1
|
Zhou F, Yin MM, Jiao CN, Cui Z, Zhao JX, Liu JX. Bipartite graph-based collaborative matrix factorization method for predicting miRNA-disease associations. BMC Bioinformatics 2021; 22:573. [PMID: 34837953 PMCID: PMC8627000 DOI: 10.1186/s12859-021-04486-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 11/17/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND With the rapid development of various advanced biotechnologies, researchers in related fields have realized that microRNAs (miRNAs) play critical roles in many serious human diseases. However, experimental identification of new miRNA-disease associations (MDAs) is expensive and time-consuming. Practitioners have shown growing interest in methods for predicting potential MDAs. In recent years, an increasing number of computational methods for predicting novel MDAs have been developed, making a huge contribution to the research of human diseases and saving considerable time. In this paper, we proposed an efficient computational method, named bipartite graph-based collaborative matrix factorization (BGCMF), which is highly advantageous for predicting novel MDAs. RESULTS By combining two improved recommendation methods, a new model for predicting MDAs is generated. Based on the idea that some new miRNAs and diseases do not have any associations, we adopt the bipartite graph based on the collaborative matrix factorization method to complete the prediction. The BGCMF achieves a desirable result, with AUC of up to 0.9514 ± (0.0007) in the five-fold cross-validation experiments. CONCLUSIONS Five-fold cross-validation is used to evaluate the capabilities of our method. Simulation experiments are implemented to predict new MDAs. More importantly, the AUC value of our method is higher than those of some state-of-the-art methods. Finally, many associations between new miRNAs and new diseases are successfully predicted by performing simulation experiments, indicating that BGCMF is a useful method to predict more potential miRNAs with roles in various diseases.
Collapse
Affiliation(s)
- Feng Zhou
- The School of Computer Science, Qufu Normal University, Rizhao, 276826, China
| | - Meng-Meng Yin
- The School of Computer Science, Qufu Normal University, Rizhao, 276826, China
| | - Cui-Na Jiao
- The School of Computer Science, Qufu Normal University, Rizhao, 276826, China
| | - Zhen Cui
- The School of Computer Science, Qufu Normal University, Rizhao, 276826, China
| | - Jing-Xiu Zhao
- The School of Computer Science, Qufu Normal University, Rizhao, 276826, China
| | - Jin-Xing Liu
- The School of Computer Science, Qufu Normal University, Rizhao, 276826, China.
| |
Collapse
|
2
|
Sun B, Qu Z, Cheng GL, Yang YW, Miao YF, Chen XG, Zhou XB, Li B. Urinary microRNAs miR-15b and miR-30a as novel noninvasive biomarkers for gentamicin-induced acute kidney injury. Toxicol Lett 2020; 338:105-113. [PMID: 33290828 DOI: 10.1016/j.toxlet.2020.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs serve as potential biomarkers in various pathological models, and are stable and detectable in biofluids. We investigated the urinary microRNA expression profile in a gentamicin-induced acute kidney injury canine model using RNA sequencing. A total of 234 differentially expressed microRNAs were screened after 12 consecutive days of gentamicin administration (P < 0.05). Six candidate microRNAs (miR-15b, -15b-3p, -16, -30a, -30a-3p, and -30c-2-3p) were selected according to a set criterion, and validated by real-time quantitative PCR. The diagnostic values of these six candidate microRNAs were better than the traditional serum biomarkers (all P < 0.05). Further, using receiver operating characteristic curve analysis, we found that miR-15b and -15b-3p were superior to urinary kidney injury molecule-1 (both P < 0.05). Moreover, miR-15b and -30a levels in the urine samples significantly correlated with their respective levels in the kidney tissue samples (r=0.512 and 0.505, respectively, both P < 0.05). Our data concluded that miR-15b and -30a may be promising biomarkers for renal toxicity.
Collapse
Affiliation(s)
- B Sun
- College of Bioengineering, Beijing Polytechnic, Beijing, 100029, China; National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Daxing District, Beijing, 100176, China
| | - Z Qu
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Daxing District, Beijing, 100176, China
| | - G L Cheng
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Daxing District, Beijing, 100176, China
| | - Y W Yang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Daxing District, Beijing, 100176, China
| | - Y F Miao
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Daxing District, Beijing, 100176, China
| | - X G Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - X B Zhou
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Daxing District, Beijing, 100176, China.
| | - B Li
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Daxing District, Beijing, 100176, China.
| |
Collapse
|
3
|
The Epigenetic Landscape of Vascular Calcification: An Integrative Perspective. Int J Mol Sci 2020; 21:ijms21030980. [PMID: 32024140 PMCID: PMC7037112 DOI: 10.3390/ijms21030980] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Vascular calcification (VC) is an important complication among patients of advanced age, those with chronic kidney disease, and those with diabetes mellitus. The pathophysiology of VC encompasses passive occurrence of physico-chemical calcium deposition, active cellular secretion of osteoid matrix upon exposure to metabolically noxious stimuli, or a variable combination of both processes. Epigenetic alterations have been shown to participate in this complex environment, through mechanisms including DNA methylation, non-coding RNAs, histone modifications, and chromatin changes. Despite such importance, existing reviews fail to provide a comprehensive view of all relevant reports addressing epigenetic processes in VC, and cross-talk between different epigenetic machineries is rarely examined. We conducted a systematic review based on PUBMED and MEDLINE databases up to 30 September 2019, to identify clinical, translational, and experimental reports addressing epigenetic processes in VC; we retrieved 66 original studies, among which 60.6% looked into the pathogenic role of non-coding RNA, followed by DNA methylation (12.1%), histone modification (9.1%), and chromatin changes (4.5%). Nine (13.6%) reports examined the discrepancy of epigenetic signatures between subjects or tissues with and without VC, supporting their applicability as biomarkers. Assisted by bioinformatic analyses blending in each epigenetic component, we discovered prominent interactions between microRNAs, DNA methylation, and histone modification regarding potential influences on VC risk.
Collapse
|
4
|
Muendlein A, Geiger K, Leiherer A, Saely CH, Fraunberger P, Drexel H. Evaluation of the associations between circulating microRNAs and kidney function in coronary angiography patients. Am J Physiol Renal Physiol 2019; 318:F315-F321. [PMID: 31813253 DOI: 10.1152/ajprenal.00429.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circulating microRNAs (miRNAs) have been linked to chronic kidney disease. Little is known about the association between circulating miRNAs and kidney function in patients at high cardiovascular risk. We therefore investigated the association between a panel of candidate miRNAs and kidney function, based on estimated glomerular filtration rate (eGFR), in two independent cohorts of patients undergoing coronary angiography. The present study totally included 438 patients undergoing coronary angiography, who were divided into a discovery cohort (n = 120) and a validation cohort (n = 318). A candidate miRNA panel comprising 50 renal miRNAs was selected from the literature, and expression levels of circulating miRNAs were determined by real-time PCR. Out of the initially tested candidate miRNAs, 38 miRNAs were sufficiently detectable in plasma. Their association with kidney function was evaluated in the discovery cohort. Associations of seven of these miRNAs with eGFR were significant after multiple testing correction via false discovery rate estimation. To verify obtained results, miRNAs with significant false discovery rates were further analyzed in the validation cohort. miR-106b-5p, miR-16-5p, miR-19b-3p, miR-20a-5p, miR-25-3p, and miR-451a proved to be significantly associated with eGFR also in the validation cohort (all P < 0.001). Association between the identified renal miRNAs and kidney function was confirmed by analysis of covariance adjusting for age, sex, type 2 diabetes, hypertension, and albumin-to-creatinine ratio. In conclusion, our study showed that miR-16-5p, miR-19b-3p, miR-20a-5p, miR-25-3p, miR-106b-5p, and miR-451a are significantly linked to kidney function in patients undergoing coronary angiography.
Collapse
Affiliation(s)
- Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment, Feldkirch, Austria
| | - Kathrin Geiger
- Vorarlberg Institute for Vascular Investigation and Treatment, Feldkirch, Austria
| | - Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment, Feldkirch, Austria.,Medical Central Laboratories, Feldkirch, Austria.,Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Christoph H Saely
- Vorarlberg Institute for Vascular Investigation and Treatment, Feldkirch, Austria.,Private University of the Principality of Liechtenstein, Triesen, Liechtenstein.,Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | | | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment, Feldkirch, Austria.,Private University of the Principality of Liechtenstein, Triesen, Liechtenstein.,Division of Angiology, Swiss Cardiovascular Center, University Hospital of Bern, Bern, Switzerland.,Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Lee CT, Lee YT, Tain YL, Ng HY, Kuo WH. Circulating microRNAs and vascular calcification in hemodialysis patients. J Int Med Res 2019; 47:2929-2939. [PMID: 31144545 PMCID: PMC6683928 DOI: 10.1177/0300060519848949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/16/2019] [Indexed: 12/16/2022] Open
Abstract
Objective Vascular calcification is common in chronic dialysis patients and is associated with increased morbidity and mortality. However, the role of circulating microRNAs (miRs) in vascular calcification has rarely been investigated. We aimed to determine circulating levels of miRs in hemodialysis patients, and analyzed their relationship with vascular calcification. Methods Sixty-one stable hemodialysis patients were enrolled, including 31 with vascular calcification and 30 without. Demographic and biochemical data were collected and reviewed. The presence and severity of vascular calcification were determined by lumber spine X-ray. Blood levels of miR29a/b, miR223, miR9, and miR21 were determined. Results Patients with vascular calcification were older (65.6 ± 9.0 vs. 59.1 ± 7.1 years) with a higher proportion of vascular disease (55% vs. 23%) than those without vascular calcification. Additionally, high-sensitivity C-reactive protein (3.90 vs 2.09 mg/dL) and fibroblast growth factor 23 (17311 vs. 6306 pg/mL) were significantly higher. Patients with vascular calcification also had higher levels of miR29a/b and miR223. Regression analysis indicated that age and miR29a were significant associates of the calcification score. Conclusions Hemodialysis patients with vascular calcification had higher levels of miR 29a/b and miR223 than those without vascular calcification, and circulating miR29a was associated with calcification severity.
Collapse
Affiliation(s)
- Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yueh-Ting Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - You-Lin Tain
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hwee-Yeong Ng
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei-Hung Kuo
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Tang C, Zhou H, Zheng X, Zhang Y, Sha X. Dual Laplacian regularized matrix completion for microRNA-disease associations prediction. RNA Biol 2019; 16:601-611. [PMID: 30676207 PMCID: PMC6546388 DOI: 10.1080/15476286.2019.1570811] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/30/2018] [Accepted: 01/03/2019] [Indexed: 01/21/2023] Open
Abstract
Since lots of miRNA-disease associations have been verified, it is meaningful to discover more miRNA-disease associations for serving disease diagnosis and prevention of human complex diseases. However, it is not practical to identify potential associations using traditional biological experimental methods since the process is expensive and time consuming. Therefore, it is necessary to develop efficient computational methods to accomplish this task. In this work, we introduced a matrix completion model with dual Laplacian regularization (DLRMC) to infer unknown miRNA-disease associations in heterogeneous omics data. Specifically, DLRMC transformed the task of miRNA-disease association prediction into a matrix completion problem, in which the potential missing entries of the miRNA-disease association matrix were calculated, the missing association can be obtained based on the prediction scores after the completion procedure. Meanwhile, the miRNA functional similarity and the disease semantic similarity were fully exploited to serve the miRNA-disease association matrix completion by using a dual Laplacian regularization term. In the experiments, we conducted global and local Leave-One-Out Cross Validation (LOOCV) and case studies to evaluate the efficacy of DLRMC on the Human miRNA-disease associations dataset obtained from the HMDDv2.0 database. As a result, the AUCs of DLRMC is 0.9174 and 0.8289 in global LOOCV and local LOOCV, respectively, which significantly outperform a variety of previous methods. In addition, in the case studies on four significant diseases related to human health including Colon Neoplasms, Kidney neoplasms, Lymphoma and Prostate neoplasms, 90%, 92%, 92% and 94% out of the top 50 predicted miRNAs has been confirmed, respectively.
Collapse
Affiliation(s)
- Chang Tang
- School of Computer Science, China University of Geosciences, Wuhan, China
| | - Hua Zhou
- Department of Hematology, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, China
| | - Xiao Zheng
- Wuhan University of Technology Hospital, Wuhan University of Technology, Wuhan, China
| | - Yanming Zhang
- Department of Hematology, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, China
| | - Xiaofeng Sha
- Department of Oncology, Huai’an Hongze District People’s Hospital, Huai’an, China
| |
Collapse
|
7
|
Janszky N, Süsal C. Circulating and urinary microRNAs as possible biomarkers in kidney transplantation. Transplant Rev (Orlando) 2017; 32:110-118. [PMID: 29366537 DOI: 10.1016/j.trre.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/03/2017] [Accepted: 12/14/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Noémi Janszky
- Transplantation Immunology, Institute of Immunology, University of Heidelberg, Germany.
| | - Caner Süsal
- Transplantation Immunology, Institute of Immunology, University of Heidelberg, Germany
| |
Collapse
|
8
|
Nandakumar P, Tin A, Grove ML, Ma J, Boerwinkle E, Coresh J, Chakravarti A. MicroRNAs in the miR-17 and miR-15 families are downregulated in chronic kidney disease with hypertension. PLoS One 2017; 12:e0176734. [PMID: 28771472 PMCID: PMC5542606 DOI: 10.1371/journal.pone.0176734] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/14/2017] [Indexed: 01/11/2023] Open
Abstract
Background In older adults (aged 70–74 years), African-Americans have 4-fold higher risk of developing hypertension-attributed end-stage renal disease (ESRD) than European-Americans. A hypothesized mechanism linking hypertension and progressive chronic kidney disease (CKD) is the innate immune response and inflammation. Persons with CKD are also more susceptible to infection. Gene expression in peripheral blood can provide a view of the innate immune activation profile. We aimed to identify differentially expressed genes, microRNAs, and pathways in peripheral blood between cases with CKD and high blood pressure under hypertension treatment versus controls without CKD and with controlled blood pressure in African Americans. Methods Case and control pairs (N = 15x2) were selected from those without diabetes and were matched for age, sex, body mass index, APOL1 risk allele count, and hypertension medication use. High blood pressure under hypertension treatment was defined as hypertension medication use and systolic blood pressure (SBP) ≥ 145 mmHg. CKD was defined as estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73m2. Cases were selected from those with CKD and high blood pressure under hypertension treatment, and controls were selected from those without CKD (eGFR: 75–120 mL/min/1.73m2 and urine albumin-to-creatinine ratio < 30mg/g) and with blood pressure controlled by hypertension medication use (SBP < 135 mmHg and D(diastolic)BP < 90 mm Hg). We perform RNA sequencing of mRNA and microRNA and conducted differential expression and co-expression network analysis. Results Of 347 miRNAs included in the analysis, 14 were significantly associated with case status (Benjamini-Hochberg adjusted p-value [BH p] < 0.05). Of these, ten were downregulated in cases: three of each belong to the miR-17 and miR-15 families. In co-expression network analysis of miRNA, one module, which included 13 of the 14 significant miRNAs, had significant association with case status. Of the 14,488 genes and 41,739 transcripts included in the analysis, none had significant association with case status. Gene co-expression network analyses did not yield any significant associations for mRNA. Conclusion We have identified 14 differentially expressed miRNAs in the peripheral blood of CKD cases with high blood pressure under hypertension treatment as compared to appropriate controls. Most of the significant miRNAs were downregulated and have critical roles in immune cell functions. Future studies are needed to replicate our findings and determine whether the downregulation of these miRNAs in immune cells may influence CKD progression or complications.
Collapse
Affiliation(s)
- Priyanka Nandakumar
- McKusick - Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Predoctoral Training Program in Human Genetics and Molecular Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Adrienne Tin
- Johns Hopkins Bloomberg School of Public Health, Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, Maryland, United States of America
| | - Megan L. Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jianzhong Ma
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Josef Coresh
- Johns Hopkins Bloomberg School of Public Health, Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, Maryland, United States of America
| | - Aravinda Chakravarti
- McKusick - Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Abstract
Cumulative verified experimental studies have demonstrated that microRNAs (miRNAs) could be closely related with the development and progression of human complex diseases. Based on the assumption that functional similar miRNAs may have a strong correlation with phenotypically similar diseases and vice versa, researchers developed various effective computational models which combine heterogeneous biologic data sets including disease similarity network, miRNA similarity network, and known disease-miRNA association network to identify potential relationships between miRNAs and diseases in biomedical research. Considering the limitations in previous computational study, we introduced a novel computational method of Ranking-based KNN for miRNA-Disease Association prediction (RKNNMDA) to predict potential related miRNAs for diseases, and our method obtained an AUC of 0.8221 based on leave-one-out cross validation. In addition, RKNNMDA was applied to 3 kinds of important human cancers for further performance evaluation. The results showed that 96%, 80% and 94% of predicted top 50 potential related miRNAs for Colon Neoplasms, Esophageal Neoplasms, and Prostate Neoplasms have been confirmed by experimental literatures, respectively. Moreover, RKNNMDA could be used to predict potential miRNAs for diseases without any known miRNAs, and it is anticipated that RKNNMDA would be of great use for novel miRNA-disease association identification.
Collapse
Affiliation(s)
- Xing Chen
- a School of Information and Control Engineering , China University of Mining and Technology , Xuzhou , China
| | - Qiao-Feng Wu
- b College of Electrical Engineering , Zhejiang University , Hangzhou , China
| | - Gui-Ying Yan
- c Academy of Mathematics and Systems Science , Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
10
|
Zununi Vahed S, Omidi Y, Ardalan M, Samadi N. Dysregulation of urinary miR-21 and miR-200b associated with interstitial fibrosis and tubular atrophy (IFTA) in renal transplant recipients. Clin Biochem 2017; 50:32-39. [DOI: 10.1016/j.clinbiochem.2016.08.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/26/2016] [Accepted: 08/06/2016] [Indexed: 02/07/2023]
|
11
|
Eissa S, Matboli M, Aboushahba R, Bekhet MM, Soliman Y. Urinary exosomal microRNA panel unravels novel biomarkers for diagnosis of type 2 diabetic kidney disease. J Diabetes Complications 2016; 30:1585-1592. [PMID: 27475263 DOI: 10.1016/j.jdiacomp.2016.07.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/03/2016] [Accepted: 07/10/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND A potential approach adopted in the current study is to design a panel based on in silico retrieval of novel miRNAs related to diabetic kidney disease and to evaluate its usefulness in disease diagnosis. PATIENT AND METHODS In the current study, we measured the differential expression of a 6 miRNA panel in urine pellet and exosome in an initial screening group using syber green-based PCR array. Also, we performed pathway enrichment analysis of the key target genes of these miRNAs. Finally, we selected the most significantly up-regulated miRNAs in DKD, exosomal miR-15b, miR-34a and miR-636, that were measured by real-time PCR in a larger independent set of 180 participants to evaluate their usefulness as novel urine biomarkers for diagnosis diabetic kidney disease. RESULTS PCR array analysis showed that miR-15b, miR-34a, and miR-636 were upregulated in both urine pellet and exosome of type 2DKD patients. qRT-PCR validation in the larger independent set of participants confirmed the significant up-regulation of these urinary exosomal miRs (P<0.001). Notably, a positive correlation was found between these miRs, serum creatinine and urinary protein creatinine ratio. The sensitivity of this miRs based panel in urine exosomes reached 100% in diagnosis of DKD. CONCLUSION We identified urinary exosomal miR-15b, miR-34a, and miR-636 as a novel diagnostic panel and a major contributor in the pathogenesis of diabetic kidney disease.
Collapse
Affiliation(s)
- Sanaa Eissa
- Oncology Diagnostic Unit, Medical Biochemistry and Molecular biology Department, Faculty of Medicine, Ain Shams University, P.O. box 11381, Abbassia, Cairo, Egypt.
| | - Marwa Matboli
- Oncology Diagnostic Unit, Medical Biochemistry and Molecular biology Department, Faculty of Medicine, Ain Shams University, P.O. box 11381, Abbassia, Cairo, Egypt
| | - Rowaida Aboushahba
- Oncology Diagnostic Unit, Medical Biochemistry and Molecular biology Department, Faculty of Medicine, Ain Shams University, P.O. box 11381, Abbassia, Cairo, Egypt
| | - Miram M Bekhet
- Diabetes and endocrinology Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yasser Soliman
- Nephrology Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
12
|
Papadopoulos T, Belliere J, Bascands JL, Neau E, Klein J, Schanstra JP. miRNAs in urine: a mirror image of kidney disease? Expert Rev Mol Diagn 2015; 15:361-74. [PMID: 25660955 DOI: 10.1586/14737159.2015.1009449] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
miRNAs are short non-coding RNAs that control post-transcriptional regulation of gene expression. They are found ubiquitously in tissue and body fluids and participate in the pathogenesis of many diseases. Due to these characteristics and their stability, miRNAs could serve as biomarkers of different pathologies of the kidney. Urine is a non-invasive reservoir of molecules, especially indicative of the urinary system. In this review, we focus on urinary miRNAs and their potential to serve as biomarkers in kidney disease. Past studies show that urinary miRNAs correlate with renal dysfunctions and with processes involved in the pathophysiology. However, these studies also stress the need for future research focusing on large-scale studies to confirm the usability of urinary miRNAs as diagnostic and/or prognostic markers of different kidney diseases in clinical practice.
Collapse
Affiliation(s)
- Theofilos Papadopoulos
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, 1 avenue Jean Poulhès, B.P. 84225, 31432 Toulouse Cedex 4, France
| | | | | | | | | | | |
Collapse
|
13
|
MicroRNAs Regulate Vascular Medial Calcification. Cells 2014; 3:963-80. [PMID: 25317928 PMCID: PMC4276909 DOI: 10.3390/cells3040963] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 01/08/2023] Open
Abstract
Vascular calcification is highly prevalent in patients with coronary artery disease and, when present, is associated with major adverse cardiovascular events, including an increased risk of cardiovascular mortality. The pathogenesis of vascular calcification is complex and is now recognized to recapitulate skeletal bone formation. Vascular smooth muscle cells (SMC) play an integral role in this process by undergoing transdifferentiation to osteoblast-like cells, elaborating calcifying matrix vesicles and secreting factors that diminish the activity of osteoclast-like cells with mineral resorbing capacity. Recent advances have identified microRNAs (miRs) as key regulators of this process by directing the complex genetic reprogramming of SMCs and the functional responses of other relevant cell types relevant for vascular calcification. This review will detail SMC and bone biology as it relates to vascular calcification and relate what is known to date regarding the regulatory role of miRs in SMC-mediated vascular calcification.
Collapse
|
14
|
Wen P, Song D, Ye H, Wu X, Jiang L, Tang B, Zhou Y, Fang L, Cao H, He W, Yang Y, Dai C, Yang J. Circulating MiR-133a as a biomarker predicts cardiac hypertrophy in chronic hemodialysis patients. PLoS One 2014; 9:e103079. [PMID: 25313674 PMCID: PMC4196728 DOI: 10.1371/journal.pone.0103079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/25/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small ribonucleotides regulating gene expression. MicroRNAs are present in the blood in a remarkably stable form and have emerged as potential diagnostic markers in patients with cardiovascular disease. Our study aimed to assess circulating miR-133a levels in MHD patients and the relation of miR-133a to cardiac hypertrophy. METHODS We profiled miRNAs using RNA isolated from the plasma of participants. The results were validated in 64 MHD patients and 18 healthy controls. RESULTS Levels of plasma miR-133a decreased in MHD patients with LVH compared with those in healthy controls. Plasma miR-133a concentrations were negatively correlated with LVMI and IVS. After single hemodialytic treatment, plasma miR-133a levels remained unchanged. Cardiac Troponin I and T were not associated with LVMI and IVS. CONCLUSIONS Our observations supplied the possibility that circulating miR-133a could be a surrogate biomarker of cardiac hypertrophy in MHD patients.
Collapse
Affiliation(s)
- Ping Wen
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Dan Song
- Department of Nephrology, Affiliated Wuxi Hospital, Nanjing Medical University, Wuxi, China
| | - Hong Ye
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaochun Wu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lei Jiang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Bing Tang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yang Zhou
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Li Fang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hongdi Cao
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yafang Yang
- Department of Radiology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chunsun Dai
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Vimalraj S, Selvamurugan N. MicroRNAs expression and their regulatory networks during mesenchymal stem cells differentiation toward osteoblasts. Int J Biol Macromol 2014; 66:194-202. [DOI: 10.1016/j.ijbiomac.2014.02.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/18/2013] [Accepted: 02/13/2014] [Indexed: 01/08/2023]
|
16
|
Wei Q, Mi QS, Dong Z. The regulation and function of microRNAs in kidney diseases. IUBMB Life 2014; 65:602-14. [PMID: 23794512 DOI: 10.1002/iub.1174] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/26/2013] [Accepted: 03/26/2013] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNA) are endogenous short noncoding RNAs, which regulate virtually all major cellular processes by inhibiting target gene expression. In kidneys, miRNAs have been implicated in renal development, homeostasis, and physiological functions. In addition, miRNAs play important roles in the pathogenesis of various renal diseases, including renal carcinoma, diabetic nephropathy, acute kidney injury, hypertensive nephropathy, polycystic kidney disease, and others. Furthermore, miRNAs may have great values as biomarkers in different kidney diseases.
Collapse
Affiliation(s)
- Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | | | | |
Collapse
|
17
|
Zhang Y, Cheng X, Lu Z, Wang J, Chen H, Fan W, Gao X, Lu D. Upregulation of miR-15b in NAFLD models and in the serum of patients with fatty liver disease. Diabetes Res Clin Pract 2013; 99:327-34. [PMID: 23287814 DOI: 10.1016/j.diabres.2012.11.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/15/2012] [Accepted: 11/23/2012] [Indexed: 12/14/2022]
Abstract
AIM In the present study, we examined the expression and function of miR-15b in a rat model of non-alcoholic fatty liver disease (NAFLD), and we determined whether the presence of miR-15b in serum can be used as a biomarker for this disease. METHODS We measured the expression of miR-15b in both the high-fat-induced non-alcoholic fatty liver disease (NAFLD) SD rat model and in the palmitate-induced NAFLD L02 cell model. Following transfection of miR-15b into QSG7701 cells, cell proliferation, glucose consumption and intracellular triglyceride levels were measured. We also measured the levels of miR-15b in the serum of fatty liver disease patients using real-time PCR. RESULTS We found that miR-15b was upregulated in the livers of NAFLD SD rats as well as in NAFLD L02 cells. Increased miR-15b levels could cause decreased cell proliferation and glucose consumption as well as induce the storage of intracellular triglyceride in QSG7701 cells. The expression of miR-15b was also significantly elevated in the serum of fatty liver disease patients compared with healthy subjects. CONCLUSIONS Increased miR-15b expression in NAFLD models may lead to decreased cell proliferation and glucose consumption while inducing the storage of intracellular triglyceride, which are all hazards of NAFLD. Therefore, increased serum miR-15b level is a potentially biomarker for the diagnosis of fatty liver disease.
Collapse
Affiliation(s)
- Yuhao Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics and Ministry of Education, Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|