1
|
Wang H, Liu Y, Guo Z, Cui M, Pang P, Yang J, Wu C. Enhancement of oligodendrocyte autophagy alleviates white matter injury and cognitive impairment induced by chronic cerebral hypoperfusion in rats. Acta Pharm Sin B 2023; 13:2107-2123. [DOI: 10.1016/j.apsb.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/23/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
|
2
|
Neuroprotection of boropinol-B in cerebral ischemia-reperfusion injury by inhibiting inflammation and apoptosis. Brain Res 2023; 1798:148132. [DOI: 10.1016/j.brainres.2022.148132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/02/2022] [Accepted: 10/24/2022] [Indexed: 11/21/2022]
|
3
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|
4
|
Regulation of DAPK1 by Natural Products: An Important Target in Treatment of Stroke. Neurochem Res 2022; 47:2142-2157. [PMID: 35674928 DOI: 10.1007/s11064-022-03628-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
Abstract
Stroke is a sudden neurological disorder that occurs due to impaired blood flow to an area of the brain. Stroke can be caused by the blockage or rupture of a blood vessel in the brain, called ischemic stroke and hemorrhagic stroke, respectively. Stroke is more common in men than women. Atrial fibrillation, hypertension, kidney disease, high cholesterol and lipids, genetic predisposition, inactivity, poor nutrition, diabetes mellitus, family history and smoking are factors that increase the risk of stroke. Restoring blood flow by repositioning blocked arteries using thrombolytic agents or endovascular therapy are the most effective treatments for stroke. However, restoring circulation after thrombolysis can cause fatal edema or intracranial hemorrhage, and worsen brain damage in a process known as ischemia-reperfusion injury. Therefore, there is a pressing need to find and develop more effective treatments for stroke. In the past, the first choice of treatment was based on natural compounds. Natural compounds are able to reduce the symptoms and reduce various diseases including stroke that attract the attention of the pharmaceutical industry. Nowadays, as a result of the numerous studies carried out in the field of herbal medicine, many useful and valuable effects of plants have been identified. The death-associated protein kinase (DAPK) family is one of the vital families of serine/threonine kinases involved in the regulation of some biological functions in human cells. DAPK1 is the most studied kinase within the DAPKs family as it is involved in neuronal and recovery processes. Dysregulation of DAPK1 in the brain is involved in the developing neurological diseases such as stroke. Natural products can function in a variety of ways, including reducing cerebral edema, reducing brain endothelial cell death, and inhibiting TNFα and interleukin-1β (IL-1β) through regulating the DAPK1 signal against stroke. Due to the role of DAPK1 in neurological disorders, the aim of this article was to investigate the role of DAPK1 in stroke and its modulation by natural compounds.
Collapse
|
5
|
Nehra G, Bauer B, Hartz AMS. Blood-brain barrier leakage in Alzheimer's disease: From discovery to clinical relevance. Pharmacol Ther 2022; 234:108119. [PMID: 35108575 PMCID: PMC9107516 DOI: 10.1016/j.pharmthera.2022.108119] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD brain pathology starts decades before the onset of clinical symptoms. One early pathological hallmark is blood-brain barrier dysfunction characterized by barrier leakage and associated with cognitive decline. In this review, we summarize the existing literature on the extent and clinical relevance of barrier leakage in AD. First, we focus on AD animal models and their susceptibility to barrier leakage based on age and genetic background. Second, we re-examine barrier dysfunction in clinical and postmortem studies, summarize changes that lead to barrier leakage in patients and highlight the clinical relevance of barrier leakage in AD. Third, we summarize signaling mechanisms that link barrier leakage to neurodegeneration and cognitive decline in AD. Finally, we discuss clinical relevance and potential therapeutic strategies and provide future perspectives on investigating barrier leakage in AD. Identifying mechanistic steps underlying barrier leakage has the potential to unravel new targets that can be used to develop novel therapeutic strategies to repair barrier leakage and slow cognitive decline in AD and AD-related dementias.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
6
|
Cheng Y, Cheng A, Jia Y, Yang L, Ning Y, Xu L, Zhong Y, Zhuang Z, Guan J, Zhang X, Lin Y, Zhou T, Fan X, Li J, Liu P, Yan G, Wu R. pH-Responsive Multifunctional Theranostic Rapamycin-Loaded Nanoparticles for Imaging and Treatment of Acute Ischemic Stroke. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56909-56922. [PMID: 34807583 DOI: 10.1021/acsami.1c16530] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stroke is the second leading cause of death globally and the most common cause of severe disability. Several barriers need to be addressed more effectively to treat stroke, including efficient delivery of therapeutic agents, rapid release at the infarct site, precise imaging of the infarct site, and drug distribution monitoring. The present study aimed to develop a bio-responsive theranostic nanoplatform with signal-amplifying capability to deliver rapamycin (RAPA) to ischemic brain tissues and visually monitor drug distribution. A pH-sensitive theranostic RAPA-loaded nanoparticle system was designed since ischemic tissues have a low-pH microenvironment compared with normal tissues. The nanoparticles demonstrated good stability and biocompatibility and could efficiently load rapamycin, followed by its rapid release in acidic environments, thereby improving therapeutic accuracy. The nano-drug-delivery system also exhibited acid-enhanced magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) imaging signal properties, enabling accurate multimodal imaging with minimal background noise, thus improving drug tracing and diagnostic accuracy. Finally, in vivo experiments confirmed that the nanoparticles preferentially aggregated in the ischemic hemisphere and exerted a neuroprotective effect in rats with transient middle cerebral artery occlusion (tMCAO). These pH-sensitive multifunctional theranostic nanoparticles could serve as a potential nanoplatform for drug tracing as well as the treatment and even diagnosis of acute ischemic stroke. Moreover, they could be a universal solution to achieve accurate in vivo imaging and treatment of other diseases.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Airong Cheng
- Department of Neurology, Chengwu County People's Hospital, Chengwu 274200, Shandong, China
| | - Yanlong Jia
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei 441021, China
| | - Lin Yang
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yan Ning
- Department of TCM, Shenzhen Maternity & Child Healthcare Hospital Affiliated to Southern Medical University, Shenzhen 518028, Guangdong, China
| | - Liang Xu
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yazhi Zhong
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zerui Zhuang
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou 515041, Guangdong, China
- Department of Neurosurgery, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jitian Guan
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaolei Zhang
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yan Lin
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Teng Zhou
- Department of Computer Science, Shantou University, Shantou 515041, China
| | - Xiusong Fan
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Jianwu Li
- Transfusion Department, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Peng Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Gen Yan
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361023, Fujian, China
| | - Renhua Wu
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
7
|
Moradpour S, Aliaghaei A, Bigdeli M. Effect of Sertoli Cell Transplant and Rapamycin Pretreatment on Middle Cerebral Artery Occlusion-Induced Brain Ischemia in a Rat Model. EXP CLIN TRANSPLANT 2021; 19:1204-1211. [PMID: 34812711 DOI: 10.6002/ect.2021.0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Stroke exacts a heavy toll on death and disability worldwide. In animal studies, cell transplant has shown a positive effect by inducing neurogenesis, angiogenesis, and modulating inflammation. Cell transplant therapy could provide researchers with new strategies for treating stroke. The mechanistic target of rapamycin is a central signaling pathway for coordination and control; the administration of rapamycin, a key modulator of this pathway, could be a new therapeutic approach in neurological disorders. MATERIALS AND METHODS Adult rats were grouped into 5 main groups: control, sham, rapamycin receiving, Sertoli cell receiving, and rapamycin plus Sertoli cell receiving groups. Sertoli cells were taken from another rat tissue and injected into the right striatum region. After 5 days, ischemic induction was performed, and rapamycin injection (300 mg/kg) was performed 1 hour before surgery. After 24 hours, some regions of the brain, including the cortex, striatum, and piriform cortex-amygdala, were isolated for evaluation. RESULTS Our results showed that infarct volume, brain edema, and blood-brain barrier permeability assessments were significantly reduced in some areas of the brain in rats that received rapamycin plus Sertoli cells compared with results shown in the control group. CONCLUSIONS Pretreatment with Sertoli cell transplant plus rapamycin injection may enhance neural survival during ischemia through increased glial cell-derived neurotrophic factor and vascular endothelial growth factor, inhibiting the mechanistic target of rapamycin pathway and increasing autophagy performance.
Collapse
Affiliation(s)
- Sara Moradpour
- From the Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | | |
Collapse
|
8
|
Liu G, Liang Y, Xu M, Sun M, Sun W, Zhou Y, Huang X, Song W, Liang Y, Wang Z. Protective mechanism of Erigeron breviscapus injection on blood-brain barrier injury induced by cerebral ischemia in rats. Sci Rep 2021; 11:18451. [PMID: 34531475 PMCID: PMC8446017 DOI: 10.1038/s41598-021-97908-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
This study investigates the protective effect of Erigeron breviscapus injection, a classic traditional Chinese medicine most typically used by Chinese minority to treat stroke, on cerebral ischemia-reperfusion injury and the related signaling pathways. Use network pharmacology methods to study the relationship between E. breviscapus (Vant.) Hand-Mazz. and ischemic stroke, predict the mechanism and active ingredients of E. breviscapus (Vant.) Hand-Mazz. in improving ischemic stroke disease. We study the protective effect of E. breviscapus injection on blood-brain barrier (BBB) injuries induced by cerebral ischemia in rats by regulating the ROS/RNS-MMPs-TJs signaling pathway. The rat model of focal cerebral ischemia-reperfusion injury has been prepared using the wire-suppository method. Firstly, the efficacy of E. breviscapus injection, Scutellarin and 3,5-dicaffeoylquinic acid in protecting BBB injury caused by cerebral ischemia has been evaluated. Secondly, the following two methods have been used to study the mechanism of E. breviscapus injection in regulating the ROS/RNS-MMPS-TJS signaling pathway: real-time PCR and western blot for the determination of iNOS, MMP-9, claudin-5, occludin, ZO-1 mRNA and protein expression in brain tissue. We find that PI3K-Akt signaling pathway predicted by network pharmaology affects the blood-brain barrier function, so we chose the blood-brain barrier-related MMP-9, claudin-5, iNOS, occludin and ZO-1 proteins are used for research. The results of our research show that 3 drugs can reduce the rate of cerebral infarction in rats, relieve the abnormal neuroethology of rats, reduce the degree of brain tissue lesion, increase the number of the Nissl corpuscle cells and repair the neuron ultrastructure in injured rats. At the same time, it can obviously reduce the ultrastructure damage of the BBB in rats. All three drugs significantly reduced the content of Evans blue in the ischemic brain tissue caused by cerebral ischemia in rats with BBB injury. In addition, E. breviscapus injection, Scutellarin and 3,5-dicaffeoylquinic acid can decrease the protein expression of iNOS and MMP-9 in rat ischemic brain tissue. In addition, 3,5-dicaffeoylquinic acid can increase the protein expression of claudin-5. We conclude that E. breviscapus injection, Scutellarin and 3,5-dicaffeoylquinic acid have obvious therapeutic effects on BBB and neuron injury induced by cerebral ischemia in rats. Our results from studying the mechanism of action show that E. breviscapus injection and Scutellarin inhibited the activation of MMP-9 by inhibiting the synthesis of iNOS, 3,5-dicaffeoylquinic acid inhibits the expression and activation of MMP-9 by inhibiting the activation of iNOS and reducing the generation of free radicals, thus reducing the degradation of important cytoskeleton connexin claudin-5 in the tight junction (TJ) structure by inhibiting the expression and activation of MMP-9. Finally BBB structure integrity was protected.
Collapse
Affiliation(s)
- Guangli Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- Hospital Pharmaceutical Department, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, 221000, Jiangsu, China
| | - Yan Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Min Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ming Sun
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Weijun Sun
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - You Zhou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Xiaojuan Huang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Wenjie Song
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yuan Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Zhang Wang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
9
|
Chi OZ, Liu X, Cofano S, Patel N, Jacinto E, Weiss HR. Rapalink-1 Increased Infarct Size in Early Cerebral Ischemia-Reperfusion With Increased Blood-Brain Barrier Disruption. Front Physiol 2021; 12:706528. [PMID: 34354602 PMCID: PMC8329705 DOI: 10.3389/fphys.2021.706528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
It has been reported that the mechanistic target of rapamycin (mTOR) pathway is involved in cerebral ischemia–reperfusion injury. One of the important pathological changes during reperfusion after cerebral ischemia is disruption of blood–brain barrier (BBB). Rapamycin, a first-generation mTOR inhibitor, produces divergent effects on neuronal survival and alteration in BBB disruption. In this study, we investigated how Rapalink-1, a third-generation mTOR inhibitor, would affect neuronal survival and BBB disruption in the very early stage of cerebral ischemia–reperfusion that is within the time window of thrombolysis therapy. The middle cerebral artery occlusion (MCAO) was performed in rats under isoflurane anesthesia with controlled ventilation. Of note, 2 mg/kg of Rapalink-1 or vehicle was administered intraperitoneally 10 min after MCAO. After 1 h of MCAO and 2 h of reperfusion, the transfer coefficient (Ki) of 14C-α-aminoisobutyric acid (104 Da) and the volume of 3H-dextran (70,000 Da) distribution were determined to assess the degree of BBB disruption. At the same time points, phosphorylated S6 (Ser240/244) and Akt (Ser473) as well as matrix metalloproteinase-2 (MMP2) protein level were determined by Western blot along with the infarct size using tetrazolium stain. Rapalink-1 increased the Ki in the ischemic-reperfused cortex (IR-C, +23%, p < 0.05) without a significant change in the volume of dextran distribution. Rapalink-1 increased the percentage of cortical infarct out of the total cortical area (+41%, p < 0.005). Rapalink-1 significantly decreased phosphorylated S6 and Akt to half the level of the control rats in the IR-C, which suggests that both of the mechanistic target of rapamycin complex 1 and 2 (mTORC1 and mTORC2) were inhibited. The MMP2 level was increased suggesting that BBB disruption could be aggravated by Rapalink-1. Taken together, our data suggest that inhibiting both mTORC1 and mTORC2 by Rapalink-1 could worsen the neuronal damage in the early stage of cerebral ischemia–reperfusion and that the aggravation of BBB disruption could be one of the contributing factors.
Collapse
Affiliation(s)
- Oak Z Chi
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Xia Liu
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Sean Cofano
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Nikhil Patel
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Harvey R Weiss
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| |
Collapse
|
10
|
Endothelial-specific insulin receptor substrate-1 overexpression worsens neonatal hypoxic-ischemic brain injury via mTOR-mediated tight junction disassembly. Cell Death Discov 2021; 7:150. [PMID: 34226528 PMCID: PMC8257791 DOI: 10.1038/s41420-021-00548-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/09/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
Hypoxic-ischemic (HI) encephalopathy is the major cause of mortality and disability in newborns. The neurovascular unit is a major target of acute and chronic brain injury, and therapies that protect simultaneously both neurons and vascular endothelial cells from neonatal HI injury are in demand. Insulin receptors and its key downstream molecule-insulin receptor substrate −1 (IRS-1) are potential neuroprotective targets and expressed both in neuron and endothelial cells. To investigate whether IRS-1 can act similarly in neurons and vascular endothelial cells in protecting neurovascular units and brain form HI injury, we found that neuron-specific IRS-1 transgenic rats showed reduced neurovascular injury and infarct volumes, whereas endothelial-specific IRS-1 transgenic rats showed increased blood-brain barrier (BBB) disruption and exaggerated neurovascular injury after neonatal HI brain injury. Endothelial-specific IRS-1 overexpression increased vascular permeability and disassembled the tight junction protein (zonula occludens-1) complex. Inhibition of mammalian target of rapamycin (mTOR) by rapamycin preserved tight junction proteins and attenuated BBB leakage and neuronal apoptosis after HI in the endothelial-specific IRS-1 transgenic pups. Together, our findings suggested that neuronal and endothelial IRS-1 had opposite effects on the neurovascular integrity and damage after neonatal HI brain injury and that endothelial IRS-1 worsens neurovascular integrity after HI via mTOR-mediated tight junction protein disassembly.
Collapse
|
11
|
Li L, Huang J. Rapamycin Pretreatment Alleviates Cerebral Ischemia/Reperfusion Injury in Dose-Response Manner Through Inhibition of the Autophagy and NFκB Pathways in Rats. Dose Response 2020; 18:1559325820946194. [PMID: 32874166 PMCID: PMC7436792 DOI: 10.1177/1559325820946194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/21/2020] [Indexed: 01/02/2023] Open
Abstract
Although rapamycin can attenuate cerebral ischemia/reperfusion (I/R) injury, the potential roles of rapamycin on cerebral I/R injury remain largely controversial. The present work aims to evaluate underlying molecular mechanisms of rapamycin pretreatment on I/R injury. In total, 34 Sprague-Dawley rats were randomly grouped to 3 groups: sham group (n = 2), vehicle group (n = 16), and rapamycin-pretreatment group (n = 16). Before the focal cerebral ischemia was induced, those rats in the pretreatment group were intraperitoneally injected rapamycin (1 mg/kg body) for 20 hours, while rats in the vehicle group received same-volume saline. Then, rats in these 2 groups received focal cerebral ischemia for 3 and 6 hours, respectively (n = 8 in each group), which was followed by the application of reperfusion for 4, 24, 72 hours, and 1 week (n = 2 in each group). The results showed that the rapamycin pretreatment improved the memory functions of rats after I/R injury, which was evaluated using a Y-maze test. Rapamycin pretreatment significantly reduced the size of triphenyltetrazolium chloride infarction and decreased the expression of I/R injury markers. Moreover, the expression of LC-3 and NFκB was also significantly reduced after rapamycin pretreatment. Taken together, rapamycin pretreatment may alleviate cerebral I/R injury partly through inhibiting autophagic activities and NFκB pathways in rats.
Collapse
Affiliation(s)
- Liru Li
- Department of emergency medicine, Fengxian District Central Hospital, Shanghai, China
| | - Jie Huang
- Department of Chinese and Western Medicine, Shanghai Fengxian District Central Hospital, Shanghai, China
| |
Collapse
|
12
|
Uddin MS, Rahman MA, Kabir MT, Behl T, Mathew B, Perveen A, Barreto GE, Bin-Jumah MN, Abdel-Daim MM, Ashraf GM. Multifarious roles of mTOR signaling in cognitive aging and cerebrovascular dysfunction of Alzheimer's disease. IUBMB Life 2020; 72:1843-1855. [PMID: 32472959 DOI: 10.1002/iub.2324] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 12/19/2022]
Abstract
Age-related cognitive failure is a main devastating incident affecting even healthy people. Alzheimer's disease (AD) is the utmost common form of dementia among the geriatric community. In the pathogenesis of AD, cerebrovascular dysfunction is revealed before the beginning of the cognitive decline. Mounting proof shows a precarious impact of cerebrovascular dysregulation in the development of AD pathology. Recent studies document that the mammalian target of rapamycin (mTOR) acts as a crucial effector of cerebrovascular dysregulation in AD. The mTOR contributes to brain vascular dysfunction and subsequence cerebral blood flow deficits as well as cognitive impairment. Furthermore, mTOR causes the blood-brain barrier (BBB) breakdown in AD models. Inhibition of mTOR hyperactivity protects the BBB integrity in AD. Furthermore, mTOR drives cognitive defect and cerebrovascular dysfunction, which are greatly prevalent in AD, but the central molecular mechanisms underlying these alterations are obscure. This review represents the crucial and current research findings regarding the role of mTOR signaling in cognitive aging and cerebrovascular dysfunction in the pathogenesis of AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Patiala, India
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Jiang R, Liao J, Yang MC, Deng J, Hu YX, Li P, Li MT. Lidocaine mediates the progression of cerebral ischemia/reperfusion injury in rats via inhibiting the activation of NF-κB p65 and p38 MAPK. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:548. [PMID: 32411771 PMCID: PMC7214891 DOI: 10.21037/atm-20-3066] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Lidocaine is a commonly used local anesthetic, and low-dose lidocaine has neuroprotective effects on cerebral ischemia/reperfusion (CI/R) injury; the mechanism for this, however, is still unclear. The aim of this study was to investigate the role and the possible mechanisms of lidocaine on CI/R injury in rats. Methods We constructed a rat (male Sprague-Dawley rats, 6–8 weeks old) model of CI/R injury induced by middle cerebral artery occlusion (MCAO). Histopathology, neuronal apoptosis, oxidative stress, and inflammatory response were evaluated using hematoxylin and eosin (HE) staining, Nissl staining, enzyme-linked immunosorbent assay (ELISA) and western blotting, respectively. In addition, brain water content, infarct volume, neurological deficit score each evaluated. Results The findings showed that lidocaine improved spatial learning and memory impairment, protected I/R-induced brain injury and attenuated neuronal death and apoptosis. Furthermore, lidocaine also regulated the levels of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), IL-6, IL-10, iNOS, and IL-4.Notably, lidocaine markedly inhibited the expression of p65 and p38. Conclusions The results indicate that lidocaine protects against cerebral injury induced by I/R in rats via the nuclear factor kappa-B (NF-κB) p65 and p38 mitogen-activated protein kinase (MAPK) signaling pathway, it provided a candidate for the treatment of CI/R-induced injury.
Collapse
Affiliation(s)
- Rong Jiang
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Juan Liao
- Department of Stomatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Meng-Chang Yang
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Jia Deng
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Yun-Xia Hu
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Peng Li
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Mei-Ting Li
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| |
Collapse
|
14
|
Sasaki K, Yamamoto S, Mutoh T, Tsuru Y, Taki Y, Kawashima R. Rapamycin protects against early brain injury independent of cerebral blood flow changes in a mouse model of subarachnoid haemorrhage. Clin Exp Pharmacol Physiol 2019; 45:859-862. [PMID: 29676052 DOI: 10.1111/1440-1681.12950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 01/05/2023]
Abstract
We evaluated the neuroprotective role of rapamycin, a mammalian target of rapamycin (mTOR) kinase inhibitor, in cerebral ischaemia and locomotor function in a mouse model of subarachnoid haemorrhage (SAH). Pretreatment with rapamycin, an mTOR kinase inhibitor, resulted in better recovery from cerebral hypoxia early after SAH than control (P < .05), while the values of peak flow velocity in the middle cerebral artery did not change significantly (P > .05). Average distance travelled and the ratio of central-area distance/total travelled distance determined by open-field test after day 14 was significantly higher in mice pretreated with rapamycin than in control mice (P < .05). Inhibition of the mTOR pathway could be protective against post-SAH early brain injury, ameliorating brain tissue hypoxia and locomotor hypoactivity.
Collapse
Affiliation(s)
- Kazumasu Sasaki
- Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Shuzo Yamamoto
- Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Tatsushi Mutoh
- Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Yoshiharu Tsuru
- Primetech Life Science Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Taki
- Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| |
Collapse
|
15
|
Investigation of the novel mTOR inhibitor AZD2014 in neuronal ischemia. Neurosci Lett 2019; 706:223-230. [PMID: 31100427 DOI: 10.1016/j.neulet.2019.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Hamartin, a component of the tuberous sclerosis complex (TSC) that actively inhibits the mammalian target of rapamycin (mTOR), may mediate the endogenous resistance of Cornu Ammonis 3 (CA3) hippocampal neurons following global cerebral ischemia. Pharmacological compounds that selectively inhibit mTOR may afford neuroprotection following ischemic stroke. We hypothesize that AZD2014, a novel mTORC1/2 inhibitor, may protect neurons following oxygen and glucose deprivation (OGD). METHODS Primary neuronal cultures from E18 Wistar rat embryos were exposed to 2 h OGD or normoxia. AZD2014 was administered either during OGD, 24 h prior to OGD or for 24 h following OGD. Cell death was quantified by lactate dehydrogenase assay. We characterized the expression of mTOR pathway proteins following exposure to AZD2014 using western blotting. RESULTS Following 2 h OGD +24 h recovery, AZD2014 increased neuronal death when present during OGD. Rapamycin, the archetypal mTOR inhibitor, had no effect on cell death. Treatment with AZD2014 24 h prior to OGD and 24 h after OGD also enhanced cell death. While Western blotting showed a trend towards decreased expression levels of phospho-Akt relative to total Akt with increasing AZD2014 concentration, hamartin expression was also significantly decreased leading to activation of mTOR. CONCLUSION AZD2014 was detrimental to neurons that underwent ischemia. AZD2014 appeared to reduce hamartin, a known neuroprotective mediator, thereby preventing any beneficial effects of mTOR inhibition. Further characterization of the role of individual mTOR complexes (mTORC1 and mTORC2) and their upstream and downstream regulators are necessary to reveal whether these pathways are neuroprotective targets for stroke.
Collapse
|
16
|
Hadley G, Beard DJ, Couch Y, Neuhaus AA, Adriaanse BA, DeLuca GC, Sutherland BA, Buchan AM. Rapamycin in ischemic stroke: Old drug, new tricks? J Cereb Blood Flow Metab 2019; 39:20-35. [PMID: 30334673 PMCID: PMC6311672 DOI: 10.1177/0271678x18807309] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022]
Abstract
The significant morbidity that accompanies stroke makes it one of the world's most devastating neurological disorders. Currently, proven effective therapies have been limited to thrombolysis and thrombectomy. The window for the administration of these therapies is narrow, hampered by the necessity of rapidly imaging patients. A therapy that could extend this window by protecting neurons may improve outcome. Endogenous neuroprotection has been shown to be, in part, due to changes in mTOR signalling pathways and the instigation of productive autophagy. Inducing this effect pharmacologically could improve clinical outcomes. One such therapy already in use in transplant medicine is the mTOR inhibitor rapamycin. Recent evidence suggests that rapamycin is neuroprotective, not only via neuronal autophagy but also through its broader effects on other cells of the neurovascular unit. This review highlights the potential use of rapamycin as a multimodal therapy, acting on the blood-brain barrier, cerebral blood flow and inflammation, as well as directly on neurons. There is significant potential in applying this old drug in new ways to improve functional outcomes for patients after stroke.
Collapse
Affiliation(s)
- Gina Hadley
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Daniel J Beard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Yvonne Couch
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ain A Neuhaus
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Bryan A Adriaanse
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Brad A Sutherland
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Alastair M Buchan
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Acute Vascular Imaging Centre, University of Oxford, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
17
|
Beard DJ, Hadley G, Thurley N, Howells DW, Sutherland BA, Buchan AM. The effect of rapamycin treatment on cerebral ischemia: A systematic review and meta-analysis of animal model studies. Int J Stroke 2018; 14:137-145. [PMID: 30489210 DOI: 10.1177/1747493018816503] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Amplifying endogenous neuroprotective mechanisms is a promising avenue for stroke therapy. One target is mammalian target of rapamycin (mTOR), a serine/threonine kinase regulating cell proliferation, cell survival, protein synthesis, and autophagy. Animal studies investigating the effect of rapamycin on mTOR inhibition following cerebral ischemia have shown conflicting results. AIM To conduct a systematic review and meta-analysis evaluating the effectiveness of rapamycin in reducing infarct volume in animal models of ischemic stroke. SUMMARY OF REVIEW Our search identified 328 publications. Seventeen publications met inclusion criteria (52 comparisons: 30 reported infarct size and 22 reported neurobehavioral score). Study quality was modest (median 4 of 9) with no evidence of publication bias. The point estimate for the effect of rapamycin was a 21.6% (95% CI, 7.6%-35.7% p < 0.01) improvement in infarct volume and 30.5% (95% CI 17.2%-43.8%, p < 0.0001) improvement in neuroscores. Effect sizes were greatest in studies using lower doses of rapamycin. CONCLUSION Low-dose rapamycin treatment may be an effective therapeutic option for stroke. Modest study quality means there is a potential risk of bias. We recommend further high-quality preclinical studies on rapamycin in stroke before progressing to clinical trials.
Collapse
Affiliation(s)
- Daniel J Beard
- 1 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Gina Hadley
- 1 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,2 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Neal Thurley
- 3 Bodleian Healthcare Libraries, University of Oxford, Oxford, UK
| | - David W Howells
- 4 School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Brad A Sutherland
- 4 School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Alastair M Buchan
- 1 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,5 Medical Sciences Division, University of Oxford, Oxford, UK.,6 Acute Vascular Imaging Centre, University of Oxford, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
18
|
Yamamoto S, Mutoh T, Sasaki K, Mutoh T, Taki Y. Central action of rapamycin on early ischemic injury and related cardiac depression following experimental subarachnoid hemorrhage. Brain Res Bull 2018; 144:85-91. [PMID: 30481554 DOI: 10.1016/j.brainresbull.2018.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/12/2018] [Accepted: 11/21/2018] [Indexed: 01/23/2023]
Abstract
Early brain injury and related cardiac consequences play a key role in the devastating outcomes after subarachnoid hemorrhage (SAH). We reported that rapamycin exerts neuroprotection against cortical hypoxia early after SAH, but its mechanism is poorly understood. This in vivo study aimed to determine the potential role of the transcription factor STAT3 in the rapamycin-mediated neuroprotection in a mouse model of SAH. Forty C57BL/6 N mice were treated with an intracerebroventricular injection of rapamycin or vehicle (control) given after SAH induction by a filament perforation method, with or without STAT3 (Stattic) or ERK (PD98059) inhibitor pretreatment. Cerebral blood flow signals (%vascularity), brain tissue oxygen saturation (SbtO2), and cardiac output (CO) were analyzed using an ultrasound/photoacoustic imaging system. Clinically relevant neurocardiac depression was notable in severe SAH mice. Rapamycin improved %vascularity, SbtO2, and CO on day 1 after SAH onset. The beneficial effects of rapamycin on cerebral blood flow and oxygenation persisted until day 3, resulting in a significant reduction in post-SAH new cerebral infarctions and survival, as well as improved neurological functions, compared to the control group. All of the effects were attenuated by pretreatment with Stattic or PD98059. These data suggest that ERK and JAK/STAT3 pathways play an important role in the neurocardiac protection by rapamycin after SAH. We propose that rapamycin is a novel pharmacological strategy to target STAT3 activation, with a possible crosstalk through the ERK pathway, for the treatment of post-SAH early brain injury.
Collapse
Affiliation(s)
- Shuzo Yamamoto
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tatsushi Mutoh
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Kazumasu Sasaki
- Department of Preclinical Evaluation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tomoko Mutoh
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
19
|
Liu X, Kiss GK, Mellender SJ, Weiss HR, Chi OZ. Activation of Akt by SC79 decreased cerebral infarct in early cerebral ischemia-reperfusion despite increased BBB disruption. Neurosci Lett 2018; 681:78-82. [PMID: 29859325 DOI: 10.1016/j.neulet.2018.05.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 02/02/2023]
Abstract
Activation of Akt has been suggested to produce neuronal protection in cerebral ischemia. Decreasing blood-brain barrier (BBB) disruption has been associated with a better neuronal outcome in cerebral ischemia. We hypothesized that activation of Akt would decrease BBB disruption and contribute to decreasing the size of infarct in the early stage of cerebral ischemia-reperfusion within the therapeutic window. Transient middle cerebral artery occlusion (MCAO) was performed in rats under isoflurane anesthesia with controlled ventilation. Rats were treated with SC79 (a selective Akt activator which is cell and BBB permeable) 0.05 mg/kg × 3 i.p. or vehicle i.p. perioperatively. After one hour of MCAO and two hours of reperfusion, the transfer coefficient (Ki) of 14C-α-aminoisobutyric acid (14C-AIB, molecular weight 104 Da) and the volume of 3H-dextran (molecular weight 70,000 Da) distribution were determined to measure the degree of BBB disruption. At the same time point, the size of infarction was determined using tetrazolium staining. In an additional group of rats, a higher dose of SC79 (0.5 mg/kg × 3) was administered to determine the size of infarct. Administration of SC79 increased the Ki in the ischemic-reperfused cortex (IR-C, +32%, p < 0.05) as well as in the contralateral cortex (CC, +35%, p < 0.05) when compared with the untreated animals with MCAO/reperfusion. The volume of dextran distribution was not significantly changed by SC79. SC79 treatment significantly produced a decrease in the percentage of cortical infarct out of total cortical area (12.7 ± 1.7% vs 6.9 ± 0.9%, p < 0.001). Increasing the dose of SC79 by ten times did not significantly affect the size of cortical infarct. Contrary to our hypothesis, our data demonstrated that SC79 decreased the size of the infarct in the ischemic-reperfused cortex despite an increase in BBB disruption. Our data suggest the importance of activation of Akt for neuronal survival in the early stage of cerebral ischemia-reperfusion within the therapeutic window and that the mechanism of neuroprotection may not be related to the BBB effects of SC79.
Collapse
Affiliation(s)
- Xia Liu
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA
| | - Geza K Kiss
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA
| | - Scott J Mellender
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA
| | - Harvey R Weiss
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Oak Z Chi
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA.
| |
Collapse
|
20
|
Van Skike CE, Galvan V. A Perfect sTORm: The Role of the Mammalian Target of Rapamycin (mTOR) in Cerebrovascular Dysfunction of Alzheimer's Disease: A Mini-Review. Gerontology 2018; 64:205-211. [PMID: 29320772 PMCID: PMC5876078 DOI: 10.1159/000485381] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
Cerebrovascular dysfunction is detected prior to the onset of cognitive and histopathological changes in Alzheimer's disease (AD). Increasing evidence indicates a critical role of cerebrovascular dysfunction in the initiation and progression of AD. Recent studies identified the mechanistic/mammalian target of rapamycin (mTOR) as a critical effector of cerebrovascular dysfunction in AD. mTOR has a key role in the regulation of metabolism, but some mTOR-dependent mechanisms are uniquely specific to the regulation of cerebrovascular function. These include the regulation of cerebral blood flow, blood-brain barrier integrity and maintenance, neurovascular coupling, and cerebrovascular reactivity. This article examines the available evidence for a role of mTOR-driven cerebrovascular dysfunction in the pathogenesis of AD and of vascular cognitive impairment and dementia (VCID) and highlights the therapeutic potential of targeting mTOR and/or specific downstream effectors for vasculoprotection in AD, VCID, and other age-associated neurological diseases with cerebrovascular etiology.
Collapse
Affiliation(s)
- Candice E Van Skike
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
| | | |
Collapse
|
21
|
Chi OZ, Kiss GK, Mellender SJ, Liu X, Weiss HR. Rapamycin decreased blood-brain barrier permeability in control but not in diabetic rats in early cerebral ischemia. Neurosci Lett 2017. [PMID: 28625574 DOI: 10.1016/j.neulet.2017.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diabetes causes functional and structural changes in blood-brain barrier (BBB). The mammalian target of rapamycin (mTOR) has been associated with glucose metabolism, diabetes, and altering BBB permeability. Since there is only a narrow therapeutic window (3h) for stroke victims, it is important to investigate BBB disruption in the early stage of cerebral ischemia. We compared the degree of BBB disruption in diabetic and in control rats at two hours of reperfusion after one hour of middle cerebral artery (MCA) occlusion with or without inhibition of mTOR. Two weeks after streptozotocin ip to induce diabetes, MCA occlusion was performed. In half of the rats, an mTOR inhibitor, rapamycin was given for 2days before MCA occlusion. After one hour of MCA occlusion and two hours of the reperfusion, the transfer coefficient (Ki) of 14C-α-aminoisobutyric acid was determined to quantify degree of BBB disruption. Ischemia-reperfusion increased the Ki in the control animals. Streptozotocin increased the Ki in the ischemic-reperfused (IR-C, +22%) as well as in the contralateral cortex (CC, +40%). Rapamycin decreased the Ki in the IR-C (-32%) as well as in the CC (-26%) in the control rats. However, rapamycin did not affect Ki in the IR-C or in the CC in the diabetic rats. Our data demonstrated a greater BBB disruption in diabetes in the ischemic as well as non-ischemic cortex even in the early stage of cerebral ischemia-reperfusion and that acute administration of rapamycin did not significantly affect BBB permeability in diabetes. From our quantitative analysis of BBB disruption, the vulnerability of BBB in diabetes has been emphasized in the early stage of cerebral ischemia-reperfusion and a less important role of the mTOR pathway is suggested in altering BBB permeability in diabetes.
Collapse
Affiliation(s)
- Oak Z Chi
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ 08901, USA.
| | - Geza K Kiss
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ 08901, USA
| | - Scott J Mellender
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ 08901, USA
| | - Xia Liu
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ 08901, USA
| | - Harvey R Weiss
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| |
Collapse
|
22
|
Zhang DD, Zou MJ, Zhang YT, Fu WL, Xu T, Wang JX, Xia WR, Huang ZG, Gan XD, Zhu XM, Xu DG. A novel IL-1RA-PEP fusion protein with enhanced brain penetration ameliorates cerebral ischemia-reperfusion injury by inhibition of oxidative stress and neuroinflammation. Exp Neurol 2017; 297:1-13. [PMID: 28602833 DOI: 10.1016/j.expneurol.2017.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/14/2017] [Accepted: 06/07/2017] [Indexed: 12/21/2022]
Abstract
Neuroinflammation and oxidative stress are involved in cerebral ischemia-reperfusion, in which Interleukin 1 (IL-1), as an effective intervention target, is implicated. Interleukin-1 receptor antagonist (IL-1RA) is the natural inhibitor of IL-1, but blood-brain barrier (BBB) limits the brain penetration of intravenously administered IL-1RA, thereby restricting its therapeutic effect against neuroinflammation. In this study, we evaluated the potential effects of anti-inflammation and anti-oxidative stress of a novel protein IL-1RA-PEP, which fused IL-1RA with a cell penetrating peptide (CPP). Studies were carried out in transient middle cerebral artery occlusion (MCAO) in rats and oxygen glucose deprivation/reoxygenation (OGD/R) in primary cortical neurons. In MCAO rat model, IL-1RA-PEP (50mg/kg) injected i.v., penetrated BBB effectively, and alleviated brain infarction, cerebral edema, neurological deficit score and motor performance as well as inhibited the inflammatory cytokines expression. Furthermore, our results firstly showed that IL-1RA-PEP also regulated the oxidases expression, decreased the levels of NO, MDA and ROS. In addition, the inhibitory effects of IL-1RA-PEP on oxidative stress and inflammation were confirmed in rat cortical neurons induced by OGD/R, it reduced ROS, IL-6 and TNF-α. Further study showed that the effects of IL-1RA-PEP were closely associated with the NF-κB and p38 pathways which were proved respectively by their inhibitors JSH-23 and SB203580. Our results indicated that IL-1RA-PEP could effectively penetrate the brain of MCAO rats, alleviated the cerebral ischemia reperfusion injury by inhibiting neuroinflammation and oxidative stress, showing a great clinical potential for stroke.
Collapse
Affiliation(s)
- Dong-Dong Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China; Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China
| | - Min-Ji Zou
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China
| | - Ya-Tao Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China
| | - Wen-Liang Fu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China
| | - Tao Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China
| | - Jia-Xi Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China
| | - Wen-Rong Xia
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China
| | - Zhi-Guang Huang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China
| | - Xiang-Dong Gan
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China
| | - Xiao-Ming Zhu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China
| | - Dong-Gang Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China; Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China.
| |
Collapse
|
23
|
Sfera A, Cummings M, Osorio C. Dehydration and Cognition in Geriatrics: A Hydromolecular Hypothesis. Front Mol Biosci 2016; 3:18. [PMID: 27252943 PMCID: PMC4860410 DOI: 10.3389/fmolb.2016.00018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/25/2016] [Indexed: 12/11/2022] Open
Abstract
Dehydration is one of the ten most frequent diagnoses responsible for the hospital admission of elderly in the United States. It is associated with increased mortality, morbidity and an estimated cost of 1.14 billion per year (Xiao et al., 2004; Schlanger et al., 2010; Pretorius et al., 2013; Frangeskou et al., 2015). Older individuals are predisposed to dehydration encephalopathy as a result of decreased total body water (TBW) and diminished sensation of thirst. We hypothesize that thirst blunting in older individuals is the result of a defective microRNA-6842-3p failing to silence the expression of the vesicular GABA transporters (VGAT) and alpha 7 cholinergic nicotinic receptors in the subfornical organ (SFO) of the hypothalamus. We hypothesize further that resultant dehydration facilitates protein misfolding and aggregation, predisposing to neurocognitive disorders. We completed a search of predicted microRNA targets, utilizing the public domain tool miRDB and found that microRNA-6842-3p modulates the SLC6A1 and CHRNA7 genes both of which were previously hypothesized to inhibit the thirst sensation by their action on SFO. The primary aim of this article is to answer two questions: Can prevention and correction of dehydration in elderly lower age-related cognitive deterioration? Can exosomal miR-6842 in the peripheral blood predict dehydration encephalopathy in elderly?
Collapse
Affiliation(s)
- Adonis Sfera
- Department of Psychiatry, Loma Linda UniversityLoma Linda, USA; Patton State HospitalPatton, USA
| | | | - Carolina Osorio
- Department of Psychiatry, Loma Linda University Loma Linda, USA
| |
Collapse
|
24
|
Rapamycin Attenuates Mouse Liver Ischemia and Reperfusion Injury by Inhibiting Endoplasmic Reticulum Stress. Transplant Proc 2016; 47:1646-52. [PMID: 26293028 DOI: 10.1016/j.transproceed.2015.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/25/2015] [Accepted: 05/14/2015] [Indexed: 02/07/2023]
Abstract
The roles of endoplasmic reticulum (ER) stress in liver ischemia and reperfusion injury (IRI) have been well recognized. However, the impact of rapamycin (Rapa), a broadly used immunosuppressive agent in human liver transplantation, on ER stress during IRI remains unclear. This study was designed to investigate the roles of Rapa in the regulation of ER stress in vivo and in vitro. In a mouse liver partial warm ischemia and reperfusion mode, we demonstrated that Rapa markedly protected livers from IRI, as evidenced by serum alanine aminotransferase (sALT) levels and liver histology. Then we also confirmed the protection of Rapa from thapsigargin (Tg)-induced cell death in primary hepatocytes. Both in vivo and in vitro experiments showed that the ER stress markers were markedly up-regulated by IRI and Tg treatment, whereas they were down-regulated by Rapa pretreatment, as monitored by Western blot at the protein levels and by quantitative reverse transcription polymerase chain reaction (RT-PCR) at the messenger RNA (mRNA) levels. In addition, it was also revealed that Rapa was able to remarkably inhibit the mammalian target of rapamycin (mTOR) pathway and enhance autophagy both in IR-stressed livers and Tg-treated primary hepatocytes. Thus, these results suggest that Rapa protects livers from IRI through inhibiting the ER stress pathway.
Collapse
|
25
|
Chi OZ, Mellender SJ, Barsoum S, Liu X, Damito S, Weiss HR. Effects of rapamycin pretreatment on blood-brain barrier disruption in cerebral ischemia-reperfusion. Neurosci Lett 2016; 620:132-6. [PMID: 27037216 DOI: 10.1016/j.neulet.2016.03.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/12/2016] [Accepted: 03/28/2016] [Indexed: 02/06/2023]
Abstract
The mammalian target of rapamycin (mTOR) pathway is essential in neuronal survival and repair in cerebral ischemia. Decreases in blood-brain barrier (BBB) disruption are associated with a decrease in neuronal damage in cerebral ischemia. This study was performed to investigate how pre-inhibition of the mTOR pathway with rapamycin would affect BBB disruption and the size of the infarcted cortical area in the early stage of focal cerebral ischemia-reperfusion using quantitative analysis of BBB disruption. Rats were treated with 20mg/kg of rapamycin i.p. once a day for 2days (Rapamycin Group) or vehicle (Control Group) before transient middle cerebral artery (MCA) occlusion. After one hour of MCA occlusion and two hours of reperfusion, the transfer coefficient (Ki) of (14)C-α-aminoisobutyric acid ((14)C-AIB) to measure the degree of BBB disruption and the size of the cortical infarct were determined. Ischemia-reperfusion increased the Ki in the Rapamycin treated (+15%) as well as in the untreated control group (+13%). However, rapamycin pretreatment moderately decreased Ki in the contralateral (-30%) as well as in the ischemic-reperfused (-29%) cortex when compared with the untreated control group. Rapamycin pretreatment substantially increased the percentage of cortical infarct compared with the control group (+56%). Our data suggest that activation of mTOR pathway is necessary for neuronal survival in the early stage of cerebral ischemia-perfusion and that the reason for the enlarged cortical infarct by rapamycin pretreatment may be related to its non-BBB effects on the mTOR pathway.
Collapse
Affiliation(s)
- Oak Z Chi
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| | - Scott J Mellender
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Sylviana Barsoum
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Xia Liu
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Stacey Damito
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Harvey R Weiss
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
26
|
Chi OZ, Barsoum S, Vega-Cotto NM, Jacinto E, Liu X, Mellender SJ, Weiss HR. Effects of rapamycin on cerebral oxygen supply and consumption during reperfusion after cerebral ischemia. Neuroscience 2015; 316:321-7. [PMID: 26742793 DOI: 10.1016/j.neuroscience.2015.12.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/18/2015] [Accepted: 12/23/2015] [Indexed: 01/08/2023]
Abstract
Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia-reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1h and reperfusion for 2h with and without rapamycin (20mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C(14)-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5±0.8% control vs. 21.5±0.9% rapamycin). We also found that ischemia-reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- O Z Chi
- Dept. of Anesthesiology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - S Barsoum
- Dept. of Anesthesiology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - N M Vega-Cotto
- Dept. of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - E Jacinto
- Dept. of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - X Liu
- Dept. of Anesthesiology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - S J Mellender
- Dept. of Anesthesiology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - H R Weiss
- Dept. of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States.
| |
Collapse
|
27
|
Galvan V, Hart MJ. Vascular mTOR-dependent mechanisms linking the control of aging to Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2015; 1862:992-1007. [PMID: 26639036 DOI: 10.1016/j.bbadis.2015.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
Abstract
Aging is the strongest known risk factor for Alzheimer's disease (AD). With the discovery of the mechanistic target of rapamycin (mTOR) as a critical pathway controlling the rate of aging in mice, molecules at the interface between the regulation of aging and the mechanisms of specific age-associated diseases can be identified. We will review emerging evidence that mTOR-dependent brain vascular dysfunction, a universal feature of aging, may be one of the mechanisms linking the regulation of the rate of aging to the pathogenesis of Alzheimer's disease. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- Veronica Galvan
- Department of Physiology and the Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio.
| | - Matthew J Hart
- Department of Biochemistry, University of Texas Health Science Center at San Antonio
| |
Collapse
|
28
|
Gao K, Wang YS, Yuan YJ, Wan ZH, Yao TC, Li HH, Tang PF, Mei XF. Neuroprotective effect of rapamycin on spinal cord injury via activation of the Wnt/β-catenin signaling pathway. Neural Regen Res 2015. [PMID: 26199613 PMCID: PMC4498358 DOI: 10.4103/1673-5374.158360] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Wnt/β-catenin signaling pathway plays a crucial role in neural development, axonal guidance, neuropathic pain remission and neuronal survival. In this study, we initially examined the effect of rapamycin on the Wnt/β-catenin signaling pathway after spinal cord injury, by intraperitoneally injecting spinal cord injured rats with rapamycin over 2 days. Western blot analysis and immunofluorescence staining were used to detect the expression levels of β-catenin protein, caspase-3 protein and brain-derived neurotrophic factor protein, components of the Wnt/β-catenin signaling pathway. Rapamycin increased the levels of β-catenin and brain-derived neurotrophic factor in the injured spinal cord, improved the pathological morphology at the injury site, reduced the loss of motor neurons, and promoted motor functional recovery in rats after spinal cord injury. Our experimental findings suggest that the neuroprotective effect of rapamycin intervention is mediated through activation of the Wnt/β-catenin signaling pathway after spinal cord injury.
Collapse
Affiliation(s)
- Kai Gao
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning Province, China
| | - Yan-Song Wang
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning Province, China
| | - Ya-Jiang Yuan
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning Province, China
| | - Zhang-Hui Wan
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning Province, China
| | - Tian-Chen Yao
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning Province, China
| | - Hai-Hong Li
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning Province, China
| | - Pei-Fu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xi-Fan Mei
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning Province, China
| |
Collapse
|
29
|
Jie P, Tian Y, Hong Z, Li L, Zhou L, Chen L, Chen L. Blockage of transient receptor potential vanilloid 4 inhibits brain edema in middle cerebral artery occlusion mice. Front Cell Neurosci 2015; 9:141. [PMID: 25914628 PMCID: PMC4392311 DOI: 10.3389/fncel.2015.00141] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/24/2015] [Indexed: 01/26/2023] Open
Abstract
Brain edema is an important pathological process during stroke. Activation of transient receptor potential vanilloid 4 (TRPV4) causes an up-regulation of matrix metalloproteinases (MMPs) in lung tissue. MMP can digest the endothelial basal lamina to destroy blood brain barrier, leading to vasogenic brain edema. Herein, we tested whether TRPV4-blockage could inhibit brain edema through inhibiting MMPs in middle cerebral artery occlusion (MCAO) mice. We found that the brain water content and Evans blue extravasation at 48 h post-MCAO were reduced by a TRPV4 antagonist HC-067047. The increased MMP-2/9 protein expression in hippocampi of MCAO mice was attenuated by HC-067046, but only the increased MMP-9 activity was blocked by HC-067047. The loss of zonula occludens-1 (ZO-1) and occludin protein in MCAO mice was also attenuated by HC-067047. Moreover, MMP-2/9 protein expression increased in mice treated with a TRPV4 agonist GSK1016790A, but only MMP-9 activity was increased by GSK1016790A. Finally, ZO-1 and occludin protein expression was decreased by GSK1016790A, which was reversed by an MMP-9 inhibitor. We conclude that blockage of TRPV4 may inhibit brain edema in cerebral ischemia through inhibiting MMP-9 activation and the loss of tight junction protein.
Collapse
Affiliation(s)
- Pinghui Jie
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Yujing Tian
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Zhiwen Hong
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Lin Li
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Libin Zhou
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Ling Chen
- Department of Physiology, Nanjing Medical University Nanjing, China
| |
Collapse
|
30
|
Vasconcelos PRCD, Guimarães ABB, Campelo MWS, Vasconcelos PRLD, Guimaraes SB. Preconditioning with L-alanyl-glutamine upon cerebral edema and hypocampus red neurons counting in rats subjected to brain ischemia /reperfusion injury. Acta Cir Bras 2015; 30:199-203. [DOI: 10.1590/s0102-865020150030000006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/16/2015] [Indexed: 11/22/2022] Open
|
31
|
Rozas NS, Redell JB, Hill JL, McKenna J, Moore AN, Gambello MJ, Dash PK. Genetic activation of mTORC1 signaling worsens neurocognitive outcome after traumatic brain injury. J Neurotrauma 2014; 32:149-58. [PMID: 25025304 DOI: 10.1089/neu.2014.3469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although the mechanisms that contribute to the development of traumatic brain injury (TBI)-related deficits are not fully understood, it has been proposed that altered energy utilization may be a contributing factor. The tuberous sclerosis complex, a heterodimer composed of hamartin/Tsc-1 and tuberin/Tsc-2, is a critical regulatory node that integrates nutritional and growth signals to govern energy using processes by regulating the activity of mechanistic Target of Rapamycin complex 1 (mTORC1). mTORC1 activation results in enhanced protein synthesis, an energy consuming process. We show that mice that have a heterozygous deletion of Tsc2 exhibit elevated basal mTORC1 activity in the cortex and the hippocampus while still exhibiting normal motor and neurocognitive functions. In addition, a mild closed head injury (mCHI) that did not activate mTORC1 in wild-type mice resulted in a further increase in mTORC1 activity in Tsc2(+/KO) mice above the level of activity observed in uninjured Tsc2(+/KO) mice. This enhanced level of increased mTORC1 activity was associated with worsened cognitive function as assessed using the Morris water maze and context discrimination tasks. These results suggest that there is a threshold of increased mTORC1 activity after a TBI that is detrimental to neurobehavioral performance, and interventions to inhibit excessive mTORC1 activation may be beneficial to neurocognitive outcome.
Collapse
Affiliation(s)
- Natalia S Rozas
- 1 Department of Neurobiology and Anatomy, the University of Texas Medical School , Houston, Texas
| | | | | | | | | | | | | |
Collapse
|