1
|
Cutts Z, Patterson S, Maliskova L, Taylor KE, Ye CJ, Dall'Era M, Yazdany J, Criswell LA, Fragiadakis GK, Langelier C, Capra JA, Sirota M, Lanata CM. Cell-Specific Transposable Element and Gene Expression Analysis Across Systemic Lupus Erythematosus Phenotypes. ACR Open Rheumatol 2024; 6:769-779. [PMID: 39143499 PMCID: PMC11557995 DOI: 10.1002/acr2.11713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/06/2024] [Accepted: 06/04/2024] [Indexed: 08/16/2024] Open
Abstract
OBJECTIVE There is an established yet unexplained link between interferon (IFN) and systemic lupus erythematosus (SLE). The expression of sequences derived from transposable elements (TEs) may contribute to SLE phenotypes, specifically production of type I IFNs and generation of autoantibodies. METHODS We profiled cell-sorted RNA-sequencing data (CD4+ T cells, CD14+ monocytes, CD19+ B cells, and natural killer cells) from peripheral blood mononuclear cells of 120 patients with SLE and quantified TE expression identifying 27,135 TEs. We tested for differential TE expression across 10 SLE phenotypes, including autoantibody production and disease activity. RESULTS We found 731 differentially expressed (DE) TEs across all SLE phenotypes that were mostly cell specific and phenotype specific. DE TEs were enriched for specific families and open reading frames of viral genes encoded in TE sequences. Increased expression of DE TEs was associated with genes involved in antiviral activity, such as LY6E, ISG15, and TRIM22, and pathways such as IFN signaling. CONCLUSION These findings suggest that expression of TEs contributes to activation of SLE-related mechanisms in a cell-specific manner, which can impact disease diagnostics and therapeutics.
Collapse
|
2
|
Wang FQ, Dang X, Su H, Lei Y, She CH, Zhang C, Chen X, Yang X, Yang J, Feng H, Yang W. Association of hyperactivated transposon expression with exacerbated immune activation in systemic lupus erythematosus. Mob DNA 2024; 15:23. [PMID: 39427224 PMCID: PMC11490001 DOI: 10.1186/s13100-024-00335-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Systemic Lupus Erythematosus (SLE) is a complex autoimmune disorder, and transposable elements (TEs) have been hypothesized to play a significant role in its development. However, limited research has explored this connection. Our study aimed to examine the relationship between TE expression and SLE pathogenesis. METHODS We analyzed whole blood RNA-seq datasets from 198 SLE patients and 84 healthy controls. The REdiscoverTE pipeline was employed to quantify TE and other gene expressions, identifying differentially expressed TEs. A TE score was calculated to measure overall TE expression for each sample. Gene ontology and gene set enrichment analyses were conducted to explore the functional implications of TE upregulation. Independent datasets were utilized to replicate the results and investigate cell type-specific TE expression. RESULTS Our analysis identified two distinct patient groups: one with high TE expression and another with TE expression comparable to controls. Patients with high TE expression exhibited upregulation of pathways involving nucleic acid sensors, and TE expression was strongly correlated with interferon (IFN) signatures. Furthermore, these patients displayed deregulated cell composition, including increased neutrophils and decreased regulatory T cells. Neutrophils were suggested as the primary source of TE expression, contributing to IFN production. CONCLUSIONS Our findings suggest that TE expression may serve as a crucial mediator in maintaining the activation of interferon pathways, acting as an endogenous source of nucleic acid stimulators in SLE patients.
Collapse
Affiliation(s)
- Frank Qingyun Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiao Dang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Huidong Su
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Yao Lei
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Chun Hing She
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Caicai Zhang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Xinxin Chen
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Xingtian Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Jing Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Hong Feng
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Cutts Z, Patterson S, Maliskova L, Taylor KE, Ye C, Dall'Era M, Yazdany J, Criswell L, Fragiadakis GK, Langelier C, Capra JA, Sirota M, Lanata CM. Cell-Specific Transposable Element Gene Expression Analysis Identifies Associations with Systemic Lupus Erythematosus Phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.567477. [PMID: 38076936 PMCID: PMC10705239 DOI: 10.1101/2023.11.27.567477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
There is an established yet unexplained link between interferon (IFN) and systemic lupus erythematosus (SLE). The expression of sequences derived from transposable elements (TEs) may contribute to production of type I IFNs and generation of autoantibodies. We profiled cell-sorted RNA-seq data (CD4+ T cells, CD14+ monocytes, CD19+ B cells, and NK cells) from PBMCs of 120 SLE patients and quantified TE expression identifying 27,135 TEs. We tested for differential TE expression across 10 SLE phenotypes including autoantibody production and disease activity and discovered 731 differentially expressed (DE) TEs whose effects were mostly cell-specific and phenotype-specific. DE TEs were enriched for specific families and viral genes encoded in TE sequences. Increased expression of DE TEs was associated with genes involved in antiviral activity such as LY6E, ISG15, TRIM22 and pathways such as interferon signaling. These findings suggest that expression of TEs contributes to activation of SLE-related mechanisms in a cell-specific manner, which can impact disease diagnostics and therapeutics.
Collapse
|
4
|
Gao X, Huang X, Wang Y, Sun S, Chen T, Gao Y, Zhang X. Global research hotspots and frontier trends of epigenetic modifications in autoimmune diseases: A bibliometric analysis from 2012 to 2022. Medicine (Baltimore) 2023; 102:e35221. [PMID: 37773838 PMCID: PMC10545364 DOI: 10.1097/md.0000000000035221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/23/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Recent studies have shown substantial progress in understanding the association between epigenetics and autoimmune diseases. However, there is a lack of comprehensive bibliometric analysis in this research area. This article aims to present the current status and hot topics of epigenetic research in autoimmune diseases (ADs) from a bibliometric perspective, as well as explore the frontier hotspots and trends in epigenetic studies related to ADs. METHODS This study collected 1870 epigenetic records related to autoimmune diseases from the web of science core collection database, spanning from 2012 to 2022. Analysis of regions, institutions, journals, authors, and keywords was conducted using CiteSpace, VOSviewer, and the R package "bibliometrix" to predict the latest trends in epigenetic research relevant to autoimmune diseases. RESULTS The number of epigenetic publications related to autoimmune diseases has been increasing annually. The United States has played a major role in this field, contributing over 45.9% of publications and leading in terms of publication volume and citation counts. Central South University emerged as the most active institution, contributing the highest number of publications. Frontiers in Immunology is the most popular journal in this field, publishing the most articles, while the Journal of Autoimmunity is the most co-cited journal. Lu QJ is the most prolific author, and Zhao M is the most frequently co-cited author. "Immunology" serves as a broad representative of epigenetic research in ADs. Hot topics in the field of epigenetic modifications associated with autoimmune diseases include "regulatory T cells (Treg)," "rheumatoid arthritis," "epigenetic regulation," "cAMPresponsive element modulator alpha," "cell-specific enhancer," "genetic susceptibility," and "systemic lupus erythematosus." Furthermore, the study discusses the frontiers and existing issues of epigenetic modifications in the development of autoimmune diseases. CONCLUSIONS This study provides a comprehensive overview of the knowledge structure and developmental trends in epigenetic research related to autoimmune diseases over the past 11 years.
Collapse
Affiliation(s)
- Xiang Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Xin Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yehui Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Sheng Sun
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Tao Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yongxiang Gao
- International Education College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Xiaodan Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Akhil A, Bansal R, Anupam K, Tandon A, Bhatnagar A. Systemic lupus erythematosus: latest insight into etiopathogenesis. Rheumatol Int 2023:10.1007/s00296-023-05346-x. [PMID: 37226016 DOI: 10.1007/s00296-023-05346-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder of unknown etiology. Multifactorial interaction among various susceptible factors such as environmental, hormonal, and genetic factors makes it more heterogeneous and complex. Genetic and epigenetic modifications have been realized to regulate the immunobiology of lupus through environmental modifications such as diet and nutrition. Although these interactions may vary from population to population, the understanding of these risk factors can enhance the perception of the mechanistic basis of lupus etiology. To recognize the recent advances in lupus, an electronic search was conducted among search engines such as Google Scholar and PubMed, where we found about 30.4% publications of total studies related to genetics and epigenetics, 33.5% publications related to immunobiology and 34% related to environmental factors. These outcomes suggested that management of diet and lifestyle have a direct relationship with the severity of lupus that influence via modulating the complex interaction among genetics and immunobiology. The present review emphasizes the knowledge about the multifactorial interactions between various susceptible factors based on recent advances that will further update the understanding of mechanisms involved in disease pathoetiology. Knowledge of these mechanisms will further assist in the creation of novel diagnostic and therapeutic options.
Collapse
Affiliation(s)
- Akhil Akhil
- Department of Biochemistry, BMS-Block II, South Campus, Panjab University, Chandigarh, 160014, India
| | - Rohit Bansal
- Department of Biochemistry, BMS-Block II, South Campus, Panjab University, Chandigarh, 160014, India
| | - Kumari Anupam
- Department of Pathology, Saint Louis University, St. Louis, MO, 63103, USA
| | - Ankit Tandon
- Department of Endocrinology, PGIMER, Chandigarh, 160012, India
| | - Archana Bhatnagar
- Department of Biochemistry, BMS-Block II, South Campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
6
|
Ehtesham N, Habibi Kavashkohie MR, Mazhari SA, Azhdari S, Ranjbar H, Mosallaei M, Hazrati E, Behroozi J. DNA methylation alterations in systemic lupus erythematosus: A systematic review of case-control studies. Lupus 2023; 32:363-379. [PMID: 36573333 DOI: 10.1177/09612033221148099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Traditionally, the diagnosis and monitoring of disease activity in systemic lupus erythematosus (SLE) are contingent upon clinical manifestations and serological markers. However, researchers are struggling to find biomarkers with higher sensitivity and specificity. DNA methylation has been the most studied epigenetic feature in SLE. So, in this study, we performed a systematic review of studies about DNA methylation alterations in SLE patients compared to healthy controls. METHODS By searching PubMed, Scopus, and Google Scholar up to July 2022, all case-control studies in which DNA methylation of specific genes was assessed by a non-high-throughput technique and passed the quality of bias assessment were included. RESULTS In total, 44 eligible studies underwent a data extraction process. In all, 3471 SLE patients and 1028 healthy individuals were included. Among the studies that reported the patients' gender (n = 2853), 89.41% were female and 10.59% were male. Forty studies have been conducted on adult patients. The number of works on fractionated and unfractionated blood cells was almost equal. In this regard, 22 studies were conducted on whole blood or peripheral blood mononuclear cells and two studies on unfractionated white blood cells. Sorted blood cells were biological sources in 20 studies. The most investigated gene was IFI44L. Sensitivity, specificity, and diagnostic power of methylation levels were only reported for IFI44L in five studies. The most employed methylation profiling method was bisulfite sequencing polymerase chain reaction. The correlation between methylation patterns and clinical parameters was explored in 22 studies, which of them 16 publications displayed a remarkable association between DNA methylation status and clinical indices. CONCLUSIONS The methylation status of some genes especially IFI44L, FOXP3, and MX1 has been suggested as promising SLE biomarkers. However, given the conflicting findings between studies because of potential confounders such as different sample types, methylation profiling methods, and ethnicity as well as shared DNA methylation patterns of SLE and other autoimmune diseases, DNA methylation biomarkers are currently not reliable diagnostic biomarkers and do not represent surrogate markers of SLE disease activity. Future investigations on a larger scale with the discarding of limitations of previous studies would probably lead to a consensus.
Collapse
Affiliation(s)
- Naeim Ehtesham
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, 162996AJA University of Medical Sciences, Tehran, Iran.,Student Research Committee, 48533University of Social Welfare and Rehabilitation Science, Tehran, Iran
| | | | - Seyed Amirhossein Mazhari
- Department of Medical Biology and Genetics, 217747Azerbaijan Medical University (AMU), Baku, Azerbaijan
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, 394237Bam University of Medical Sciences, Bam, Iran
| | - Hamta Ranjbar
- Student Research Committee, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Meysam Mosallaei
- Student Research Committee, 48533University of Social Welfare and Rehabilitation Science, Tehran, Iran.,Department of Genetics and Molecular Biology, School of Medicine, 48455Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Hazrati
- Department of Anesthesiology and Intensive Care, Medical Faculty, 162996AJA University of Medical Sciences, Tehran, Iran
| | - Javad Behroozi
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, 162996AJA University of Medical Sciences, Tehran, Iran.,Research Center for Cancer Screening and Epidemiology, 162996AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Rasking L, Roelens C, Sprangers B, Thienpont B, Nawrot TS, De Vusser K. Lupus, DNA Methylation, and Air Pollution: A Malicious Triad. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15050. [PMID: 36429769 PMCID: PMC9690025 DOI: 10.3390/ijerph192215050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) remains elusive to this day; however, genetic, epigenetic, and environmental factors have been implicated to be involved in disease pathogenesis. Recently, it was demonstrated that in systemic lupus erythematosus (SLE) patients, interferon-regulated genes are hypomethylated in naïve CD4+ T cells, CD19+ B lymphocytes, and CD14+ monocytes. This suggests that interferon-regulated genes may have been epigenetically poised in SLE patients for rapid expression upon stimulation by different environmental factors. Additionally, environmental studies have identified DNA (hypo)methylation changes as a potential mechanism of environmentally induced health effects in utero, during childhood and in adults. Finally, epidemiologic studies have firmly established air pollution as a crucial SLE risk factor, as studies showed an association between fine particulate matter (PM2.5) and traditional SLE biomarkers related to disease flare, hospital admissions, and an increased SLEDAI score. In this review, the relationship between aberrant epigenetic regulation, the environment, and the development of SLE will be discussed.
Collapse
Affiliation(s)
- Leen Rasking
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Céline Roelens
- Depatment of Nephrology and Kidney Transplantation, University Hospital Leuven, 3000 Leuven, Belgium
| | - Ben Sprangers
- Depatment of Nephrology and Kidney Transplantation, University Hospital Leuven, 3000 Leuven, Belgium
- Department of Microbiology and Immunology, Leuven University, 3000 Leuven, Belgium
| | - Bernard Thienpont
- Department of Human Genetics, Leuven University, 3000 Leuven, Belgium
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Department of Public Health and Primary Care, Environment and Health Unit, Leuven University, 3000 Leuven, Belgium
| | - Katrien De Vusser
- Depatment of Nephrology and Kidney Transplantation, University Hospital Leuven, 3000 Leuven, Belgium
- Department of Microbiology and Immunology, Leuven University, 3000 Leuven, Belgium
| |
Collapse
|
8
|
Brooks WH, Arleevskaya MI, Renaudineau Y. Editorial: Epigenetic aspects of autoimmune diseases. Front Cell Dev Biol 2022; 10:991693. [PMID: 36036004 PMCID: PMC9403892 DOI: 10.3389/fcell.2022.991693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wesley H. Brooks
- Department of Chemistry, University of South Florida, Tampa, FL, United States
- *Correspondence: Wesley H. Brooks,
| | | | - Yves Renaudineau
- INFINITY, Institut Toulousain des Maladies Infectieuses et Inflammatoires, Toulouse, France
- Laboratoire d'Immunologie, Institut Fédératif de Biologie, Centre Hospitalier Universitaire deToulouse, Université Toulouse III, Toulouse, France
| |
Collapse
|
9
|
Long non-coding RNA Xist contribution in systemic lupus erythematosus and rheumatoid arthritis. Clin Immunol 2022; 236:108937. [PMID: 35114365 DOI: 10.1016/j.clim.2022.108937] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
Growing evidence points towards the role of the long non-coding (lnc)-RNA Xist expressed in female cells as a predominant key actor for the sex bias observed in systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Indeed, in female cells, lnc-Xist controls transcription directly by spreading across the inactivated X chromosome (Xi) and indirectly by sequestring miRNAs as a sponge. The inactivation process at Xi is altered in lymphocytes from SLE women and associated with important variations in ribonucleoproteins (RNP) associated with lnc-Xist. In fibroblast-like synoviocytes (FLS) and osteoclasts from RA women, proinflammatory and proliferative pathways are upregulated due to the sequestration effect exerted by lnc-Xist overexpression on miRNAs. The key role played by lnc-Xist in SLE and RA is further supported by it's knock down that recapitulates the SLE B cell extrafollicular profile and controls RA associated FLS proinflammatory cytokine production and proliferation.
Collapse
|
10
|
Buttler CA, Chuong EB. Emerging roles for endogenous retroviruses in immune epigenetic regulation. Immunol Rev 2022; 305:165-178. [PMID: 34816452 PMCID: PMC8766910 DOI: 10.1111/imr.13042] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/21/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2023]
Abstract
In recent years, there has been significant progress toward understanding the transcriptional networks underlying mammalian immune responses, fueled by advances in regulatory genomic technologies. Epigenomic studies profiling immune cells have generated detailed genome-wide maps of regulatory elements that will be key to deciphering the regulatory networks underlying cellular immune responses and autoimmune disorders. Unbiased analyses of these genomic maps have uncovered endogenous retroviruses as an unexpected ally in the regulation of human immune systems. Despite their parasitic origins, studies are finding an increasing number of examples of retroviral sequences having been co-opted for beneficial immune function and regulation by the host cell. Here, we review how endogenous retroviruses have given rise to numerous regulatory elements that shape the epigenetic landscape of host immune responses. We will discuss the implications of these elements on the function, dysfunction, and evolution of innate immunity.
Collapse
|
11
|
Posso-Osorio I, Tobón GJ, Cañas CA. Human endogenous retroviruses (HERV) and non-HERV viruses incorporated into the human genome and their role in the development of autoimmune diseases. J Transl Autoimmun 2021; 4:100137. [PMID: 34917914 PMCID: PMC8669383 DOI: 10.1016/j.jtauto.2021.100137] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Genomic incorporation of viruses as human endogenous retroviruses (HERVs) are components of our genome that possibly originated by incorporating ancestral of exogenous viruses. Their roles in the evolution of the human genome, gene expression, and the pathogenesis of autoimmune diseases (ADs) and neoplastic phenomena are the subject of intense research. This review analyzes the evolutionary and virological aspects of HERVs and other viruses that incorporate their genome into the human genome and have known role in the genesis of ADs. These insights are helpful to understand further the possible role in autoimmunity genesis of HERVs, other ancestral viruses no HERVs and modern viruses with the ability to incorporate into the human genome or interact with HERVs.
Collapse
Affiliation(s)
- Iván Posso-Osorio
- CIRAT: Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia.,Fundación Valle del Lili, Rheumatology Unit, Cali, Colombia
| | - Gabriel J Tobón
- Fundación Valle del Lili, Rheumatology Unit, Cali, Colombia.,Department of Medical Microbiology, Immunology and Cell Biology. Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Carlos A Cañas
- CIRAT: Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia.,Fundación Valle del Lili, Rheumatology Unit, Cali, Colombia
| |
Collapse
|
12
|
Fava A, Rao DA. Cellular and molecular heterogeneity in systemic lupus erythematosus. Semin Immunol 2021; 58:101653. [PMID: 36184357 DOI: 10.1016/j.smim.2022.101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Andrea Fava
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, USA.
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Tokuyama M, Gunn BM, Venkataraman A, Kong Y, Kang I, Rakib T, Townsend MJ, Costenbader KH, Alter G, Iwasaki A. Antibodies against human endogenous retrovirus K102 envelope activate neutrophils in systemic lupus erythematosus. J Exp Med 2021; 218:212176. [PMID: 34019642 PMCID: PMC8144942 DOI: 10.1084/jem.20191766] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 01/03/2023] Open
Abstract
Neutrophil activation and the formation of neutrophil extracellular traps (NETs) are hallmarks of innate immune activation in systemic lupus erythematosus (SLE). Here we report that the expression of an endogenous retrovirus (ERV) locus ERV-K102, encoding an envelope protein, was significantly elevated in SLE patient blood and correlated with autoantibody levels and higher interferon status. Induction of ERV-K102 in SLE negatively correlated with the expression of epigenetic silencing factors. Anti-ERV-K102 IgG levels in SLE plasma correlated with higher interferon stimulated gene expression, and further promoted enhanced neutrophil phagocytosis of ERV-K102 envelope protein through immune complex formation. Finally, phagocytosis of ERV-K102 immune complexes resulted in the formation of NETs consisting of DNA, neutrophil elastase, and citrullinated histone H3. Together, we identified an immunostimulatory ERV-K envelope protein that in an immune complex with SLE IgG is capable of activating neutrophils.
Collapse
Affiliation(s)
- Maria Tokuyama
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Bronwyn M Gunn
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA
| | - Arvind Venkataraman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Yong Kong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Insoo Kang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Tasfia Rakib
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | | | | | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT.,Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
14
|
Chen XJ, Zhang H, Yang F, Liu Y, Chen G. DNA Methylation Sustains "Inflamed" Memory of Peripheral Immune Cells Aggravating Kidney Inflammatory Response in Chronic Kidney Disease. Front Physiol 2021; 12:637480. [PMID: 33737884 PMCID: PMC7962671 DOI: 10.3389/fphys.2021.637480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/04/2021] [Indexed: 01/19/2023] Open
Abstract
The incidence of chronic kidney disease (CKD) has rapidly increased in the past decades. A progressive loss of kidney function characterizes a part of CKD even with intensive supportive treatment. Irrespective of its etiology, CKD progression is generally accompanied with the development of chronic kidney inflammation that is pathologically featured by the low-grade but chronic activation of recruited immune cells. Cumulative evidence support that aberrant DNA methylation pattern of diverse peripheral immune cells, including T cells and monocytes, is closely associated with CKD development in many chronic disease settings. The change of DNA methylation profile can sustain for a long time and affect the future genes expression in the circulating immune cells even after they migrate from the circulation into the involved kidney. It is of clinical interest to reveal the underlying mechanism of how altered DNA methylation regulates the intensity and the time length of the inflammatory response in the recruited effector cells. We and others recently demonstrated that altered DNA methylation occurs in peripheral immune cells and profoundly contributes to CKD development in systemic chronic diseases, such as diabetes and hypertension. This review will summarize the current findings about the influence of aberrant DNA methylation on circulating immune cells and how it potentially determines the outcome of CKD.
Collapse
Affiliation(s)
- Xiao-Jun Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Hong Zhang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fei Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|
15
|
Gao Y, Yu XF, Chen T. Human endogenous retroviruses in cancer: Expression, regulation and function. Oncol Lett 2020; 21:121. [PMID: 33552242 PMCID: PMC7798031 DOI: 10.3892/ol.2020.12382] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are the remnants of ancient retroviruses that infected human germline cells and became integrated into the human genome millions of years ago. Although most of these sequences are incomplete and silent, several potential pathological roles of HERVs have been observed in numerous diseases, such as multiple sclerosis and rheumatoid arthritis, and especially cancer, including breast cancer and pancreatic carcinoma. The present review investigates the expression signatures and complex regulatory mechanisms of HERVs in cancer. The long terminal repeats-driven transcriptional initiation of HERVs are regulated by transcription factors (such as Sp3) and epigenetic modifications (such as DNA methylation), and are influenced by environmental factors (such as ultraviolet radiation). In addition, this review focuses on the dual opposing effects of HERVs in cancer. HERVs can suppress cancer via immune activation; however, they can also promote cancer. HERV env gene serves a prime role in promoting carcinogenesis in certain malignant tumors, including breast cancer, pancreatic cancer, germ cell tumors, leukemia and Kaposi's sarcoma. Also, HERV ENV proteins can promote cancer via immune suppression. Targeting ENV proteins is a potential future antitumor treatment modality.
Collapse
Affiliation(s)
- Yuan Gao
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zheijang 310009, P.R. China
| | - Xiao-Fang Yu
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zheijang 310009, P.R. China
| | - Ting Chen
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zheijang 310009, P.R. China
| |
Collapse
|
16
|
Akbaba TH, Sag E, Balci-Peynircioglu B, Ozen S. Epigenetics for Clinicians from the Perspective of Pediatric Rheumatic Diseases. Curr Rheumatol Rep 2020; 22:46. [DOI: 10.1007/s11926-020-00912-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
The status of FOXP3 gene methylation in pediatric systemic lupus erythematosus. Allergol Immunopathol (Madr) 2020; 48:332-338. [PMID: 32475613 DOI: 10.1016/j.aller.2020.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disease caused by interaction of genetic, epigenetic, and environmental factors. One of the important epigenetic factors in SLE would be methylation of immune-related genes, such as FOXP3, which plays a role in activating the regulation and also the function of T cells. To date, the relationship between levels of serum bio-markers and the susceptibility to lupus in children has not been well-understood. In this study, the involvement of etiologic factors, such as methylation of FOXP3 gene, was investigated in children with SLE. METHOD Twenty-four female children with SLE and 25 female healthy subjects without any history of autoimmune and inflammatory diseases were included in this study. Blood samples were obtained and DNA was extracted from the blood cells. The bisulphite method was used to convert the DNA using the MethylEdge™ Bisulfite Conversion System Kit. Then, methylation of the gene was investigated using Real Time methylation specific PCR. RESULTS The FOXP3 DNA methylation in patients and healthy subjects was significantly different. While the median unmethylated DNA in patients was 0.57±0.43, it was 0.97±0.83 in healthy subjects (P=0.012). The Demethylation Index in patients was 0.007±0.003, significantly lower than in controls (0.014±0.013; P=0.012). CONCLUSIONS The FOXP3 gene methylation in children with SLE was significantly higher than healthy subjects, which could possibly affect the level of gene expression. Therefore, one of the causes of increased immune response in SLE can be the lower expression of FOXP3 by hypermethylation of this gene.
Collapse
|
18
|
Talotta R, Atzeni F, Laska MJ. Retroviruses in the pathogenesis of systemic lupus erythematosus: Are they potential therapeutic targets? Autoimmunity 2020; 53:177-191. [PMID: 32321325 DOI: 10.1080/08916934.2020.1755962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is characterised by the hyper-activation of immunologic pathways related to the antiviral response. Exogenous and endogenous retroviruses, by integrating their DNA templates in the host cell genome, may epigenetically control the transcription of genes involved in the immune response. Furthermore, their nucleic acids or neo-synthesized proteins could stimulate the sensor molecules placed upstream the inflammatory cascade. Exogenous retroviruses, like human immunodeficiency virus, have been associated to SLE-like manifestations or to a fair SLE diagnosis. In addition, there is some evidence confirming a pathogenic role of human endogenous retroviruses in SLE. In line with these data, the use of antiretroviral agents could represent an attractive opportunity in the future therapeutic algorithms of this disease, but studies are still missing.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital "Gaetano Martino", Messina, Italy
| | - Fabiola Atzeni
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital "Gaetano Martino", Messina, Italy
| | | |
Collapse
|
19
|
The epigenetic face of lupus: Focus on antigen-presenting cells. Int Immunopharmacol 2020; 81:106262. [PMID: 32045873 DOI: 10.1016/j.intimp.2020.106262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
In recent years, epigenetic mechanisms became widely known due to their ability to regulate and maintain physiological processes such as cell growth, development, differentiation and genomic stability. When dysregulated, epigenetic mechanisms, may introduce gene expression changes and disturbance in immune homeostasis leading to autoimmune diseases. Systemic lupus erythematosus (SLE), the most extensively studied autoimmune disorder, has already been correlated with epigenetic modifications, especially in T cells. Since these cell rely on antigen presentation, it may be assumed that erroneous activity of antigen-presenting cells (APCs), culminates in T cell abnormalities. In this review we summarize and discuss the epigenetic modifications in SLE affected APCs, with the focus on dendritic cells (DCs), B cells and monocytes. Unravelling this aspect of SLE pathogenesis, might result in identification of new disease biomarkers and putative therapeutic approaches.
Collapse
|
20
|
Hurtado C, Acevedo Sáenz LY, Vásquez Trespalacios EM, Urrego R, Jenks S, Sanz I, Vásquez G. DNA methylation changes on immune cells in Systemic Lupus Erythematosus. Autoimmunity 2020; 53:114-121. [PMID: 32019373 DOI: 10.1080/08916934.2020.1722108] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA methylation as a process that regulates gene expression is crucial in immune cells biology. Global and gene specific methylation changes have been described in autoimmunity, especially in Systemic Lupus Erythematosus. These changes not only contribute to the understanding of the disease, but also some have been proposed as diagnostic or disease activity biomarkers. The present review compiles the most recent discoveries on this field on each type of immune cells, including specific changes in signalling pathways, genes of interest and its possible applications on diagnosis or treatment.
Collapse
Affiliation(s)
- Carolina Hurtado
- School of Graduate Studies and School of Medicine, CES University, Medellin, Colombia
| | | | | | - Rodrigo Urrego
- Group INCA-CES, School of Veterinary Medicine and Zootechnic, CES University, Medellin, Colombia
| | - Scott Jenks
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Iñaki Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética, University of Antioquia, Medellin, Colombia
| |
Collapse
|
21
|
Godavarthy A, Kelly R, Jimah J, Beckford M, Caza T, Fernandez D, Huang N, Duarte M, Lewis J, Fadel HJ, Poeschla EM, Banki K, Perl A. Lupus-associated endogenous retroviral LTR polymorphism and epigenetic imprinting promote HRES-1/RAB4 expression and mTOR activation. JCI Insight 2020; 5:134010. [PMID: 31805010 PMCID: PMC7030820 DOI: 10.1172/jci.insight.134010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Overexpression and long terminal repeat (LTR) polymorphism of the HRES‑1/Rab4 human endogenous retrovirus locus have been associated with T cell activation and disease manifestations in systemic lupus erythematosus (SLE). Although genomic DNA methylation is diminished overall in SLE, its role in HRES-1/Rab4 expression is unknown. Therefore, we determined how lupus-associated polymorphic rs451401 alleles of the LTR regulate transcription from the HRES-1/Rab4 promoter and thus affect T cell activation. The results showed that cytosine-119 is hypermethylated while cytosine-51 of the promoter and the LTR enhancer are hypomethylated in SLE. Pharmacologic or genetic inactivation of DNA methyltransferase 1 augmented the expression of HRES-1/Rab4. The minimal promoter was selectively recognized by metabolic stress sensor NRF1 when cytosine-119 but not cytosine-51 was methylated, and NRF1 stimulated HRES-1/Rab4 expression in human T cells. In turn, IRF2 and PSIP1 bound to the LTR enhancer and exerted control over HRES-1/Rab4 expression in rs451401 genotype- and methylation-dependent manners. The LTR enhancer conferred markedly greater expression of HRES-1/Rab4 in subjects with rs451401CC over rs451401GG alleles that in turn promoted mechanistic target of rapamycin (mTOR) activation upon T cell receptor stimulation. HRES-1/Rab4 alone robustly activated mTOR in human T cells. These findings identify HRES-1/Rab4 as a methylation- and rs451401 allele-dependent transducer of environmental stress and controller of T cell activation.
Collapse
Affiliation(s)
| | - Ryan Kelly
- Division of Rheumatology, Department of Medicine
| | - John Jimah
- Division of Rheumatology, Department of Medicine
| | | | - Tiffany Caza
- Division of Rheumatology, Department of Medicine
- Department of Microbiology and Immunology, and
| | - David Fernandez
- Division of Rheumatology, Department of Medicine
- Department of Microbiology and Immunology, and
| | - Nick Huang
- Division of Rheumatology, Department of Medicine
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York, USA
| | | | - Joshua Lewis
- Division of Rheumatology, Department of Medicine
| | - Hind J. Fadel
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, New York, USA
| | - Eric M. Poeschla
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, New York, USA
| | - Katalin Banki
- Department of Pathology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York, USA
| | - Andras Perl
- Division of Rheumatology, Department of Medicine
- Department of Microbiology and Immunology, and
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York, USA
| |
Collapse
|
22
|
Abstract
Primary Sjögren's syndrome (SjS) is a chronic and systemic autoimmune epithelitis with predominant female incidence, which is characterized by exocrine gland dysfunction. Incompletely understood, the etiology of SjS is multi-factorial and evidence is growing to consider that epigenetic factors are playing a crucial role in its development. Independent from DNA sequence mutations, epigenetics is described as inheritable and reversible processes that modify gene expression. Epigenetic modifications reported in minor salivary gland and lymphocytes from SjS patients are related to (i) an abnormal DNA methylation process inducing in turn defective control of normally repressed genes involving such matters as autoantigens, retrotransposons, and the X chromosome in women; (ii) altered nucleosome positioning associated with autoantibody production; and (iii) altered control of microRNA. Results from epigenome-wide association studies have further revealed the importance of the interferon pathway in disease progression, the calcium signaling pathway for controlling fluid secretions, and a cell-specific cross talk with risk factors associated with SjS. Importantly, epigenetic modifications are reversible thus opening opportunities for therapeutic procedures in this currently incurable disease.
Collapse
|
23
|
Wu H, Chang C, Lu Q. The Epigenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:185-207. [PMID: 32445096 DOI: 10.1007/978-981-15-3449-2_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a life-threatening autoimmune disease that is characterized by dysregulated dendritic cells, T and B cells, and abundant autoantibodies. The pathogenesis of lupus remains unclear. However, increasing evidence has shown that environment factors, genetic susceptibilities, and epigenetic regulation contribute to abnormalities in the immune system. In the past decades, several risk gene loci have been identified, such as MHC and C1q. However, genetics cannot explain the high discordance of lupus incidence in homozygous twins. Environmental factor-induced epigenetic modifications on immune cells may provide some insight. Epigenetics refers to inheritable changes in a chromosome without altering DNA sequence. The primary mechanisms of epigenetics include DNA methylation, histone modifications, and non-coding RNA regulations. Increasing evidence has shown the importance of dysregulated epigenetic modifications in immune cells in pathogenesis of lupus, and has identified epigenetic changes as potential biomarkers and therapeutic targets. Environmental factors, such as drugs, diet, and pollution, may also be the triggers of epigenetic changes. Therefore, this chapter will summarize the up-to-date progress on epigenetics regulation in lupus, in order to broaden our understanding of lupus and discuss the potential roles of epigenetic regulations for clinical applications.
Collapse
Affiliation(s)
- Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Christopher Chang
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, 33021, USA.,Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
24
|
Arvaniti P, Le Dantec C, Charras A, Arleevskaya MA, Hedrich CM, Zachou K, Dalekos GN, Renaudineau Y. Linking genetic variation with epigenetic profiles in Sjögren's syndrome. Clin Immunol 2019; 210:108314. [PMID: 31765834 DOI: 10.1016/j.clim.2019.108314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022]
Abstract
DNA methylation represents an important regulatory event governing gene expression that is dysregulated in Sjögren's syndrome (SjS) and a number of autoimmune/inflammatory diseases. As disease-associated single-nucleotide polymorphisms (SNPs) have relevance in controlling DNA methylation, 94 non-HLA SjS-SNPs were investigated, among them 57 (60.6%) with widespread effects on 197 individual DNA methylation quantitative trait loci (meQTL) were selected. Typically, these SNPs are intronic, possess an active promoter histone mark, and control cis-meQTLs located around transcription start sites. Interplay is independent of the physical distance between SNPs and meQTLs. Using epigenome-wide association study datasets, SjS-meQTLs were characterized (41 genes and 13 DNA methylation CpG motifs) and for the most part map to a pro-inflammatory cytokine pathway, which is important for the control of DNA methylation in autoimmune diseases. In conclusion, exploring meQTLs represents a valuable tool to predict and investigate downstream effects of genetic factors in complex diseases such as SjS.
Collapse
Affiliation(s)
- Pinelopi Arvaniti
- Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, Brest, France; Department of Medicine and Research Laboratory of Internal Medicine, University Hospital of Larissa, Larissa, Greece.
| | - Christelle Le Dantec
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, Brest, France.
| | - Amandine Charras
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, Brest, France; Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, UK & Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK.
| | | | - Christian M Hedrich
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, UK & Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK.
| | - Kalliopi Zachou
- Department of Medicine and Research Laboratory of Internal Medicine, University Hospital of Larissa, Larissa, Greece.
| | - George N Dalekos
- Department of Medicine and Research Laboratory of Internal Medicine, University Hospital of Larissa, Larissa, Greece.
| | - Yves Renaudineau
- Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, Brest, France; UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, Brest, France.
| |
Collapse
|
25
|
Wu H, Chen Y, Zhu H, Zhao M, Lu Q. The Pathogenic Role of Dysregulated Epigenetic Modifications in Autoimmune Diseases. Front Immunol 2019; 10:2305. [PMID: 31611879 PMCID: PMC6776919 DOI: 10.3389/fimmu.2019.02305] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022] Open
Abstract
Autoimmune diseases can be chronic with relapse of inflammatory symptoms, but it can be also acute and life-threatening if immune cells destroy life-supporting organs, such as lupus nephritis. The etiopathogenesis of autoimmune diseases has been revealed as that genetics and environmental factors-mediated dysregulated immune responses contribute to the initiation and development of autoimmune disorders. However, the current understanding of pathogenesis is limited and the underlying mechanism has not been well defined, which lows the development of novel biomarkers and new therapeutic strategies for autoimmune diseases. To improve this, broadening and deepening our understanding of pathogenesis is an unmet need. As genetic susceptibility cannot explain the low accordance rate of incidence in homozygous twins, epigenetic regulations might be an additional explanation. Therefore, this review will summarize current progress of studies on epigenetic dysregulations contributing to autoimmune diseases, including SLE, rheumatoid arthritis (RA), psoriasis, type 1 diabetes (T1D), and systemic sclerosis (SSc), hopefully providing opinions on orientation of future research, as well as discussing the clinical utilization of potential biomarkers and therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongjian Chen
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Huan Zhu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Tsai DY, Hung KH, Chang CW, Lin KI. Regulatory mechanisms of B cell responses and the implication in B cell-related diseases. J Biomed Sci 2019; 26:64. [PMID: 31472685 PMCID: PMC6717636 DOI: 10.1186/s12929-019-0558-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Terminally differentiated B cell, the plasma cell, is the sole cell type capable of producing antibodies in our body. Over the past 30 years, the identification of many key molecules controlling B cell activation and differentiation has elucidated the molecular pathways for generating antibody-producing plasma cells. Several types of regulation modulating the functions of the important key molecules in B cell activation and differentiation add other layers of complexity in shaping B cell responses following antigen exposure in the absence or presence of T cell help. Further understanding of the mechanisms contributing to the proper activation and differentiation of B cells into antibody-secreting plasma cells may enable us to develop new strategies for managing antibody humoral responses during health and disease. Herein, we reviewed the effect of different types of regulation, including transcriptional regulation, post-transcriptional regulation and epigenetic regulation, on B cell activation, and on mounting memory B cell and antibody responses. We also discussed the link between the dysregulation of the abovementioned regulatory mechanisms and B cell-related disorders.
Collapse
Affiliation(s)
- Dong-Yan Tsai
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist, Taipei, 115, Taiwan
| | - Kuo-Hsuan Hung
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist, Taipei, 115, Taiwan
| | - Chia-Wei Chang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist, Taipei, 115, Taiwan.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist, Taipei, 115, Taiwan. .,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan.
| |
Collapse
|
27
|
Arleevskaya MI, Aminov R, Brooks WH, Manukyan G, Renaudineau Y. Editorial: Shaping of Human Immune System and Metabolic Processes by Viruses and Microorganisms. Front Microbiol 2019; 10:816. [PMID: 31057521 PMCID: PMC6481243 DOI: 10.3389/fmicb.2019.00816] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/01/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Rustam Aminov
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Wesley H Brooks
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - Gayane Manukyan
- Group of Molecular and Cellular Immunology, Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | - Yves Renaudineau
- Central Research Laboratory, Kazan State Medical Academy, Kazan, Russia.,Laboratory of Immunology and Immunotherapy, INSERM U1227, University of Brest, Brest, France
| |
Collapse
|
28
|
Abstract
Endogenous retrovirus (ERV) sequences make up a large fraction of our genome, yet little is understood about their function and biological relevance. Deep-sequencing data contain valuable information on a genome-wide scale. Yet, due to their highly repetitive nature, analysis of ERVs has been computationally challenging. We describe a bioinformatics tool called ERVmap to analyze transcription of unique sets of human ERVs in a range of cell types in health and disease settings. Our open-source code and accompanied web tool should facilitate researchers in all fields to study the expression patterns of ERVs in sequencing data and should lead to significant advancement in understanding the biological relevance of ERVs in health and disease. Endogenous retroviruses (ERVs) are integrated retroviral elements that make up 8% of the human genome. However, the impact of ERVs on human health and disease is not well understood. While select ERVs have been implicated in diseases, including autoimmune disease and cancer, the lack of tools to analyze genome-wide, locus-specific expression of proviral autonomous ERVs has hampered the progress in the field. Here we describe a method called ERVmap, consisting of an annotated database of 3,220 human proviral ERVs and a pipeline that allows for locus-specific genome-wide identification of proviral ERVs that are transcribed based on RNA-sequencing data, and provide examples of the utility of this tool. Using ERVmap, we revealed cell-type–specific ERV expression patterns in commonly used cell lines as well as in primary cells. We identified 124 unique ERV loci that are significantly elevated in the peripheral blood mononuclear cells of patients with systemic lupus erythematosus that represent an IFN-independent signature. Finally, we identified additional tumor-associated ERVs that correlate with cytolytic activity represented by granzyme and perforin expression in breast cancer tissue samples. The open-source code of ERVmap and the accompanied web tool are made publicly available to quantify proviral ERVs in RNA-sequencing data with ease. Use of ERVmap across a range of diseases and experimental conditions has the potential to uncover novel disease-associated antigens and effectors involved in human health that is currently missed by focusing on protein-coding sequences.
Collapse
|
29
|
Hedrich CM. Mechanistic aspects of epigenetic dysregulation in SLE. Clin Immunol 2018; 196:3-11. [DOI: 10.1016/j.clim.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
|
30
|
Lanata CM, Chung SA, Criswell LA. DNA methylation 101: what is important to know about DNA methylation and its role in SLE risk and disease heterogeneity. Lupus Sci Med 2018; 5:e000285. [PMID: 30094041 PMCID: PMC6069928 DOI: 10.1136/lupus-2018-000285] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
Abstract
SLE is a complex autoimmune disease that results from the interplay of genetics, epigenetics and environmental exposures. DNA methylation is an epigenetic mechanism that regulates gene expression and tissue differentiation. Among all the epigenetic modifications, DNA methylation perturbations have been the most widely studied in SLE. It mediates processes relevant to SLE, including lymphocyte development, X-chromosome inactivation and the suppression of endogenous retroviruses. The establishment of most DNA methylation marks occurs in utero; however, a small percentage of epigenetic marks are dynamic and can change throughout a person’s lifetime and in relation to exposures. In this review, we discuss the current understanding of the biology of DNA methylation and its regulators, the measurement and interpretation of methylation marks, the effects of genetics on DNA methylation and the role of environmental exposures with relevance to SLE. We also summarise research findings associated with SLE disease risk and heterogeneity. The robust finding of hypomethylation of interferon-responsive genes in patients with SLE and new associations beyond interferon-responsive genes such as cell-specific methylation abnormalities are described. We also discuss methylation changes associated with lupus nephritis, autoantibody status and disease activity. Lastly, we explore future research directions, emphasising the need for longitudinal studies, cell tissue and context-specific profiling, as well as integrative approaches. With new technologies, DNA methylation perturbations could be targeted and edited, offering novel therapeutic approaches.
Collapse
Affiliation(s)
- Cristina M Lanata
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Sharon A Chung
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Lindsey A Criswell
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
31
|
Carvajal Alegria G, Gazeau P, Hillion S, Daïen CI, Cornec DYK. Could Lymphocyte Profiling be Useful to Diagnose Systemic Autoimmune Diseases? Clin Rev Allergy Immunol 2018; 53:219-236. [PMID: 28474288 DOI: 10.1007/s12016-017-8608-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Considering the implications of B, T, and natural killer (NK) cells in the pathophysiology of systemic autoimmune diseases, the assessment of their distribution in the blood could be helpful for physicians in the complex process of determining a precise diagnosis. In primary Sjögren's syndrome, transitional and active naive B cells are increased and memory B cells are decreased compared to healthy controls and other systemic diseases. However, their utility to improve the accuracy of classification criteria has not been proven. In early untreated rheumatoid arthritis, proportions of regulatory T cells are constantly reduced, but other patterns are difficult to determine given the heterogeneity of published studies. In systemic lupus erythematosus, the lack of studies using large cohorts of patients and the diversity of the possible pathological mechanisms involved are also important impediments. Nevertheless, transitional B cell and plasma cell proportions are increased in most of the studies, the CD4/CD8 ratio is decreased, and the number of NK cells is reduced. Despite the low number of studies, anomalies of lymphocyte subset distribution was also described in ANCA-associated vasculitis, systemic scleroderma, and myositis. For now, flow cytometric analysis of lymphocyte subsets has focused mainly on specific subpopulations and is more useful for basic and translational research than for diagnostics in clinical practice. However, new modern methods such as mass cytometry and bioinformatics analyses may offer the possibility to simultaneously account for the relative proportions of multiple lymphocyte subsets and define a global profile in homogeneous groups of patients. The years to come will certainly incorporate such global lymphocyte profiling in reclassification of systemic autoimmune diseases.
Collapse
Affiliation(s)
- Guillermo Carvajal Alegria
- Service de Rhumatologie, Hôpital de la Cavale Blanche, CHRU Brest, BP 824, 29609, Brest cedex, France.,INSERM U1227, European University of Brest, Brest, France
| | - Pierre Gazeau
- Service de Rhumatologie, Hôpital de la Cavale Blanche, CHRU Brest, BP 824, 29609, Brest cedex, France
| | - Sophie Hillion
- INSERM U1227, European University of Brest, Brest, France.,Laboratoire d'Immunologie et Immunothérapie, CHRU Morvan, Brest, France
| | - Claire I Daïen
- Rheumatology Department, Lapeyronie Hospital and Montpellier I University, Montpellier, France.,UMR5535, CNRS, Institute of molecular genetic, Montpellier, France
| | - Divi Y K Cornec
- Service de Rhumatologie, Hôpital de la Cavale Blanche, CHRU Brest, BP 824, 29609, Brest cedex, France. .,INSERM U1227, European University of Brest, Brest, France.
| |
Collapse
|
32
|
Abstract
Purpose of Review Systemic lupus erythematosus is a severe autoimmune/inflammatory condition of unknown pathophysiology. Though genetic predisposition is essential for disease expression, risk alleles in single genes are usually insufficient to confer disease. Epigenetic dysregulation has been suggested as the missing link between genetic risk and the development of clinically evident disease. Recent Findings Over the past decade, epigenetic events moved into the focus of research targeting the molecular pathophysiology of SLE. Epigenetic alteration can be the net result of preceding infections, medication, diet, and/or other environmental influences. While altered DNA methylation and histone modifications had already been established as pathomechanisms, DNA hydroxymethylation was more recently identified as an activating epigenetic mark. Summary Defective epigenetic control contributes to uncontrolled cytokine and co-receptor expression, resulting in immune activation and tissue damage in SLE. Epigenetic alterations promise potential as disease biomarkers and/or future therapeutic targets in SLE and other autoimmune/inflammatory conditions.
Collapse
Affiliation(s)
- Christian Michael Hedrich
- Division of Paediatric Rheumatology and Immunology, Children's Hospital Dresden, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany. .,Department of Women᾿s & Children᾿s Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK. .,Department of Paediatric Rheumatology, Alder Hey Children᾿s NHS Foundation Trust Hospital, East Prescott Road, Liverpool, L14 5AB, UK.
| |
Collapse
|
33
|
Lymphocyte Disturbances in Primary Antiphospholipid Syndrome and Application to Venous Thromboembolism Follow-Up. Clin Rev Allergy Immunol 2018; 53:14-27. [PMID: 27342459 DOI: 10.1007/s12016-016-8568-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Among patients with venous thromboembolism (VTE), the persistent detection of antiphospholipid (aPL) antibodies (Ab) represents an independent high risk factor for recurrence. However, oral anticoagulation vitamin K antagonist therapy, frequently used in these patients, is problematic in assessing and/or confirming a diagnosis of primary aPL syndrome (pAPS), suggesting use of alternative strategies. For this reason, and by analogy with other autoimmune diseases, a flow cytometer approach testing peripheral T cell subsets (CD3, CD4, and CD8), B cell subsets (B1, transitional, naive, and memory), and NK cells can be proposed. As an example and to validate the concept, pAPS patients selected from the monocentric VTE case-control EDITH's cohort were selected during their follow-up. As suspected and in contrast to non-APS VTE patients, other autoimmune diseases, and controls, pAPS VTE patients displayed specific lymphocyte disturbances. Quantitative and qualitative modifications were related to total CD4+ T cell reduction, a lower CD4/CD8 ratio, and disturbance in B cell homeostasis with increased proportions of B1 cells, transitional B cells (CD24++CD38++), and naive B cells (IgD+CD27-), while memory B cells (IgD+CD27+ and IgD-CD27+) were reduced. Interestingly, the absolute number of CD4+ T cells positively correlated with IgG anti-cardiolipin Ab levels. Altogether, disturbances of T and B cell homeostasis characterized pAPS VTE patients during their follow-up. This suggests a means of profiling that could be used in addition to existing criteria to characterize them.
Collapse
|
34
|
Wu H, Liao J, Li Q, Yang M, Zhao M, Lu Q. Epigenetics as biomarkers in autoimmune diseases. Clin Immunol 2018; 196:34-39. [PMID: 29574040 DOI: 10.1016/j.clim.2018.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Autoimmune diseases are immune system disorders in which immune cells cannot distinguish self-antigens from foreign ones. The current criteria for autoimmune disease diagnosis are based on clinical manifestations and laboratory tests. However, none of these markers shows both high sensitivity and specificity. In addition, some autoimmune diseases, for example, systemic lupus erythematosus (SLE), are highly heterogeneous and often exhibit various manifestations. On the other hand, certain autoimmune diseases, such as Sjogren's syndrome versus SLE, share similar symptoms and autoantibodies, which also causes difficulties in diagnosis. Therefore, biomarkers that have both high sensitivity and high specificity for diagnosis, reflect disease activity and predict drug response are necessary. An increasing number of publications have proposed the abnormal epigenetic modifications as biomarkers of autoimmune diseases. Therefore, this review will comprehensively summarize the epigenetic progress in the pathogenesis of autoimmune disorders and unearth potential biomarkers that might be appropriate for disease diagnosis and prediction.
Collapse
Affiliation(s)
- Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Jieyue Liao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianwen Li
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| |
Collapse
|
35
|
Epigenetic regulation in B-cell maturation and its dysregulation in autoimmunity. Cell Mol Immunol 2018; 15:676-684. [PMID: 29375128 PMCID: PMC6123482 DOI: 10.1038/cmi.2017.133] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022] Open
Abstract
B cells have a critical role in the initiation and acceleration of autoimmune diseases, especially those mediated by autoantibodies. In the peripheral lymphoid system, mature B cells are activated by self or/and foreign antigens and signals from helper T cells for differentiating into either memory B cells or antibody-producing plasma cells. Accumulating evidence has shown that epigenetic regulations modulate somatic hypermutation and class switch DNA recombination during B-cell activation and differentiation. Any abnormalities in these complex regulatory processes may contribute to aberrant antibody production, resulting in autoimmune pathogenesis such as systemic lupus erythematosus. Newly generated knowledge from advanced modern technologies such as next-generation sequencing, single-cell sequencing and DNA methylation sequencing has enabled us to better understand B-cell biology and its role in autoimmune development. Thus this review aims to summarize current research progress in epigenetic modifications contributing to B-cell activation and differentiation, especially under autoimmune conditions such as lupus, rheumatoid arthritis and type 1 diabetes.
Collapse
|
36
|
[Influence of epigenetic in Sjögren's syndrome]. Rev Med Interne 2017; 39:346-351. [PMID: 29054585 DOI: 10.1016/j.revmed.2017.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/01/2017] [Accepted: 09/18/2017] [Indexed: 01/15/2023]
Abstract
Sjögren's syndrome (SS) is a systemic autoimmune epithelitis with a major female incidence, and characterized by a dry syndrome, impaired quality of life, visceral involvement, and lymphoma for the most aggressive cases. During this process, epithelial cells acquire the capacity to produce cytokines, chemokines, and autoantigens which can in turn be presented to the immune system. Consequently, this epithelitis is accompanied by lymphocytic infiltrations leading to the formation of pseudo-follicles in which self-reactive B lymphocytes are present. The recent integration of genomic and especially of epigenomic data, which make it possible to analyze the different cellular partners, opens new perspectives and allows to a better understanding of this complex and still incurable disease.
Collapse
|
37
|
Tie CHC, Rowe HM. Epigenetic control of retrotransposons in adult tissues: implications for immune regulation. Curr Opin Virol 2017; 25:28-33. [DOI: 10.1016/j.coviro.2017.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/26/2017] [Accepted: 06/19/2017] [Indexed: 12/29/2022]
|
38
|
Foma AM, Aslani S, Karami J, Jamshidi A, Mahmoudi M. Epigenetic involvement in etiopathogenesis and implications in treatment of systemic lupus erythematous. Inflamm Res 2017; 66:1057-1073. [DOI: 10.1007/s00011-017-1082-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/22/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022] Open
|
39
|
Xie FF, Deng FY, Wu LF, Mo XB, Zhu H, Wu J, Guo YF, Zeng KQ, Wang MJ, Zhu XW, Xia W, Wang L, He P, Bing PF, Lu X, Zhang YH, Lei SF. Multiple correlation analyses revealed complex relationship between DNA methylation and mRNA expression in human peripheral blood mononuclear cells. Funct Integr Genomics 2017; 18:1-10. [PMID: 28735351 DOI: 10.1007/s10142-017-0568-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/18/2017] [Accepted: 07/04/2017] [Indexed: 12/29/2022]
Abstract
DNA methylation is an important regulator on the mRNA expression. However, a genome-wide correlation pattern between DNA methylation and mRNA expression in human peripheral blood mononuclear cells (PBMCs) is largely unknown. The comprehensive relationship between mRNA and DNA methylation was explored by using four types of correlation analyses and a genome-wide methylation-mRNA expression quantitative trait locus (eQTL) analysis in PBMCs in 46 unrelated female subjects. An enrichment analysis was performed to detect biological function for the detected genes. Single pair correlation coefficient (r T1) between methylation level and mRNA is moderate (-0.63-0.62) in intensity, and the negative and positive correlations are nearly equal in quantity. Correlation analysis on each gene (T4) found 60.1% genes showed correlations between mRNA and gene-based methylation at P < 0.05 and more than 5.96% genes presented very strong correlation (R T4 > 0.8). Methylation sites have regulation effects on mRNA expression in eQTL analysis, with more often observations in region of transcription start site (TSS). The genes under significant methylation regulation both in correlation analysis and eQTL analysis tend to cluster to the categories (e.g., transcription, translation, regulation of transcription) that are essential for maintaining the basic life activities of cells. Our findings indicated that DNA methylation has predictive regulation effect on mRNA with a very complex pattern in PBMCs. The results increased our understanding on correlation of methylation and mRNA and also provided useful clues for future epigenetic studies in exploring biological and disease-related regulatory mechanisms in PBMC.
Collapse
Affiliation(s)
- Fang-Fei Xie
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Long-Fei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xing-Bo Mo
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Hong Zhu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Jian Wu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yu-Fan Guo
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Ke-Qin Zeng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Ming-Jun Wang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xiao-Wei Zhu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Wei Xia
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Lan Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Peng-Fei Bing
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xin Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yong-Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China.
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
40
|
How compelling are the data for Epstein-Barr virus being a trigger for systemic lupus and other autoimmune diseases? Curr Opin Rheumatol 2017; 28:398-404. [PMID: 26986247 DOI: 10.1097/bor.0000000000000289] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is caused by a combination of genetic and acquired immunodeficiencies and environmental factors including infections. An association with Epstein-Barr virus (EBV) has been established by numerous studies over the past decades. Here, we review recent experimental studies on EBV, and present our integrated theory of SLE development. RECENT FINDINGS SLE patients have dysfunctional control of EBV infection resulting in frequent reactivations and disease progression. These comprise impaired functions of EBV-specific T-cells with an inverse correlation to disease activity and elevated serum levels of antibodies against lytic cycle EBV antigens. The presence of EBV proteins in renal tissue from SLE patients with nephritis suggests direct involvement of EBV in SLE development. As expected for patients with immunodeficiencies, studies reveal that SLE patients show dysfunctional responses to other viruses as well. An association with EBV infection has also been demonstrated for other autoimmune diseases, including Sjögren's syndrome, rheumatoid arthritis, and multiple sclerosis. SUMMARY Collectively, the interplay between an impaired immune system and the cumulative effects of EBV and other viruses results in frequent reactivation of EBV and enhanced cell death, causing development of SLE and concomitant autoreactivities.
Collapse
|
41
|
Hedrich CM, Mäbert K, Rauen T, Tsokos GC. DNA methylation in systemic lupus erythematosus. Epigenomics 2017; 9:505-525. [PMID: 27885845 PMCID: PMC6040049 DOI: 10.2217/epi-2016-0096] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease facilitated by aberrant immune responses directed against cells and tissues, resulting in inflammation and organ damage. In the majority of patients, genetic predisposition is accompanied by additional factors conferring disease expression. While the exact molecular mechanisms remain elusive, epigenetic alterations in immune cells have been demonstrated to play a key role in disease pathogenesis through the dysregulation of gene expression. Since epigenetic marks are dynamic, allowing cells and tissues to differentiate and adjust, they can be influenced by environmental factors and also be targeted in therapeutic interventions. Here, we summarize reports on DNA methylation patterns in SLE, underlying molecular defects and their effect on immune cell function. We discuss the potential of DNA methylation as biomarker or therapeutic target in SLE.
Collapse
Affiliation(s)
- Christian M Hedrich
- Pediatric Rheumatology & Immunology, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Katrin Mäbert
- Pediatric Rheumatology & Immunology, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Thomas Rauen
- Department of Nephrology & Clinical Immunology, RWTH University Hospital, Aachen, Germany
| | - George C Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Chen SH, Lv QL, Hu L, Peng MJ, Wang GH, Sun B. DNA methylation alterations in the pathogenesis of lupus. Clin Exp Immunol 2016; 187:185-192. [PMID: 27690369 DOI: 10.1111/cei.12877] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 01/02/2023] Open
Abstract
Although lupus is, by definition, associated with genetic and immunological factors, its molecular mechanisms remain unclear. The up-to-date research findings point out that various genetic and epigenetic factors, especially gene-specific and site-specific methylation, are believed to contribute to the initiation and development of systemic lupus erythematosus (SLE). This review presents and summarizes the association between abnormal DNA methylation of immune-related cells and lupus-like diseases, as well as the possible mechanisms of immune disorder caused by DNA methylation, aiming at a better understanding of the roles of aberrant DNA methylation in the initiation and development of certain forms of lupus and providing a new insight into promising therapeutic regimens in lupus-like diseases.
Collapse
Affiliation(s)
- S H Chen
- Department of Oncology, Changsha Central Hospital, Changsha, China
| | - Q L Lv
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - L Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - M J Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - G H Wang
- Department of Oncology, Changsha Central Hospital, Changsha, China
| | - B Sun
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Perl A. Editorial: LINEing Up to Boost Interferon Production: Activation of Endogenous Retroviral DNA in Autoimmunity. Arthritis Rheumatol 2016; 68:2568-2570. [PMID: 27338170 PMCID: PMC5083194 DOI: 10.1002/art.39794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/16/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Andras Perl
- State University of New York, Upstate Medical University, Syracuse.
| |
Collapse
|
44
|
Zhan Y, Guo Y, Lu Q. Aberrant Epigenetic Regulation in the Pathogenesis of Systemic Lupus Erythematosus and Its Implication in Precision Medicine. Cytogenet Genome Res 2016; 149:141-155. [PMID: 27607472 DOI: 10.1159/000448793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
Great progress has been made in the last decades in understanding the complex immune dysregulation in systemic lupus erythematosus (SLE), yet the efforts to pursue an effective treatment of SLE proved to be futile. The pathoetiology of SLE involves extremely complicated and multifactorial interaction among various genetic and epigenetic factors. Multiple gene loci predispose to disease susceptibility, and the interaction with epigenetic modifications mediated through sex, hormones, and the hypothalamo-pituitary-adrenal axis complicates susceptibility and manifestations of this disease. Finally, certain environmental and psychological factors probably trigger the disease via epigenetic mechanisms. In this review, we summarize and discuss recent epigenetic studies of SLE and suggest a personalized approach to the dissection of disease onset and therapy or precision medicine. We speculate that in the future, precision medicine based on epigenetic and genetic information could help guide more effective targeted therapeutic intervention.
Collapse
Affiliation(s)
- Yi Zhan
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, PR China
| | | | | |
Collapse
|
45
|
Abstract
Our PubMed search for peer-reviewed articles published in the 2014 solar year retrieved a significantly higher number of hits compared to 2013 with a net 28 % increase. Importantly, full articles related to autoimmunity constitute approximately 5 % of immunology articles. We confirm that our understanding of autoimmunity is becoming a translational paradigm with pathogenetic elements rapidly followed by new treatment options. Furthermore, numerous clinical and pathogenetic elements and features are shared among autoimmune diseases, and this is well illustrated in the recent literature. More specifically, the past year witnessed critical revisions of our understanding and management of antiphospholipid syndrome with new exciting data on the pathogenicity of the serum anti-beta2 glycoprotein autoantibody, a better understanding of the current and new treatments for rheumatoid arthritis, and new position papers on important clinical questions such as vaccinations in patients with autoimmune disease, comorbidities, or new classification criteria. Furthermore, data confirming the important connections between innate immunity and autoimmunity via toll-like receptors or the critical role of T regulatory cells in tolerance breakdown and autoimmunity perpetuation were also reported. Lastly, genetic and epigenetic data were provided to confirm that the mosaic of autoimmunity warrants a susceptible individual background which may be geographically determined and contribute to the geoepidemiology of diseases. The 2014 literature in the autoimmunity world should be cumulatively regarded as part of an annus mirabilis in which, on a different level, the 2014 Annual Meeting of the American College of Rheumatology in Boston was attended by over 16,000 participants with over selected 3000 abstracts.
Collapse
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, via A. Manzoni 56, 20089 Rozzano, Milan, Italy. .,BIOMETRA Department, University of Milan, Milan, Italy.
| |
Collapse
|
46
|
Epigenetic Modulation as a Therapeutic Prospect for Treatment of Autoimmune Rheumatic Diseases. Mediators Inflamm 2016; 2016:9607946. [PMID: 27594771 PMCID: PMC4995328 DOI: 10.1155/2016/9607946] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Systemic inflammatory rheumatic diseases are considered as autoimmune diseases, meaning that the balance between recognition of pathogens and avoidance of self-attack is impaired and the immune system attacks and destroys its own healthy tissue. Treatment with conventional Disease Modifying Antirheumatic Drugs (DMARDs) and/or Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) is often associated with various adverse reactions due to unspecific and toxic properties of those drugs. Although biologic drugs have largely improved the outcome in many patients, such drugs still pose significant problems and fail to provide a solution to all patients. Therefore, development of more effective treatments and improvements in early diagnosis of rheumatic diseases are badly needed in order to increase patient's functioning and quality of life. The reversible nature of epigenetic mechanisms offers a new class of drugs that modulate the immune system and inflammation. In fact, epigenetic drugs are already in use in some types of cancer or cardiovascular diseases. Therefore, epigenetic-based therapeutics that control autoimmunity and chronic inflammatory process have broad implications for the pathogenesis, diagnosis, and management of rheumatic diseases. This review summarises the latest information about potential therapeutic application of epigenetic modification in targeting immune abnormalities and inflammation of rheumatic diseases.
Collapse
|
47
|
The key culprit in the pathogenesis of systemic lupus erythematosus: Aberrant DNA methylation. Autoimmun Rev 2016; 15:684-9. [DOI: 10.1016/j.autrev.2016.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/28/2016] [Indexed: 01/21/2023]
|
48
|
DNA methylation perspectives in the pathogenesis of autoimmune diseases. Clin Immunol 2016; 164:21-7. [PMID: 26821302 DOI: 10.1016/j.clim.2016.01.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/23/2016] [Accepted: 01/23/2016] [Indexed: 12/19/2022]
Abstract
DNA methylation is now widely recognized as being critical to maintain the function of immune cells. Recent studies suggest that aberrant DNA methylation levels not only can result in immune cells autoreactivity in vitro, but also are related to autoimmunity in vivo. Environmental factors and genetic polymorphisms cause abnormal methylation, which affects the expression of certain immune-related genes, being becoming hot spot of explaining the mechanism of autoimmune diseases. This paper reviews the importance of abnormal methylation during the development of common autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis and type 1 diabetes, aiming at a better understanding of the pathogenesis of autoimmune diseases and providing new ideas for the treatment of these diseases.
Collapse
|
49
|
Konsta OD, Le Dantec C, Charras A, Cornec D, Kapsogeorgou EK, Tzioufas AG, Pers JO, Renaudineau Y. Defective DNA methylation in salivary gland epithelial acini from patients with Sjögren's syndrome is associated with SSB gene expression, anti-SSB/LA detection, and lymphocyte infiltration. J Autoimmun 2015; 68:30-8. [PMID: 26725749 DOI: 10.1016/j.jaut.2015.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 12/18/2022]
Abstract
The pathogenesis of primary Sjögren's syndrome (pSS) is complex, in part due to DNA methylation abnormalities. This study was undertaken to evaluate the importance of global DNA methylation ((5m)C) as determined in minor salivary glands (MSG) from well characterized pSS patients. Twenty-two pSS patients and ten controls were selected, and MSG were stained with anti-(5m)C, anti-(5m)C/anti-cytokeratin (KRT)19, or with anti-SSB/La antibodies (Ab). The DNA methylation status at the SSB gene promoter P1 and P1' was evaluated by methylation-sensitive restriction enzymes (MSRE) coupled with PCR. The effect of the DNA demethylating drug 5 azacytidine (5-Aza) was tested in the human salivary gland (HSG) cell line. In pSS, the reduction of global DNA methylation ((5m)C) was associated with lymphocyte infiltration, the emergence of (5m)C(low) and KRT19(high) acini, and the detection of circulating anti-SSB/La Ab, but not with disease activity (ESSDAI). Next, treating HSG cells with 5-Aza was effective in inducing SSB expression. Finally in pSS patients positive for anti-SSB/La Ab, we further observed DNA demethylation at the SSB gene promoter P1 with consequent SSB overexpression at both the transcriptional and protein levels in salivary gland epithelial cells. In conclusion, our results highlight the importance of DNA methylation in the pathophysiology of pSS and to the emergence of anti-SSB/La Ab.
Collapse
Affiliation(s)
- O D Konsta
- INSERM ESPRI, ERI29/EA2216, SFR ScInBioS, LabEx IGO "Immunotherapy Graft Oncology", Innovative Medicines Initiative PRECISESADS, Réseau épigénétique et réseau canaux ioniques du Cancéropole Grand Ouest, European University of Brittany, Brest, France; Department of Pathophysiology, School of Medicine, National University of Athens, Greece
| | - C Le Dantec
- INSERM ESPRI, ERI29/EA2216, SFR ScInBioS, LabEx IGO "Immunotherapy Graft Oncology", Innovative Medicines Initiative PRECISESADS, Réseau épigénétique et réseau canaux ioniques du Cancéropole Grand Ouest, European University of Brittany, Brest, France
| | - A Charras
- INSERM ESPRI, ERI29/EA2216, SFR ScInBioS, LabEx IGO "Immunotherapy Graft Oncology", Innovative Medicines Initiative PRECISESADS, Réseau épigénétique et réseau canaux ioniques du Cancéropole Grand Ouest, European University of Brittany, Brest, France
| | - D Cornec
- INSERM ESPRI, ERI29/EA2216, SFR ScInBioS, LabEx IGO "Immunotherapy Graft Oncology", Innovative Medicines Initiative PRECISESADS, Réseau épigénétique et réseau canaux ioniques du Cancéropole Grand Ouest, European University of Brittany, Brest, France
| | - E K Kapsogeorgou
- Department of Pathophysiology, School of Medicine, National University of Athens, Greece
| | - A G Tzioufas
- Department of Pathophysiology, School of Medicine, National University of Athens, Greece
| | - J O Pers
- INSERM ESPRI, ERI29/EA2216, SFR ScInBioS, LabEx IGO "Immunotherapy Graft Oncology", Innovative Medicines Initiative PRECISESADS, Réseau épigénétique et réseau canaux ioniques du Cancéropole Grand Ouest, European University of Brittany, Brest, France
| | - Y Renaudineau
- INSERM ESPRI, ERI29/EA2216, SFR ScInBioS, LabEx IGO "Immunotherapy Graft Oncology", Innovative Medicines Initiative PRECISESADS, Réseau épigénétique et réseau canaux ioniques du Cancéropole Grand Ouest, European University of Brittany, Brest, France; Laboratory of Immunology and Immunotherapy, CHU Morvan, Brest, France.
| |
Collapse
|
50
|
Abstract
The pathogenesis of autoimmune diseases can be traced to both genetic susceptibility and epigenetic modifications arising from exposure to the environment. Epigenetic modifications, such as DNA methylation, histone modifications and microRNAs, influence gene expression and impact cell function without modifying the genomic sequence. Epigenetic dysregulation is associated with autoimmune diseases, including systemic lupus erythematosus. Understanding the molecular mechanisms, including epigenetic regulation of immune response, that are involved in the pathophysiology of lupus is essential for the introduction of effective, target-directed and tolerated therapies. In this monographic issue, the role of epigenetic mechanisms in lupus is discussed from different perspectives.
Collapse
Affiliation(s)
- Hong Zan
- Department of Microbiology & Immunology, School of Medicine, University of Texas Health Science Center , San Antonio, TX , USA
| |
Collapse
|