound Healing, Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, Eugeniavägen 12/Level 6, 171 04 Solna, Sweden
| |
Collapse
|
3
|
Yang Y, Li Q, Ling Y, Leng L, Ma Y, Xue L, Lu G, Ding Y, Li J, Tao S. m6A eraser FTO modulates autophagy by targeting SQSTM1/P62 in the prevention of canagliflozin against renal fibrosis. Front Immunol 2023; 13:1094556. [PMID: 36685533 PMCID: PMC9845768 DOI: 10.3389/fimmu.2022.1094556] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
The dysregulation of autophagy contributes to renal fibrosis. N6-Methyladenosine (m6A) RNA modification is a critical mediator of autophagy. Our previous studies have reported that the disorder of the PPARα/fatty acid oxidation (FAO) axis in renal tubular cells is suppressed by STAT6, which is involved in the regulation of renal fibrotic processes. Here, we found that canagliflozin significantly upregulates SQSTM1/P62, promoting PPARα-mediated FAO by inducing autophagy-dependent STAT6 degradation both in TGF-β1-treated HK2 cells and in unilateral ureteral occlusion (UUO) and ischemia-reperfusion (I/R) renal fibrosis mouse models. Knockdown of P62/SQSTM1 led to the impairment autophagic flux and the dysregulation of the STAT6/PPARα axis, which was confirmed by SQSTM1/P62cKO mice with UUO treatment along with bioinformatics analysis. Furthermore, SQSTM1/P62 deficiency in renal tubular cells inhibited canagliflozin's effects that prevent FAO disorder in renal tubular cells and renal fibrosis. Mechanistically, the level of m6A eraser FTO, which interacted with SQSTM1 mRNA, decreased in the renal tubular cells both in vitro and in vivo after canagliflozin administration. Decrease in FTO stabilized SQSTM1 mRNA, which induced autophagosome formation. Collectively, this study uncovered a previously unrecognized function of canagliflozin in FTO in the autophagy modulation through the regulation of SQSTM1 mRNA stability in the renal tubular STAT6/PPARα/FAO axis and renal fibrosis.
Collapse
Affiliation(s)
- Youjing Yang
- Chongqing University Central Hospital and Chongqing Emergency Medical Center, Chongqing, China
| | - Qianmin Li
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yi Ling
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Linxin Leng
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yu Ma
- Chongqing University Central Hospital and Chongqing Emergency Medical Center, Chongqing, China
| | - Lian Xue
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Guoyuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yue Ding
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianzhong Li
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,*Correspondence: Jianzhong Li, ; Shasha Tao,
| | - Shasha Tao
- Chongqing University Central Hospital and Chongqing Emergency Medical Center, Chongqing, China,School of Public Health, Medical College of Soochow University, Suzhou, China,*Correspondence: Jianzhong Li, ; Shasha Tao,
| |
Collapse
|
4
|
Xian X, Zhang Y, Bai A, Zhai X, Hu H, Zhang J, Ye M. Association between Family Support, Stress, and Sleep Quality among College Students during the COVID-19 Online Learning Period. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:248. [PMID: 36612570 PMCID: PMC9819990 DOI: 10.3390/ijerph20010248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
(1) Background: During the past 3 years, the COVID-19 pandemic has severely affected the normal school schedule of college students, jeopardizing their mental health, sleep quality, and interpersonal relationships. However, previous studies have focused on the dimension of social support received, and few studies have measured in depth the association of support received from family on adolescents’ physical and mental health. Therefore, this study explored the associations between family support received by Chinese college students during COVID-19 pandemic online classes, stress and sleep quality, and the mediating role of stress. (2) Methods: A cross-sectional study conducted at Chongqing Medical University recruited 712 college students through a university-wide incidental random sample using the Questionnaire Star platform. Statistical description and correlation analysis was conducted using SPSS 25.0, and structural equation modeling was constructed using AMOS 22.0 to test for mediating effects; (3) Results: The family support score of college students during the COVID-19 pandemic online course was 19.41 ± 4.62. Correlation analysis showed that sleep quality was negatively correlated with family support (r = −0.224, p < 0.01), positively correlated with stress (r = 0.324, p < 0.01), and family support was negatively correlated with stress (r = −0.159, p < 0.01). The results of structural equation modeling showed that stress partially mediated the relationship between family support and sleep quality among college students (indirect effect = −0.150, p < 0.01, SE = 0.013,95% CI = [−0.208, −0.064]). The model R2 was 36.4%. (4) Conclusions: Schools should consider implementing sleep education, and stress relief curriculum measures to improve the quality of students’ sleep, and should focus on the role that family plays during online classes. This will help students overcome the negative emotional effects of stress in the COVID-19 pandemic and improve their learning efficiency and physical and mental health.
Collapse
|
5
|
Wang M, Liu K, Bu H, Cong H, Dong G, Xu N, Li C, Zhao Y, Jiang F, Zhang Y, Yuan B, Li R, Jiang J. Purple sweet potato delphinidin-3-rutin represses glioma proliferation by inducing miR-20b-5p/Atg7-dependent cytostatic autophagy. Mol Ther Oncolytics 2022; 26:314-329. [PMID: 36090477 PMCID: PMC9420429 DOI: 10.1016/j.omto.2022.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/22/2022] [Indexed: 10/26/2022] Open
|
6
|
Gao D, Cao X, Ren H, Wu L, Yan Y, Hua R, Xing W, Lei M, Liu J. Immunotoxicity and uterine transcriptome analysis of the effect of zearalenone (ZEA) in sows during the embryo attachment period. Toxicol Lett 2021; 357:33-42. [PMID: 34933075 DOI: 10.1016/j.toxlet.2021.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022]
Abstract
Zearalenone is a mycotoxin and a pollutant that is commonly found in crops. Once ingested, ZEA can cause disturbances in the immune system and produce immunotoxicity. However, there is little research on the effect of ZEA exposure on the relationship between immune regulation and embryo implantation in the uteri of sows. Embryo implantation relies upon the fact that the relationship between the maternal and fetal immune systems is balanced. This balance is provided by the joint regulation of immune organs, cytokines, and uterine immunity. In this study, we investigated 20 sows with an initial weight of 100.00 ± 5.00 kg and 200 days in age. The sows were fed with diets containing ZEA at concentrations of 0 mg/kg, 1 mg/kg, 2 mg/kg, and 10 mg/kg, respectively, from 8 to 14 days of gestation. We studied immunotoxicity and the uterine transcriptomics associated with the effect of ZEA in sows during embryo attachment. Following ZEA treatment, serum biochemical analysis and RT-qPCR were used to detect the concentration and mRNA expression levels of immunoglobulin IgA, IgG, and IgM, in the serum and spleen, respectively. The same analysis was carried out for a range of cytokines in the serum and spleen: IL-1, IL-2, IL-6, IL-10, and TNF. Uterine transcriptome analysis revealed 75, 215, and 81 genes that were differentially expressed in the 0 mg/kg vs 1 mg/kg treatment, 0 mg/kg vs 10 mg/kg treatment, and 1 mg/kg vs 10 mg/kg treatment, respectively. GO terms analysis showed that the up-regulated genes related to the immune system were highly expressed. KEGG pathway analysis further revealed the importance of several metabolic pathways, including drug metabolism-cytochrome P450, the cytokine-cytokine receptor interaction pathway, and calcium signaling pathways. The differentially expressed genes were confirmed by quantitative real-time PCR. These findings expand our understanding of the gene expression profiles and signaling pathways associated with the immune response to ZEA exposure in sows during the embryo implantation window. This study provides valuable information for clarifying the molecular mechanism of ZEA's immunotoxicity to early pregnant sows in the future.
Collapse
Affiliation(s)
- Dengying Gao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, China
| | - Xinxin Cao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, China
| | - Huihui Ren
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, China
| | - Lihang Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, China
| | - Youxin Yan
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, China
| | - Renwu Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, China
| | - Wenkai Xing
- Jiangxi Zhengbang Breeding Co. LTD, Jiangxi, Nanchang, China
| | - Minggang Lei
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, China; National Engineering Research Center for Livestock, China.
| | - Jian Liu
- Jiangxi Zhengbang Breeding Co. LTD, Jiangxi, Nanchang, China
| |
Collapse
|
7
|
Xu N, Zhao Y, Bu H, Tan S, Dong G, Liu J, Wang M, Jiang J, Yuan B, Li R. Cochlioquinone derivative CoB1 induces cytostatic autophagy in lung cancer through miRNA-125b and Foxp3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153742. [PMID: 34624808 DOI: 10.1016/j.phymed.2021.153742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/01/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer death worldwide, yet no effective medication for this disease is available. Cochlioquinone B derivative (CoB1), purified from Salvia miltiorrhiza endophytic Bipolaris sorokiniana, affects the defense against pulmonary pathogens by regulating inflammatory responses. However, the effect of CoB1 on lung cancer and the underlying molecular mechanisms remain unknown. In the present study, we investigate the protective effects of CoB1 on lung cancer and explore its underlying mechanism. METHOD We examined the inhibitory effect of CoB1 on lung cancer cells (A549 cells) by MTT and colony formation assay. The effect of CoB1 on cytostatic autophagy in lung cancer cells was verified by Western blot, transmission electron microscopy, and confocal microscopy. The differentially expressed miRNAs were identified using quantitative RT-PCR. Luciferase assay and Northern blot were performed to verify the correlation between miRNA-125b and Foxp3. Protein expression in autophagy-related pathways was detected by Western blot. Xenograft tumor models were constructed to explore the inhibitory effect of CoB1 and the role of miRNA-125b as a suppressor in lung cancer in vivo. RESULT CoB1 inhibited lung cancer cell proliferation by inducing cytostatic autophagy both in vitro and in vivo. CoB1-induced autophagy was related to blocking of the PI3K/Akt1/mTOR signaling pathway. In addition, CoB1 induced miR-125b expression via activating the TAK1/MKK4/JNK/Smad axis, thereby reducing Foxp3 expression and further inducing autophagy. CONCLUSION This study is the first to report the specific inhibitory function of CoB1 purified from Salvia miltiorrhiza endophytic Bipolaris sorokiniana in lung cancer, which may be due to the induction of autophagy. This study provides evidence and novel insights into the anticancer efficacy of CoB1.
Collapse
Affiliation(s)
- Nana Xu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China; Laboratory of Morphology, Xuzhou Medical University, Xuzhou 221004, P. R. China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou 221004, P. R. China
| | - Yunyun Zhao
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Huimin Bu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China; Department of Physiology, Xuzhou Medical University, Xuzhou 221004, P. R. China
| | - Shirui Tan
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Guokai Dong
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou 221004, P. R. China
| | - Jinjuan Liu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Meng Wang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Jihong Jiang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Yuan
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Rongpeng Li
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| |
Collapse
|
8
|
He C, Wang S, Zhou C, He M, Wang J, Ladds M, Lianoudaki D, Sedimbi SK, Lane DP, Westerberg LS, Li S, Karlsson MC. CD36 and LC3B initiated autophagy in B cells regulates the humoral immune response. Autophagy 2021; 17:3577-3591. [PMID: 33535890 PMCID: PMC8632284 DOI: 10.1080/15548627.2021.1885183] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/29/2021] [Indexed: 12/31/2022] Open
Abstract
Scavenger receptors are pattern recognition receptors that recognize both foreign and self-ligands, and initiate different mechanisms of cellular activation, often as co-receptors. The function of scavenger receptor CD36 in the immune system has mostly been studied in macrophages but it is also highly expressed by innate type B cells where its function is less explored. Here we report that CD36 is involved in macro-autophagy/autophagy in B cells, and in its absence, the humoral immune response is impaired. We found that CD36-deficient B cells exhibit a significantly reduced plasma cell formation, proliferation, mitochondrial mobilization and oxidative phosphorylation. These changes were accompanied by impaired initiation of autophagy, and we found that CD36 regulated autophagy and colocalized with autophagosome membrane protein MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3). When we investigated T-cell-dependent immune responses, we found that mice with CD36 deficiency, specifically in B cells, exhibited attenuated germinal center responses, class switching, and antibody production as well as autophagosome formation. These findings establish a critical role for CD36 in B cell responses and may also contribute to our understanding of CD36-mediated autophagy in other cells as well as in B cell lymphomas that have been shown to express the receptor.Abbreviations: AICDA/AID: activation-induced cytidine deaminase; ATG5: autophagy related 5; ATP: adenosine triphosphate; BCR: B-cell receptor; CPG: unmethylated cytosine-guanosine; CQ: chloroquine; DC: dendritic cells; FOB: follicular B cells; GC: germinal center; Ig: immunoglobulin; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MFI: mean fluorescence intensity; MZB: marginal zone B cells; NP-CGG: 4-hydroxy-3-nitrophenylacetyl-chicken gamma globulin; OCR: oxygen consumption rate; oxLDL: oxidized low-density lipoprotein; PC: plasma cells; Rapa: rapamycin; SQSTM1/p62: sequestosome 1; SRBC: sheep red blood cells; Tfh: follicular helper T cells; TLR: toll-like receptor.
Collapse
Affiliation(s)
- Chenfei He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shan Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Minghui He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jin Wang
- Department of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, P.R. China
| | - Marcus Ladds
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Danai Lianoudaki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Saikiran K. Sedimbi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - David P. Lane
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S. Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shuijie Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael C.I. Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Wu MY, Wang EJ, Feng D, Li M, Ye RD, Lu JH. Pharmacological insights into autophagy modulation in autoimmune diseases. Acta Pharm Sin B 2021; 11:3364-3378. [PMID: 34900523 PMCID: PMC8642426 DOI: 10.1016/j.apsb.2021.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
As a cellular bulk degradation and survival mechanism, autophagy is implicated in diverse biological processes. Genome-wide association studies have revealed the link between autophagy gene polymorphisms and susceptibility of autoimmune diseases including systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), indicating that autophagy dysregulation may be involved in the development of autoimmune diseases. A series of autophagy modulators have displayed protective effects on autoimmune disease models, highlighting the emerging role of autophagy modulators in treating autoimmune diseases. This review explores the roles of autophagy in the autoimmune diseases, with emphasis on four major autoimmune diseases [SLE, rheumatoid arthritis (RA), IBD, and experimental autoimmune encephalomyelitis (EAE)]. More importantly, the therapeutic potentials of small molecular autophagy modulators (including autophagy inducers and inhibitors) on autoimmune diseases are comprehensively analyzed.
Collapse
Affiliation(s)
- Ming-Yue Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 9999078, China
| | - Er-Jin Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 9999078, China
| | - Du Feng
- Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, College of Basic Medical Science, Guangzhou Medical University, Guangzhou 510000, China
| | - Min Li
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510000, China
| | - Richard D. Ye
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, the Chinese University of Hong Kong, Shenzhen 518000, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 9999078, China
| |
Collapse
|
10
|
Misrielal C, Mauthe M, Reggiori F, Eggen BJL. Autophagy in Multiple Sclerosis: Two Sides of the Same Coin. Front Cell Neurosci 2020; 14:603710. [PMID: 33328897 PMCID: PMC7714924 DOI: 10.3389/fncel.2020.603710] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a complex auto-immune disorder of the central nervous system (CNS) that involves a range of CNS and immune cells. MS is characterized by chronic neuroinflammation, demyelination, and neuronal loss, but the molecular causes of this disease remain poorly understood. One cellular process that could provide insight into MS pathophysiology and also be a possible therapeutic avenue, is autophagy. Autophagy is an intracellular degradative pathway essential to maintain cellular homeostasis, particularly in neurons as defects in autophagy lead to neurodegeneration. One of the functions of autophagy is to maintain cellular homeostasis by eliminating defective or superfluous proteins, complexes, and organelles, preventing the accumulation of potentially cytotoxic damage. Importantly, there is also an intimate and intricate interplay between autophagy and multiple aspects of both innate and adaptive immunity. Thus, autophagy is implicated in two of the main hallmarks of MS, neurodegeneration, and inflammation, making it especially important to understand how this pathway contributes to MS manifestation and progression. This review summarizes the current knowledge about autophagy in MS, in particular how it contributes to our understanding of MS pathology and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Chairi Misrielal
- Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mario Mauthe
- Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Fulvio Reggiori
- Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bart J L Eggen
- Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Lin PW, Chu ML, Liu HS. Autophagy and metabolism. Kaohsiung J Med Sci 2020; 37:12-19. [PMID: 33021078 DOI: 10.1002/kjm2.12299] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/03/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolism consists of diverse life-sustaining chemical reactions in living organisms. Autophagy is a highly conservative process that responds to various internal and external stresses. Both processes utilize surrounding resources to provide energy and nutrients for the cell. Autophagy progression may proceed to the degradative or secretory pathway determined by Rab family proteins. The former is a degradative and lysosome-dependent catabolic process that produces energy and provides nutrients for the synthesis of essential proteins. The degradative pathway also balances the energy source of the cell and regulates tissue homeostasis. The latter is a newly discovered pathway in which the autophagosome is fused with the plasma membrane. Secretory autophagy participates in diverse functions and diseases ranging from the spread of viral particles to cancer and neurodegenerative diseases. Aberrant metabolism in the body causes various metabolic syndromes. This review explores the relationships among autophagy, metabolism, and related diseases.
Collapse
Affiliation(s)
- Pei-Wen Lin
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Man-Ling Chu
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiao-Sheng Liu
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
12
|
The Messenger Apps of the cell: Extracellular Vesicles as Regulatory Messengers of Microglial Function in the CNS. J Neuroimmune Pharmacol 2020; 15:473-486. [PMID: 32337651 DOI: 10.1007/s11481-020-09916-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 03/20/2020] [Indexed: 02/08/2023]
Abstract
The intense effort of investigators, in particular during the past decade, has highlighted the importance of extracellular vesicles (EVs) such as exosomes in regulating both innate and adaptive immunity in the course of a variety of infections, with clear implications for development of novel vaccines, therapeutics, and diagnostics. Current and future efforts now need to focus strongly on teasing apart the intricate and complex molecular mechanisms that operate during EV regulation of immunity. In this review, we discuss recent advances that bear on our current understanding of how EVs, including exosomes, can contribute to the innate immune functions of microglia within the central nervous system (CNS), and we also highlight future important mechanistic questions that need to be addressed. In particular, recent findings that highlight the crosstalk between autophagy and exosome pathways and their implications for innate immune functions of microglia will be presented. Microglial activation has been shown to play a key role in neuroAIDS, a neuro-infectious disease for which the importance of exosome functions, including exosome-autophagy interplay, has been reported. The importance of exosomes and exosome-autophagy crosstalk involving microglia has also been shown for the Parkinson's disease (PD), a neurodegenerative disease that is thought to be linked with immune dysfunction and involve infectious agents as trigger. Considering the accumulation of recent findings and the vibrancy of the EV field, we anticipate that future studies will continue to have a deep impact on our understanding of the CNS pathologies that are influenced by the functions of microglia and of the infectious disease mechanisms in general. Graphical Abstract.
Collapse
|
13
|
Botulinum toxin type A interrupts autophagic flux of submandibular gland. Biosci Rep 2019; 39:BSR20190035. [PMID: 31273059 PMCID: PMC6646452 DOI: 10.1042/bsr20190035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022] Open
Abstract
Botulinum toxin type A (BTXA) is a neurotoxic protein produced by Clostridium botulinum. Our previous studies demonstrated that BTXA inhibits the secretory function of submandibular gland (SMG) and changes its structure. Several studies reported that SMG damage and repair often occur with autophagy in the rat. However, no studies reported whether secretory inhibition and structural changes of SMG after BTXA injection is related with autophagy. The present study was carried out to explore the association between BTXA injection and autophagy in rat SMG. Western blotting and immunofluorescence were used to detect the expression and distribution of light chain 3 (LC3) in rat SMG. MTS was used to detect the toxicity of BTXA on rat SMG-C6 cell line. GFP-LC3 and Lyso-Tracker Red fluorescence probe were used to assess the levels of autophagosomes and lysosome fusion and the effect of BTXA on autophagic flux in SMG-C6. Western blotting and immunofluorescence results showed that BTXA temporarily increased autophagosomes in rat SMG. MTS results showed that BTXA exerted its toxicity on SMG-C6 in a dose-dependent manner. BTXA increased the number of autophagosomes in SMG-C6; however, most autophagosomes did not colocalize with lysosome. Therefore, we presume that BTXA can change autophagic flux of SMG cells, the mechanism of which might relate with BTXA’s disturbing autophagosome-lysosome fusion.
Collapse
|
14
|
Kumar V. The complement system, toll-like receptors and inflammasomes in host defense: three musketeers’ one target. Int Rev Immunol 2019; 38:131-156. [PMID: 31066339 DOI: 10.1080/08830185.2019.1609962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vijay Kumar
- Children’s Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St Lucia, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Velloso FJ, Campos AR, Sogayar MC, Correa RG. Proteome profiling of triple negative breast cancer cells overexpressing NOD1 and NOD2 receptors unveils molecular signatures of malignant cell proliferation. BMC Genomics 2019; 20:152. [PMID: 30791886 PMCID: PMC6385390 DOI: 10.1186/s12864-019-5523-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Background Triple negative breast cancer (TNBC) is a malignancy with very poor prognosis, due to its aggressive clinical characteristics and lack of response to receptor-targeted drug therapy. In TNBC, immune-related pathways are typically upregulated and may be associated with a better prognosis of the disease, encouraging the pursuit for immunotherapeutic options. A number of immune-related molecules have already been associated to the onset and progression of breast cancer, including NOD1 and NOD2, innate immune receptors of bacterial-derived components which activate pro-inflammatory and survival pathways. In the context of TNBC, overexpression of either NOD1or NOD2 is shown to reduce cell proliferation and increase clonogenic potential in vitro. To further investigate the pathways linking NOD1 and NOD2 signaling to tumorigenesis in TNBC, we undertook a global proteome profiling of TNBC-derived cells ectopically expressing each one of these NOD receptors. Results We have identified a total of 95 and 58 differentially regulated proteins in NOD1- and NOD2-overexpressing cells, respectively. We used bioinformatics analyses to identify enriched molecular signatures aiming to integrate the differentially regulated proteins into functional networks. These analyses suggest that overexpression of both NOD1 and NOD2 may disrupt immune-related pathways, particularly NF-κB and MAPK signaling cascades. Moreover, overexpression of either of these receptors may affect several stress response and protein degradation systems, such as autophagy and the ubiquitin-proteasome complex. Interestingly, the levels of several proteins associated to cellular adhesion and migration were also affected in these NOD-overexpressing cells. Conclusions Our proteomic analyses shed new light on the molecular pathways that may be modulating tumorigenesis via NOD1 and NOD2 signaling in TNBC. Up- and downregulation of several proteins associated to inflammation and stress response pathways may promote activation of protein degradation systems, as well as modulate cell-cycle and cellular adhesion proteins. Altogether, these signals seem to be modulating cellular proliferation and migration via NF-κB, PI3K/Akt/mTOR and MAPK signaling pathways. Further investigation of altered proteins in these pathways may provide more insights on relevant targets, possibly enabling the immunomodulation of tumorigenesis in the aggressive TNBC phenotype. Electronic supplementary material The online version of this article (10.1186/s12864-019-5523-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fernando J Velloso
- Cell and Molecular Therapy Center (NUCEL), Internal Medicine Department, School of Medicine, University of São Paulo (USP), São Paulo, SP, 05360-130, Brazil
| | - Alexandre R Campos
- SBP Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Mari C Sogayar
- Cell and Molecular Therapy Center (NUCEL), Internal Medicine Department, School of Medicine, University of São Paulo (USP), São Paulo, SP, 05360-130, Brazil
| | - Ricardo G Correa
- SBP Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
16
|
Pleet ML, Branscome H, DeMarino C, Pinto DO, Zadeh MA, Rodriguez M, Sariyer IK, El-Hage N, Kashanchi F. Autophagy, EVs, and Infections: A Perfect Question for a Perfect Time. Front Cell Infect Microbiol 2018; 8:362. [PMID: 30406039 PMCID: PMC6201680 DOI: 10.3389/fcimb.2018.00362] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/28/2018] [Indexed: 01/07/2023] Open
Abstract
Autophagy, a highly conserved process, serves to maintain cellular homeostasis in response to an extensive variety of internal and external stimuli. The classic, or canonical, pathway of autophagy involves the coordinated degradation and recycling of intracellular components and pathogenic material. Proper regulation of autophagy is critical to maintain cellular health, as alterations in the autophagy pathway have been linked to the progression of a variety of physiological and pathological conditions in humans, namely in aging and in viral infection. In addition to its canonical role as a degradative pathway, a more unconventional and non-degradative role for autophagy has emerged as an area of increasing interest. This process, known as secretory autophagy, is gaining widespread attention as many viruses are believed to use this pathway as a means to release and spread viral particles. Moreover, secretory autophagy has been found to intersect with other intracellular pathways, such as the biogenesis and secretion of extracellular vesicles (EVs). Here, we provide a review of the current landscape surrounding both degradative autophagy and secretory autophagy in relation to both aging and viral infection. We discuss their key features, while describing their interplay with numerous different viruses (i.e. hepatitis B and C viruses, Epstein-Barr virus, SV40, herpesviruses, HIV, chikungunya virus, dengue virus, Zika virus, Ebola virus, HTLV, Rift Valley fever virus, poliovirus, and influenza A virus), and compare secretory autophagy to other pathways of extracellular vesicle release. Lastly, we highlight the need for, and emphasize the importance of, more thorough methods to study the underlying mechanisms of these pathways to better advance our understanding of disease progression.
Collapse
Affiliation(s)
- Michelle L Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Daniel O Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Mohammad Asad Zadeh
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Myosotys Rodriguez
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Ilker Kudret Sariyer
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| |
Collapse
|
17
|
He R, Shi X, Zhou M, Zhao Y, Pan S, Zhao C, Guo X, Wang M, Li X, Qin R. Alantolactone induces apoptosis and improves chemosensitivity of pancreatic cancer cells by impairment of autophagy-lysosome pathway via targeting TFEB. Toxicol Appl Pharmacol 2018; 356:159-171. [PMID: 30086361 DOI: 10.1016/j.taap.2018.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 01/07/2023]
Abstract
The lysosome is emerging as a central regulator of the autophagic process, which plays a critical role in tumor growth and chemoresistance. Alantolactone, which is a natural compound produced by Inula helenium, has been shown to induce apoptosis in numerous cancer types. However, the mechanism by which alantolactone regulates apoptosis is still poorly understood. In this work, we observed that alantolactone caused the accumulation of autophagosomes due to impaired autophagic degradation and substantially inhibited the activity and expression of CTSB/CTSD proteins that when depleted caused lysosomal dysfunction. Furthermore, we found that alantolactone inhibited the proliferation of pancreatic cancer cells in vitro and in vivo and enhanced the chemosensitivity of pancreatic cancer cells to oxaliplatin. In addition, a reduction in TFEB levels was a critical event in the apoptosis and cell death caused by alantolactone. Our data demonstrated that alantolactone, which impaired autophagic degradation, was a pharmacological inhibitor of autophagy in pancreatic cancer cells and markedly enhanced the chemosensitivity of pancreatic cancer cells to oxaliplatin.
Collapse
Affiliation(s)
- Ruizhi He
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiuhui Shi
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Min Zhou
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yan Zhao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Shutao Pan
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Chunle Zhao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
18
|
Memmert S, Nogueira AVB, Damanaki A, Nokhbehsaim M, Eick S, Divnic-Resnik T, Spahr A, Rath-Deschner B, Till A, Götz W, Cirelli JA, Jäger A, Deschner J. Damage-regulated autophagy modulator 1 in oral inflammation and infection. Clin Oral Investig 2018; 22:2933-2941. [PMID: 29442188 DOI: 10.1007/s00784-018-2381-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/06/2018] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Damage-regulated autophagy modulator (DRAM) 1 is a p53 target gene with possible involvement in oral inflammation and infection. This study sought to examine the presence and regulation of DRAM1 in periodontal diseases. MATERIAL AND METHODS In vitro, human periodontal ligament fibroblasts were exposed to interleukin (IL)-1β and Fusobacterium nucleatum for up to 2 days. The DRAM1 synthesis and its regulation were analyzed by real-time PCR, immunocytochemistry, and ELISA. Expressions of other autophagy-associated genes were also studied by real-time PCR. In vivo, synthesis of DRAM1 in gingival biopsies from rats and patients with and without periodontal disease was examined by real-time PCR and immunohistochemistry. For statistics, ANOVA and post-hoc tests were applied (p < 0.05). RESULTS In vitro, DRAM1 was significantly upregulated by IL-1β and F. nucleatum over 2 days and a wide range of concentrations. Additionally, increased DRAM1 protein levels in response to both stimulants were observed. Autophagy-associated genes ATG3, BAK1, HDAC6, and IRGM were also upregulated under inflammatory or infectious conditions. In vivo, the DRAM1 gene expression was significantly enhanced in rat gingival biopsies with induced periodontitis as compared to control. Significantly increased DRAM1 levels were also detected in human gingival biopsies from sites of periodontitis as compared to healthy sites. CONCLUSION Our data provide novel evidence that DRAM1 is increased under inflammatory and infectious conditions in periodontal cells and tissues, suggesting a pivotal role of DRAM1 in oral inflammation and infection. CLINICAL RELEVANCE DRAM1 might be a promising target in future diagnostic and treatment strategies for periodontitis.
Collapse
Affiliation(s)
- Svenja Memmert
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany. .,Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany.
| | - A V B Nogueira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, UNESP, Araraquara, Brazil
| | - A Damanaki
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - M Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - S Eick
- Department of Periodontology, Laboratory for Oral Microbiology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - T Divnic-Resnik
- Department/Discipline of Periodontics, Faculty of Dentistry, The University of Sydney, Sydney, Australia
| | - A Spahr
- Department/Discipline of Periodontics, Faculty of Dentistry, The University of Sydney, Sydney, Australia
| | - B Rath-Deschner
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - A Till
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn, Bonn, Germany
| | - W Götz
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - J A Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, UNESP, Araraquara, Brazil
| | - A Jäger
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - J Deschner
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.,Noel Martin Visiting Chair, Faculty of Dentistry, University of Sydney, Sydney, Australia
| |
Collapse
|
19
|
Sandoval H, Kodali S, Wang J. Regulation of B cell fate, survival, and function by mitochondria and autophagy. Mitochondrion 2017; 41:58-65. [PMID: 29175010 DOI: 10.1016/j.mito.2017.11.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/13/2017] [Accepted: 11/19/2017] [Indexed: 01/31/2023]
Abstract
B cells are responsible for protective antibody production after differentiation into antibody-secreting cells during humoral immune responses. From early B cell development in the bone marrow, to their maturation in the periphery, activation in the germinal center, and differentiation into plasma cells or memory B cells, B cells display ever-changing functions and properties. Autophagy and mitochondria play important roles in B cell development, activation, and differentiation to accommodate the phenotypic and environmental changes encountered over the lifetime of the cell. Among their many functions, mitochondria and autophagy generate energy, mediate cell survival, and produce/eliminate reactive oxygen species that can serve as signal molecules to regulate differentiation. As B cells mature and differentiate into plasma or memory cells, both autophagic and mitochondrial functions undergo significant changes. In this review, we aim to provide an overview of the role of the autophagosome and mitochondria in regulating B cell fate, survival, and function. Moreover, we will discuss the interplay between these two highly metabolic organelles during B cell development, maturation, and differentiation.
Collapse
Affiliation(s)
- Hector Sandoval
- Immunobiology and Transplant Research Section, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Srikanth Kodali
- Immunobiology and Transplant Research Section, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jin Wang
- Immunobiology and Transplant Research Section, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
20
|
You L, Mao L, Wei J, Jin S, Yang C, Liu H, Zhu L, Qian W. The crosstalk between autophagic and endo-/exosomal pathways in antigen processing for MHC presentation in anticancer T cell immune responses. J Hematol Oncol 2017; 10:165. [PMID: 29058602 PMCID: PMC5651564 DOI: 10.1186/s13045-017-0534-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023] Open
Abstract
T cells recognize antigen fragments from proteolytic products that are presented to them in the form of peptides on major histocompatibility complex (MHC) molecules, which is crucial for the T cell to identify infected or transformed cells. Autophagy, a process that delivers cytoplasmic constituents for lysosomal degradation, has been observed to provide a substantial source of intra- and extracellular antigens for MHC presentation to T cells, which will impact the tumor-specific immune response. Meanwhile, extracellular components are transported to cytoplasm for the degradation/secretion process by the endo-/exosomal pathway and are thus involved in multiple physiological and pathological processes, including immune responses. Autophagy and endo-/exosomal pathways are intertwined in a highly intricate manner and both are closely involved in antigen processing for MHC presentation; thus, we propose that they may coordinate in antigen processing and presentation in anticancer T cell immune responses. In this article, we discuss the molecular and functional crosstalk between autophagy and endo-/exosomal pathways and their contributions to antigen processing for MHC presentation in anticancer T cell immune responses.
Collapse
Affiliation(s)
- Liangshun You
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Liping Mao
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Juying Wei
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Shenhe Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Chunmei Yang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Hui Liu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Li Zhu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Wenbin Qian
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China. .,Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
21
|
Khan A, Jagannath C. Analysis of host-pathogen modulators of autophagy during Mycobacterium Tuberculosis infection and therapeutic repercussions. Int Rev Immunol 2017; 36:271-286. [PMID: 28976784 DOI: 10.1080/08830185.2017.1356924] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mycobacterium tuberculosis is one of the most deadly human pathogens known today in modern world, responsible for about 1.5 million deaths annually. Development of TB disease occurs only in 1 out of 10 individuals exposed to the pathogen which indicates that the competent host defense mechanisms exist in majority of the hosts to control the infection. In the last decade, autophagy has emerged as a key host immune defense mechanism against intracellular M. tuberculosis infection. Autophagy has been demonstrated not only as an effective antimicrobial mechanism for the clearance of M. tuberculosis, but the process has also been suggested to prevent excessive inflammation to avoid the adverse effects of infection on host. Nevertheless, increasing evidences also show that in order to enhance its intracellular survival, M. tuberculosis has also evolved multiple strategies to compromise the optimal functioning of host autophagic machinery. This review describes an overview of the various host signaling pathways such as pattern recognition receptors, cytokines, nutrient starvation and other cellular stress that have been implicated in induction of autophagy during M. tuberculosis infection. The review also chalk out the complex interplay of several bacterial factors of M. tuberculosis that are known to be involved in compromising autophagy mediated defense of the host. A comprehensive understanding of the interaction of bacterial and host factors at the intersections of autophagic pathways could provide integrative insights for the development of autophagy-based prophylactics and novel therapeutic interventions for TB.
Collapse
Affiliation(s)
- Arshad Khan
- a Department of Pathology and Laboratory Medicine, McGovern Medical School , University of Texas Health Sciences Center-Houston , Houston TX
| | - Chinnaswamy Jagannath
- a Department of Pathology and Laboratory Medicine, McGovern Medical School , University of Texas Health Sciences Center-Houston , Houston TX
| |
Collapse
|
22
|
Liu C, Mo L, Niu Y, Li X, Zhou X, Xu X. The Role of Reactive Oxygen Species and Autophagy in Periodontitis and Their Potential Linkage. Front Physiol 2017; 8:439. [PMID: 28690552 PMCID: PMC5481360 DOI: 10.3389/fphys.2017.00439] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/09/2017] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease that causes damage to periodontal tissues, which include the gingiva, periodontal ligament, and alveolar bone. The major cause of periodontal tissue destruction is an inappropriate host response to microorganisms and their products. Specifically, a homeostatic imbalance between reactive oxygen species (ROS) and antioxidant defense systems has been implicated in the pathogenesis of periodontitis. Elevated levels of ROS acting as intracellular signal transducers result in autophagy, which plays a dual role in periodontitis by promoting cell death or blocking apoptosis in infected cells. Autophagy can also regulate ROS generation and scavenging. Investigations are ongoing to elucidate the crosstalk mechanisms between ROS and autophagy. Here, we review the physiological and pathological roles of ROS and autophagy in periodontal tissues. The redox-sensitive pathways related to autophagy, such as mTORC1, Beclin 1, and the Atg12-Atg5 complex, are explored in depth to provide a comprehensive overview of the crosstalk between ROS and autophagy. Based on the current evidence, we suggest that a potential linkage between ROS and autophagy is involved in the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Chengcheng Liu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan UniversityChengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Longyi Mo
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Yulong Niu
- Key Lab of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Xin Li
- Institute of Biophysics, Chinese Academy of SciencesBeijing, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan UniversityChengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan UniversityChengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| |
Collapse
|
23
|
Wang JY, Yao WX, Wang Y, Fan YL, Wu JB. Network analysis reveals crosstalk between autophagy genes and disease genes. Sci Rep 2017; 7:44391. [PMID: 28295050 PMCID: PMC5353691 DOI: 10.1038/srep44391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/07/2017] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a protective and life-sustaining process in which cytoplasmic components are packaged into double-membrane vesicles and targeted to lysosomes for degradation. Accumulating evidence supports that autophagy is associated with several pathological conditions. However, research on the functional cross-links between autophagy and disease genes remains in its early stages. In this study, we constructed a disease-autophagy network (DAN) by integrating known disease genes, known autophagy genes and protein-protein interactions (PPI). Dissecting the topological properties of the DAN suggested that nodes that both autophagy and disease genes (inter-genes), are topologically important in the DAN structure. Next, a core network from the DAN was extracted to analyze the functional links between disease and autophagy genes. The genes in the core network were significantly enriched in multiple disease-related pathways, suggesting that autophagy genes may function in various disease processes. Of 17 disease classes, 11 significantly overlapped with autophagy genes, including cancer diseases, metabolic diseases and hematological diseases, a finding that is supported by the literatures. We also found that autophagy genes have a bridging role in the connections between pairs of disease classes. Altogether, our study provides a better understanding of the molecular mechanisms underlying human diseases and the autophagy process.
Collapse
Affiliation(s)
- Ji-Ye Wang
- The Criminal Science and Technology Department, Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, Zhejiang Province, People's Republic of China
| | - Wei-Xuan Yao
- The Criminal Science and Technology Department, Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yun Wang
- The department of gastroenterology, The First Affiliated Hospital of Xi'an Jiao Tong University, 277 Yanta West Road, Yanta District, Xi'an, Shanxi Province, People's Republic of China
| | - Yi-Lei Fan
- The Criminal Science and Technology Department, Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jian-Bing Wu
- The Criminal Science and Technology Department, Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
24
|
Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A. Transplantation and Damage-Associated Molecular Patterns (DAMPs). Am J Transplant 2016; 16:3338-3361. [PMID: 27421829 DOI: 10.1111/ajt.13963] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/24/2016] [Accepted: 07/10/2016] [Indexed: 01/25/2023]
Abstract
Upon solid organ transplantation and during cancer immunotherapy, cellular stress responses result in the release of damage-associated molecular patterns (DAMPs). The various cellular stresses have been characterized in detail over the last decades, but a unifying classification based on clinically important aspects is lacking. Here, we provide an in-depth review of the most recent literature along with a unifying concept of the danger/injury model, suggest a classification of DAMPs, and review the recently elaborated mechanisms that result in the emission of such factors. We further point out the differences in DAMP responses including the release following a heat shock pattern, endoplasmic reticulum stress, DNA damage-mediated DAMP release, and discuss the diverse pathways of regulated necrosis in this respect. The understanding of various forms of DAMPs and the consequences of their different release patterns are prerequisite to associate serum markers of cellular stresses with clinical outcomes.
Collapse
Affiliation(s)
- W G Land
- German Academy of Transplantation Medicine, Munich, Germany.,Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabexTRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - P Agostinis
- Cell Death Research and Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - S Gasser
- Immunology Programme and Department of Microbiology and Immunology, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - A D Garg
- Cell Death Research and Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - A Linkermann
- Cluster of Excellence EXC306, Inflammation at Interfaces, Schleswig-Holstein, Germany.,Clinic for Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
25
|
Zhang Z, Guo M, Zhao S, Xu W, Shao J, Zhang F, Wu L, Lu Y, Zheng S. The update on transcriptional regulation of autophagy in normal and pathologic cells: A novel therapeutic target. Biomed Pharmacother 2015; 74:17-29. [DOI: 10.1016/j.biopha.2015.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/15/2015] [Indexed: 02/08/2023] Open
|