1
|
Ménard M, Ali LMA, Vardanyan A, Charnay C, Raehm L, Cunin F, Bessière A, Oliviero E, Theodossiou TA, Seisenbaeva GA, Gary-Bobo M, Durand JO. Upscale Synthesis of Magnetic Mesoporous Silica Nanoparticles and Application to Metal Ion Separation: Nanosafety Evaluation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3155. [PMID: 38133052 PMCID: PMC10745894 DOI: 10.3390/nano13243155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
The synthesis of core-shell magnetic mesoporous nanoparticles (MMSNs) through a phase transfer process is usually performed at the 100-250 mg scale. At the gram scale, nanoparticles without cores or with multicore systems are observed. Iron oxide core nanoparticles (IO) were synthesized through a thermal decomposition procedure of α-FeO(OH) in oleic acid. A phase transfer from chloroform to water was then performed in order to wrap the IO nanoparticles with a mesoporous silica shell through the sol-gel procedure. MMSNs were then functionalized with DTPA (diethylenetriaminepentacetic acid) and used for the separation of metal ions. Their toxicity was evaluated. The phase transfer procedure was crucial to obtaining MMSNs on a large scale. Three synthesis parameters were rigorously controlled: temperature, time and glassware. The homogeneous dispersion of MMSNs on the gram scale was successfully obtained. After functionalization with DTPA, the MMSN-DTPAs were shown to have a strong affinity for Ni ions. Furthermore, toxicity was evaluated in cells, zebrafish and seahorse cell metabolic assays, and the nanoparticles were found to be nontoxic. We developed a method of preparing MMSNs at the gram scale. After functionalization with DTPA, the nanoparticles were efficient in metal ion removal and separation; furthermore, no toxicity was noticed up to 125 µg mL-1 in zebrafish.
Collapse
Affiliation(s)
- Mathilde Ménard
- ICGM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (M.M.); (C.C.); (L.R.); (F.C.); (A.B.); (E.O.)
| | - Lamiaa M. A. Ali
- IBMM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (L.M.A.A.); (M.G.-B.)
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria 21561, Egypt
| | - Ani Vardanyan
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (A.V.); (G.A.S.)
| | - Clarence Charnay
- ICGM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (M.M.); (C.C.); (L.R.); (F.C.); (A.B.); (E.O.)
| | - Laurence Raehm
- ICGM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (M.M.); (C.C.); (L.R.); (F.C.); (A.B.); (E.O.)
| | - Frédérique Cunin
- ICGM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (M.M.); (C.C.); (L.R.); (F.C.); (A.B.); (E.O.)
| | - Aurélie Bessière
- ICGM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (M.M.); (C.C.); (L.R.); (F.C.); (A.B.); (E.O.)
| | - Erwan Oliviero
- ICGM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (M.M.); (C.C.); (L.R.); (F.C.); (A.B.); (E.O.)
| | - Theodossis A. Theodossiou
- Department of Radiation Biology, Institute for Cancer Research, Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway;
| | - Gulaim A. Seisenbaeva
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (A.V.); (G.A.S.)
| | - Magali Gary-Bobo
- IBMM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (L.M.A.A.); (M.G.-B.)
| | - Jean-Olivier Durand
- ICGM, Univ Montpellier, CNRS, ENSCM, 34193 Montpellier, France; (M.M.); (C.C.); (L.R.); (F.C.); (A.B.); (E.O.)
| |
Collapse
|
2
|
Himanshu, Mukherjee R, Vidic J, Leal E, da Costa AC, Prudencio CR, Raj VS, Chang CM, Pandey RP. Nanobiotics and the One Health Approach: Boosting the Fight against Antimicrobial Resistance at the Nanoscale. Biomolecules 2023; 13:1182. [PMID: 37627247 PMCID: PMC10452580 DOI: 10.3390/biom13081182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial resistance (AMR) is a growing public health concern worldwide, and it poses a significant threat to human, animal, and environmental health. The overuse and misuse of antibiotics have contributed significantly and others factors including gene mutation, bacteria living in biofilms, and enzymatic degradation/hydrolyses help in the emergence and spread of AMR, which may lead to significant economic consequences such as reduced productivity and increased health care costs. Nanotechnology offers a promising platform for addressing this challenge. Nanoparticles have unique properties that make them highly effective in combating bacterial infections by inhibiting the growth and survival of multi-drug-resistant bacteria in three areas of health: human, animal, and environmental. To conduct an economic evaluation of surveillance in this context, it is crucial to obtain an understanding of the connections to be addressed by several nations by implementing national action policies based on the One Health strategy. This review provides an overview of the progress made thus far and presents potential future directions to optimize the impact of nanobiotics on AMR.
Collapse
Affiliation(s)
- Himanshu
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan; (H.); (R.M.)
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan
| | - Riya Mukherjee
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan; (H.); (R.M.)
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan
| | - Jasmina Vidic
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France;
| | - Elcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, PA, Brazil
| | | | - Carlos Roberto Prudencio
- Laboratório de Imunobiotecnologia, Centro de Imunologia, Instituto Adolfo Lutz, 351, São Paulo 01246-902, SP, Brazil
| | - V. Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology & Microbiology, SRM University, Sonepat 131 029, Haryana, India
| | - Chung-Ming Chang
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan
- Laboratory Animal Center, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology & Microbiology, SRM University, Sonepat 131 029, Haryana, India
| |
Collapse
|
3
|
Zhao X, Feng X, Chen J, Zhang L, Zhai L, Lv S, Ye Y, Chen Y, Zhong T, Yu X, Xiao Y. Rapid and Sensitive Detection of Polycyclic Aromatic Hydrocarbons in Tea Leaves Using Magnetic Approach. Foods 2023; 12:foods12112270. [PMID: 37297514 DOI: 10.3390/foods12112270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
A rapid and efficient method using an alkyl-functionalized magnetic nanoparticles-based extraction technique combined with Ultra-High Performance Liquid Chromatography was developed for the detection of trace amounts of polycyclic aromatic hydrocarbons in tea leaves. As a popular coating for chromatographic column packing materials, C18-alkyl has been demonstrated to be effective in separating polycyclic aromatic hydrocarbons. Additionally, the magnetism of the nanomaterials accelerates the extraction process while their high surface ratio enables desirable dispersity in the sample matrix. Meanwhile, the adsorbents can be washed and reused 30 times without compromising recovery, which greatly reduces the budget. The effects of various parameters were investigated and optimized, and the recoveries for five analytes were in the range of 84.8-105.4%. The RSD of intra-day and inter-day were below 11.9% and 6.8%, respectively. The limits of detection and limits of quantification ranged from 1.69-9.97 ng g-1 and 5.12-30.21 ng g-1, indicating satisfactory sensitivity. Thus, the proposed methodology is rapid, highly efficient, and economical, and it expands the application of magnetic cleanup approaches in complex food matrices.
Collapse
Affiliation(s)
- Xiaohan Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Xiao Feng
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jingwen Chen
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao 999078, China
| | - Lanxin Zhang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao 999078, China
| | - Lingzi Zhai
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao 999078, China
| | - Sizhe Lv
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao 999078, China
| | - Yonghao Ye
- Zhuhai Resproly Pharmaceutical Technology Co., Ltd., Blk 11, International Health Port, No. 628, Airport West Road, Jinwan District, Zhuhai 519040, China
| | - Yongqi Chen
- Zhuhai Resproly Pharmaceutical Technology Co., Ltd., Blk 11, International Health Port, No. 628, Airport West Road, Jinwan District, Zhuhai 519040, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao 999078, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao 999078, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, China
| | - Ying Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| |
Collapse
|
4
|
Kumah EA, Fopa RD, Harati S, Boadu P, Zohoori FV, Pak T. Human and environmental impacts of nanoparticles: a scoping review of the current literature. BMC Public Health 2023; 23:1059. [PMID: 37268899 PMCID: PMC10239112 DOI: 10.1186/s12889-023-15958-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Use of nanoparticles have established benefits in a wide range of applications, however, the effects of exposure to nanoparticles on health and the environmental risks associated with the production and use of nanoparticles are less well-established. The present study addresses this gap in knowledge by examining, through a scoping review of the current literature, the effects of nanoparticles on human health and the environment. We searched relevant databases including Medline, Web of Science, ScienceDirect, Scopus, CINAHL, Embase, and SAGE journals, as well as Google, Google Scholar, and grey literature from June 2021 to July 2021. After removing duplicate articles, the title and abstracts of 1495 articles were first screened followed by the full-texts of 249 studies, and this resulted in the inclusion of 117 studies in the presented review.In this contribution we conclude that while nanoparticles offer distinct benefits in a range of applications, they pose significant threats to humans and the environment. Using several biological models and biomarkers, the included studies revealed the toxic effects of nanoparticles (mainly zinc oxide, silicon dioxide, titanium dioxide, silver, and carbon nanotubes) to include cell death, production of oxidative stress, DNA damage, apoptosis, and induction of inflammatory responses. Most of the included studies (65.81%) investigated inorganic-based nanoparticles. In terms of biomarkers, most studies (76.9%) used immortalised cell lines, whiles 18.8% used primary cells as the biomarker for assessing human health effect of nanoparticles. Biomarkers that were used for assessing environmental impact of nanoparticles included soil samples and soybean seeds, zebrafish larvae, fish, and Daphnia magna neonates.From the studies included in this work the United States recorded the highest number of publications (n = 30, 25.64%), followed by China, India, and Saudi Arabia recording the same number of publications (n = 8 each), with 95.75% of the studies published from the year 2009. The majority of the included studies (93.16%) assessed impact of nanoparticles on human health, and 95.7% used experimental study design. This shows a clear gap exists in examining the impact of nanoparticles on the environment.
Collapse
Affiliation(s)
- Elizabeth Adjoa Kumah
- Depeartment of International Public Health, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Raoul Djou Fopa
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, TS1 3BX, UK
| | - Saeed Harati
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, TS1 3BX, UK
| | - Paul Boadu
- Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Tannaz Pak
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, TS1 3BX, UK.
| |
Collapse
|
5
|
Naghdi M, Ghovvati M, Rabiee N, Ahmadi S, Abbariki N, Sojdeh S, Ojaghi A, Bagherzadeh M, Akhavan O, Sharifi E, Rabiee M, Saeb MR, Bolouri K, Webster TJ, Zare EN, Zarrabi A. Magnetic nanocomposites for biomedical applications. Adv Colloid Interface Sci 2022; 308:102771. [PMID: 36113311 DOI: 10.1016/j.cis.2022.102771] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Tissue engineering and regenerative medicine have solved numerous problems related to the repair and regeneration of damaged organs and tissues arising from aging, illnesses, and injuries. Nanotechnology has further aided tissue regeneration science and has provided outstanding opportunities to help disease diagnosis as well as treat damaged tissues. Based on the most recent findings, magnetic nanostructures (MNSs), in particular, have emerged as promising materials for detecting, directing, and supporting tissue regeneration. There have been many reports concerning the role of these nano-building blocks in the regeneration of both soft and hard tissues, but the subject has not been extensively reviewed. Here, we review, classify, and discuss various synthesis strategies for novel MNSs used in medicine. Advanced applications of magnetic nanocomposites (MG-NCs), specifically magnetic nanostructures, are further systematically reviewed. In addition, the scientific and technical aspects of MG-NC used in medicine are discussed considering the requirements for the field. In summary, this review highlights the numerous opportunities and challenges associated with the use of MG-NCs as smart nanocomposites (NCs) in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mina Naghdi
- Department of Chemistry, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea.
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Nikzad Abbariki
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Soheil Sojdeh
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | | | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Esmaeel Sharifi
- Institute for Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Keivan Bolouri
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| |
Collapse
|
6
|
Świętek M, Ma YH, Wu NP, Paruzel A, Tokarz W, Horák D. Tannic Acid Coating Augments Glioblastoma Cellular Uptake of Magnetic Nanoparticles with Antioxidant Effects. NANOMATERIALS 2022; 12:nano12081310. [PMID: 35458018 PMCID: PMC9028780 DOI: 10.3390/nano12081310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/02/2023]
Abstract
Coating of nanoparticles with gallates renders them antioxidant and enhances cellular internalization. In this study, (amino)silica magnetic particles modified with tannic acid (TA) and optionally with chitosan (CS) were developed, and their physicochemical properties and antioxidant activity were evaluated. The results demonstrated that the TA-modified aminosilica-coated particles, as well as the silica-coated particles with a double TA layer, exhibited high antioxidant activity, whereas the silica-coated particles with no or only a single TA layer were well-internalized by LN-229 cells. In addition, a magnet placed under the culture plates greatly increased the cellular uptake of all TA-coated magnetic nanoparticles. The coating thus had a considerable impact on nanoparticle–cell interactions and particle internalization. The TA-coated magnetic nanoparticles have great potential as intracellular carriers with preserved antioxidant activity.
Collapse
Affiliation(s)
- Małgorzata Świętek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic; (M.Ś.); (A.P.)
| | - Yunn-Hwa Ma
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan; (Y.-H.M.); (N.-P.W.)
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| | - Nian-Ping Wu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan; (Y.-H.M.); (N.-P.W.)
| | - Aleksandra Paruzel
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic; (M.Ś.); (A.P.)
| | - Waldemar Tokarz
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland;
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic; (M.Ś.); (A.P.)
- Correspondence:
| |
Collapse
|
7
|
Fernández-Bertólez N, Costa C, Brandão F, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Toxicological Aspects of Iron Oxide Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:303-350. [DOI: 10.1007/978-3-030-88071-2_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Massana Roquero D, Smutok O, Othman A, Melman A, Katz E. "Smart" Delivery of Monoclonal Antibodies from a Magnetic Responsive Microgel Nanocomposite. ACS APPLIED BIO MATERIALS 2021; 4:8487-8497. [PMID: 35005932 DOI: 10.1021/acsabm.1c00994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
"Smart" drug-delivery systems have significant potential to increase therapeutic efficiency, avoid undesired immune responses, and minimize drug side effects. Herein, we report on an innovative strategy to control the drug release process using two magneto-activated materials operating in the system. One of them, a polyvinyl alcohol (PVA)-diboronate (DB)-interpenetrated (IPN) alginate (Alg) microgel nanocomposite (PVA-DB-IPN-Alg) loaded with magnetic nanoparticles (MNPs), is acting as a drug-delivery system. The drugs or model (bio)molecules are loaded in the PVA-DB-IPN-Alg and then released upon receiving a magnetic signal. Another component of the system is represented with the MNPs functionalized with the glucose oxidase (GOx) enzyme, GOx-MNPs. The immobilized GOx biocatalytically produces H2O2 in the presence of glucose and oxygen, while the PVA-DB-IPN-Alg is decomposed/dissolved by reacting with H2O2. In the absence of a magnet, the biocatalytically produced H2O2 was mostly decomposed by the catalase enzyme present in the solution, thus not reaching the alginate microgel. Upon aggregation of these two types of particles induced by a magnet, the GOx-MNPs produced H2O2 in situ increasing locally its concentration, degrading the PVA-DB-IPN, thus opening pores in the alginate hydrogel resulting in a faster release of the entrapped payload. The release of the payload was confirmed in physiological complex environments, exemplified with human serum, demonstrating the stability and functionality of the materials in biological fluids. The release rate was strongly dependent on the concentration of catalase but not dependent on glucose concentration. The magneto-induced release process was confirmed for the small model protein payload, such as bovine serum albumin (BSA), as well as the trastuzumab monoclonal antibody (TmAb). For the latter, the release rate was up to 3.3 times higher in the presence of the magnet than in the absence of it in the human serum. We expect that the drug-delivery concept developed by these materials can find useful applications in the emerging field of "smart" materials in immunotherapy.
Collapse
Affiliation(s)
- Daniel Massana Roquero
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Oleh Smutok
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Ali Othman
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Artem Melman
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| |
Collapse
|
9
|
Ahmadi S, Rabiee N, Bagherzadeh M, Elmi F, Fatahi Y, Farjadian F, Baheiraei N, Nasseri B, Rabiee M, Dastjerd NT, Valibeik A, Karimi M, Hamblin MR. Stimulus-Responsive Sequential Release Systems for Drug and Gene Delivery. NANO TODAY 2020; 34:100914. [PMID: 32788923 PMCID: PMC7416836 DOI: 10.1016/j.nantod.2020.100914] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In recent years, a range of studies have been conducted with the aim to design and characterize delivery systems that are able to release multiple therapeutic agents in controlled and programmed temporal sequences, or with spatial resolution inside the body. This sequential release occurs in response to different stimuli, including changes in pH, redox potential, enzyme activity, temperature gradients, light irradiation, and by applying external magnetic and electrical fields. Sequential release (SR)-based delivery systems, are often based on a range of different micro- or nanocarriers and may offer a silver bullet in the battle against various diseases, such as cancer. Their distinctive characteristic is the ability to release one or more drugs (or release drugs along with genes) in a controlled sequence at different times or at different sites. This approach can lengthen gene expression periods, reduce the side effects of drugs, enhance the efficacy of drugs, and induce an anti-proliferative effect on cancer cells due to the synergistic effects of genes and drugs. The key objective of this review is to summarize recent progress in SR-based drug/gene delivery systems for cancer and other diseases.
Collapse
Affiliation(s)
- Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Faranak Elmi
- Department of Biotechnology, School of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
- Department of Biology, Faculty of science, Marand Branch, Islamic Azad University, Marand, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Center (USERN), Tehran, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behzad Nasseri
- Chemical Engineering Department, Bioengineering Division and Bioengineering Centre, Hacettepe University, 06800, Ankara, Turkey
- Chemical Engineering and Applied Chemistry Department, Atilim University, 06830, Ankara, Turkey
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Niloufar Tavakoli Dastjerd
- Department of Medical Biotechnology, School of Allied Medical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Valibeik
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
10
|
Carofiglio M, Barui S, Cauda V, Laurenti M. Doped Zinc Oxide Nanoparticles: Synthesis, Characterization and Potential Use in Nanomedicine. APPLIED SCIENCES (BASEL, SWITZERLAND) 2020; 10:5194. [PMID: 33850629 PMCID: PMC7610589 DOI: 10.3390/app10155194] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Smart nanoparticles for medical applications have gathered considerable attention due to an improved biocompatibility and multifunctional properties useful in several applications, including advanced drug delivery systems, nanotheranostics and in vivo imaging. Among nanomaterials, zinc oxide nanoparticles (ZnO NPs) were deeply investigated due to their peculiar physical and chemical properties. The large surface to volume ratio, coupled with a reduced size, antimicrobial activity, photocatalytic and semiconducting properties, allowed the use of ZnO NPs as anticancer drugs in new generation physical therapies, nanoantibiotics and osteoinductive agents for bone tissue regeneration. However, ZnO NPs also show a limited stability in biological environments and unpredictable cytotoxic effects thereof. To overcome the abovementioned limitations and further extend the use of ZnO NPs in nanomedicine, doping seems to represent a promising solution. This review covers the main achievements in the use of doped ZnO NPs for nanomedicine applications. Sol-gel, as well as hydrothermal and combustion methods are largely employed to prepare ZnO NPs doped with rare earth and transition metal elements. For both dopant typologies, biomedical applications were demonstrated, such as enhanced antimicrobial activities and contrast imaging properties, along with an improved biocompatibility and stability of the colloidal ZnO NPs in biological media. The obtained results confirm that the doping of ZnO NPs represents a valuable tool to improve the corresponding biomedical properties with respect to the undoped counterpart, and also suggest that a new application of ZnO NPs in nanomedicine can be envisioned.
Collapse
Affiliation(s)
- Marco Carofiglio
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Sugata Barui
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marco Laurenti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
11
|
Morgan J, Bell R, Jones AL. Endogenous doesn't always mean innocuous: a scoping review of iron toxicity by inhalation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:107-136. [PMID: 32106786 DOI: 10.1080/10937404.2020.1731896] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ambient air pollution is a leading risk factor for the global burden of disease. One possible pathway of particulate matter (PM)-induced toxicity is through iron (Fe), the most abundant metal in the atmosphere. The aim of the review was to consider the complexity of Fe-mediated toxicity following inhalation exposure focusing on the chemical and surface reactivity of Fe as a transition metal and possible pathways of toxicity via reactive oxygen species (ROS) generation as well as considerations of size, morphology, and source of PM. A broad term search of 4 databases identified 2189 journal articles and reports examining exposure to Fe via inhalation in the past 10 years. These were sequentially analyzed by title, abstract and full-text to identify 87 articles publishing results on the toxicity of Fe-containing PM by inhalation or instillation to the respiratory system. The remaining 87 papers were examined to summarize research dealing with in vitro, in vivo and epidemiological studies involving PM containing Fe or iron oxide following inhalation or instillation. The major findings from these investigations are summarized and tabulated. Epidemiological studies showed that exposure to Fe oxide is correlated with an increased incidence of cancer, cardiovascular diseases, and several respiratory diseases. Iron PM was found to induce inflammatory effects in vitro and in vivo and to translocate to remote locations including the brain following inhalation. A potential pathway for the PM-containing Fe-mediated toxicity by inhalation is via the generation of ROS which leads to lipid peroxidation and DNA and protein oxidation. Our recommendations include an expansion of epidemiological, in vivo and in vitro studies, integrating research improvements outlined in this review, such as the method of particle preparation, cell line type, and animal model, to enhance our understanding of the complex biological interactions of these particles.
Collapse
Affiliation(s)
- Jody Morgan
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Robin Bell
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Alison L Jones
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
12
|
Putz AM, Ianăși C, Dudás Z, Coricovac D, Watz C(F, Len A, Almásy L, Sacarescu L, Dehelean C. SiO 2-PVA-Fe(acac) 3 Hybrid Based Superparamagnetic Nanocomposites for Nanomedicine: Morpho-textural Evaluation and In Vitro Cytotoxicity Assay. Molecules 2020; 25:molecules25030653. [PMID: 32033018 PMCID: PMC7038086 DOI: 10.3390/molecules25030653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 12/29/2022] Open
Abstract
A facile sol-gel route has been applied to synthesize hybrid silica-PVA-iron oxide nanocomposite materials. A step-by-step calcination (processing temperatures up to 400 °C) was applied in order to oxidize the organics together with the iron precursor. Transmission electron microscopy, X-ray diffraction, small angle neutron scattering, and nitrogen porosimetry were used to determine the temperature-induced morpho-textural modifications. In vitro cytotoxicity assay was conducted by monitoring the cell viability by the means of MTT assay to qualify the materials as MRI contrast agents or as drug carriers. Two cell lines were considered: the HaCaT (human keratinocyte cell line) and the A375 tumour cell line of human melanoma. Five concentrations of 10 µg/mL, 30 µg/mL, 50 µg/mL, 100 µg/mL, and 200 µg/mL were tested, while using DMSO (dimethylsulfoxid) and PBS (phosphate saline buffer) as solvents. The HaCaT and A375 cell lines were exposed to the prepared agent suspensions for 24 h. In the case of DMSO (dimethyl sulfoxide) suspensions, the effect on human keratinocytes migration and proliferation were also evaluated. The results indicate that only the concentrations of 100 μg/mL and 200 μg/mL of the nanocomposite in DMSO induced a slight decrease in the HaCaT cell viability. The PBS based in vitro assay showed that the nanocomposite did not present toxicity on the HaCaT cells, even at high doses (200 μg/mL agent).
Collapse
Affiliation(s)
- Ana-Maria Putz
- ”Coriolan Dragulescu” Institute of Chemistry, Romanian Academy, Mihai Viteazul Bd., No. 24, 300223 Timişoara, Romania; (A.-M.P.); (C.I.)
| | - Cătălin Ianăși
- ”Coriolan Dragulescu” Institute of Chemistry, Romanian Academy, Mihai Viteazul Bd., No. 24, 300223 Timişoara, Romania; (A.-M.P.); (C.I.)
| | - Zoltán Dudás
- Wigner Research Centre for Physics, POB 49 1525 Budapest, Hungary
- Correspondence:
| | - Dorina Coricovac
- Pharmacy II Department, Faculty of Pharmacy, “Victor Babes ¸” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.C.)
| | - Claudia (Farcas) Watz
- Pharmacy II Department, Faculty of Pharmacy, “Victor Babes ¸” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.C.)
| | - Adél Len
- Centre for Energy Research, Konkoly-Thege 29-33, 1121 Budapest, Hungary;
- University of Pécs, Faculty of Engineering and Information technology, Boszorkány St. 2, 7624 Pécs, Hungary
| | - László Almásy
- Wigner Research Centre for Physics, POB 49 1525 Budapest, Hungary
| | - Liviu Sacarescu
- Institute of Macromolecular Chemistry “Petru Poni”, Aleea Grigore Ghica Voda, nr. 41A 700487 Iasi, Romania;
| | - Cristina Dehelean
- Pharmacy II Department, Faculty of Pharmacy, “Victor Babes ¸” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.C.)
| |
Collapse
|
13
|
Jia H, Draz MS, Ruan Z. Functional Nanomaterials for the Detection and Control of Bacterial Infections. Curr Top Med Chem 2020; 19:2449-2475. [PMID: 31642781 DOI: 10.2174/1568026619666191023123407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 08/11/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022]
Abstract
Infections with multidrug-resistant bacteria that are difficult to treat with commonly used antibiotics have spread globally, raising serious public health concerns. Conventional bacterial detection techniques are time-consuming, which may delay treatment for critically ill patients past the optimal time. There is an urgent need for rapid and sensitive diagnosis and effective treatments for multidrug-resistant pathogenic bacterial infections. Advances in nanotechnology have made it possible to design and build nanomaterials with therapeutic and diagnostic capabilities. Functional nanomaterials that can specifically interact with bacteria offer additional options for the diagnosis and treatment of infections due to their unique physical and chemical properties. Here, we summarize the recent advances related to the preparation of nanomaterials and their applications for the detection and treatment of bacterial infection. We pay particular attention to the toxicity of therapeutic nanoparticles based on both in vitro and in vivo assays. In addition, the major challenges that require further research and future perspectives are briefly discussed.
Collapse
Affiliation(s)
- Huiqiong Jia
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mohamed S Draz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Kononenko V, Warheit DB, Drobne D. Grouping of Poorly Soluble Low (Cyto)Toxic Particles: Example with 15 Selected Nanoparticles and A549 Human Lung Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E704. [PMID: 31064102 PMCID: PMC6566622 DOI: 10.3390/nano9050704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
Poorly soluble, low (cyto)toxic particles (PSLTs) are often regarded as one group, but it is important that these particles can be further differentiated based on their bioactivity. Currently, there are no biological endpoint based groupings for inhaled nanoparticles (NPs) that would allow us to subgroup PSLTs based on their mode of action. The aim of this study was to group NPs based on their cytotoxicity and by using the in vitro response of the endo-lysosomal system as a biological endpoint. The endo-lysosomal system is a main cellular loading site for NPs. An impaired endo-lysosomal system in alveolar type II cells may have serious adverse effects on the maintenance of pulmonary surfactant homeostasis. The 15 different NPs were tested with human lung adenocarcinoma (A549) cells. The highly soluble NPs were most cytotoxic. With respect to PSLTs, only three NPs increased the cellular load of acid and phospholipid rich organelles indicating particle biopersistence. All the rest PSLTs could be regarded as low hazardous. The presented in vitro test system could serve as a fast screening tool to group particles according to their ability to interfere with lung surfactant metabolism. We discuss the applicability of the suggested test system for bringing together substances with similar modes-of-action on lung epithelium. In addition, we discuss this approach as a benchmark test for the comparative assessment of biopersistence of PSLTs.
Collapse
Affiliation(s)
- Veno Kononenko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
| | | | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
15
|
Karaman DŞ, Sarparanta MP, Rosenholm JM, Airaksinen AJ. Multimodality Imaging of Silica and Silicon Materials In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703651. [PMID: 29388264 DOI: 10.1002/adma.201703651] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/15/2017] [Indexed: 05/29/2023]
Abstract
Recent progress in the development of silica- and silicon-based multimodality imaging nanoprobes has advanced their use in image-guided drug delivery, and the development of novel systems for nanotheranostic and diagnostic applications. As biocompatible and flexibly tunable materials, silica and silicon provide excellent platforms with high clinical potential in nanotheranostic and diagnostic probes with well-defined morphology and surface chemistry, yielding multifunctional properties. In vivo imaging is of great value in the exploration of methods for improving site-specific nanotherapeutic delivery by silica- and silicon-based drug-delivery systems. Multimodality approaches are essential for understanding the biological interactions of nanotherapeutics in the physiological environment in vivo. The aim here is to describe recent advances in the development of in vivo imaging tools based on nanostructured silica and silicon, and their applications in single and multimodality imaging.
Collapse
Affiliation(s)
- Didem Şen Karaman
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, FI, 20520, Turku, Finland
| | - Mirkka P Sarparanta
- Department of Chemistry-Radiochemistry, Faculty of Science, University of Helsinki, POB 55, FI-00014, University of Helsinki, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, FI, 20520, Turku, Finland
| | - Anu J Airaksinen
- Department of Chemistry-Radiochemistry, Faculty of Science, University of Helsinki, POB 55, FI-00014, University of Helsinki, Finland
| |
Collapse
|
16
|
Kononenko V, Erman A, Petan T, Križaj I, Kralj S, Makovec D, Drobne D. Harmful at non-cytotoxic concentrations: SiO 2-SPIONs affect surfactant metabolism and lamellar body biogenesis in A549 human alveolar epithelial cells. Nanotoxicology 2017; 11:419-429. [PMID: 28406072 DOI: 10.1080/17435390.2017.1309704] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The pulmonary delivery of nanoparticles (NPs) is a promising approach in nanomedicine. For the efficient and safe use of inhalable NPs, understanding of NP interference with lung surfactant metabolism is needed. Lung surfactant is predominantly a phospholipid substance, synthesized in alveolar type II cells (ATII), where it is packed in special organelles, lamellar bodies (LBs). In vitro and in vivo studies have reported NPs impact on surfactant homeostasis, but this phenomenon has not yet been sufficiently examined. We showed that in ATII-like A549 human lung cancer cells, silica-coated superparamagnetic iron oxide NPs (SiO2-SPIONs), which have a high potential in medicine, caused an increased cellular amount of acid organelles and phospholipids. In SiO2-SPION treated cells, we observed elevated cellular quantity of multivesicular bodies (MVBs), organelles involved in LB biogenesis. In spite of the results indicating increased surfactant production, the cellular quantity of LBs was surprisingly diminished and the majority of the remaining LBs were filled with SiO2-SPIONs. Additionally, LBs were detected inside abundant autophagic vacuoles (AVs) and obviously destined for degradation. We also observed time- and dose-dependent changes in mRNA expression for proteins involved in lipid metabolism. Our results demonstrate that non-cytotoxic concentrations of SiO2-SPIONs interfere with surfactant metabolism and LB biogenesis, leading to disturbed ability to reduce hypophase surface tension. To ensure the safe use of NPs for pulmonary delivery, we propose that potential NP interference with LB biogenesis is obligatorily taken into account.
Collapse
Affiliation(s)
- Veno Kononenko
- a Department of Biology, Biotechnical Faculty , University of Ljubljana , Ljubljana , Slovenia
| | - Andreja Erman
- b Institute of Cell Biology, Faculty of Medicine , University of Ljubljana , Ljubljana , Slovenia
| | - Toni Petan
- c Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Ljubljana , Slovenia
| | - Igor Križaj
- c Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Ljubljana , Slovenia.,d Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology , University of Ljubljana , Ljubljana , Slovenia
| | - Slavko Kralj
- e Department for Materials Synthesis , Jožef Stefan Institute , Ljubljana , Slovenia
| | - Darko Makovec
- e Department for Materials Synthesis , Jožef Stefan Institute , Ljubljana , Slovenia
| | - Damjana Drobne
- a Department of Biology, Biotechnical Faculty , University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
17
|
Mertens TCJ, Karmouty-Quintana H, Taube C, Hiemstra PS. Use of airway epithelial cell culture to unravel the pathogenesis and study treatment in obstructive airway diseases. Pulm Pharmacol Ther 2017; 45:101-113. [PMID: 28502841 DOI: 10.1016/j.pupt.2017.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are considered as two distinct obstructive diseases. Both chronic diseases share a component of airway epithelial dysfunction. The airway epithelium is localized to deal with inhaled substances, and functions as a barrier preventing penetration of such substances into the body. In addition, the epithelium is involved in the regulation of both innate and adaptive immune responses following inhalation of particles, allergens and pathogens. Through triggering and inducing immune responses, airway epithelial cells contribute to the pathogenesis of both asthma and COPD. Various in vitro research models have been described to study airway epithelial cell dysfunction in asthma and COPD. However, various considerations and cautions have to be taken into account when designing such in vitro experiments. Epithelial features of asthma and COPD can be modelled by using a variety of disease-related invoking substances either alone or in combination, and by the use of primary cells isolated from patients. Differentiation is a hallmark of airway epithelial cells, and therefore models should include the ability of cells to differentiate, as can be achieved in air-liquid interface models. More recently developed in vitro models, including precision cut lung slices, lung-on-a-chip, organoids and human induced pluripotent stem cells derived cultures, provide novel state-of-the-art alternatives to the conventional in vitro models. Furthermore, advanced models in which cells are exposed to respiratory pathogens, aerosolized medications and inhaled toxic substances such as cigarette smoke and air pollution are increasingly used to model e.g. acute exacerbations. These exposure models are relevant to study how epithelial features of asthma and COPD are affected and provide a useful tool to study the effect of drugs used in treatment of asthma and COPD. These new developments are expected to contribute to a better understanding of the complex gene-environment interactions that contribute to development and progression of asthma and COPD.
Collapse
Affiliation(s)
- Tinne C J Mertens
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christian Taube
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
18
|
Secondo LE, Liu NJ, Lewinski NA. Methodological considerations when conductingin vitro, air–liquid interface exposures to engineered nanoparticle aerosols. Crit Rev Toxicol 2016; 47:225-262. [DOI: 10.1080/10408444.2016.1223015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lynn E. Secondo
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Nathan J. Liu
- Institute for Work and Health (IST), University of Lausanne and Geneva, Epalinges-Lausanne, Switzerland
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Nastassja A. Lewinski
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
- Institute for Work and Health (IST), University of Lausanne and Geneva, Epalinges-Lausanne, Switzerland
| |
Collapse
|
19
|
Rudakovskaya PG, Beloglazkina EK, Majouga AG, Klyachko NL, Kabanov AV, Zyk NV. Synthesis of magnetite-gold nanoparticles with core-shell structure. ACTA ACUST UNITED AC 2015. [DOI: 10.3103/s0027131415030104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Oeder S, Kanashova T, Sippula O, Sapcariu SC, Streibel T, Arteaga-Salas JM, Passig J, Dilger M, Paur HR, Schlager C, Mülhopt S, Diabaté S, Weiss C, Stengel B, Rabe R, Harndorf H, Torvela T, Jokiniemi JK, Hirvonen MR, Schmidt-Weber C, Traidl-Hoffmann C, BéruBé KA, Wlodarczyk AJ, Prytherch Z, Michalke B, Krebs T, Prévôt ASH, Kelbg M, Tiggesbäumker J, Karg E, Jakobi G, Scholtes S, Schnelle-Kreis J, Lintelmann J, Matuschek G, Sklorz M, Klingbeil S, Orasche J, Richthammer P, Müller L, Elsasser M, Reda A, Gröger T, Weggler B, Schwemer T, Czech H, Rüger CP, Abbaszade G, Radischat C, Hiller K, Buters JTM, Dittmar G, Zimmermann R. Particulate matter from both heavy fuel oil and diesel fuel shipping emissions show strong biological effects on human lung cells at realistic and comparable in vitro exposure conditions. PLoS One 2015; 10:e0126536. [PMID: 26039251 PMCID: PMC4454644 DOI: 10.1371/journal.pone.0126536] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/02/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Ship engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling. OBJECTIVES To provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit and to identify potentially harmful fractions in shipping emission aerosols. METHODS Through an air-liquid interface exposure system, we exposed human lung cells under realistic in vitro conditions to exhaust fumes from a ship engine running on either common heavy fuel oil (HFO) or cleaner-burning diesel fuel (DF). Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling including isotope labelling methods to characterise the lung cell responses. RESULTS The HFO emissions contained high concentrations of toxic compounds such as metals and polycyclic aromatic hydrocarbon, and were higher in particle mass. These compounds were lower in DF emissions, which in turn had higher concentrations of elemental carbon ("soot"). Common cellular reactions included cellular stress responses and endocytosis. Reactions to HFO emissions were dominated by oxidative stress and inflammatory responses, whereas DF emissions induced generally a broader biological response than HFO emissions and affected essential cellular pathways such as energy metabolism, protein synthesis, and chromatin modification. CONCLUSIONS Despite a lower content of known toxic compounds, combustion particles from the clean shipping fuel DF influenced several essential pathways of lung cell metabolism more strongly than particles from the unrefined fuel HFO. This might be attributable to a higher soot content in DF. Thus the role of diesel soot, which is a known carcinogen in acute air pollution-induced health effects should be further investigated. For the use of HFO and DF we recommend a reduction of carbonaceous soot in the ship emissions by implementation of filtration devices.
Collapse
Affiliation(s)
- Sebastian Oeder
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Center of Allergy and Environment (ZAUM), Helmholtz Zentrum München and Technische Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
- CK-CARE, Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Tamara Kanashova
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Mass Spectrometry Core Unit, Max Delbrück Center for Molecular Medicine Berlin-Buch, Germany
| | - Olli Sippula
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Sean C. Sapcariu
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-Belval, Luxembourg
| | - Thorsten Streibel
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University Rostock, Rostock, Germany
- Joint Mass Spectrometry Centre, CMA—Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jose Manuel Arteaga-Salas
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Joint Mass Spectrometry Centre, CMA—Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Johannes Passig
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University Rostock, Rostock, Germany
| | - Marco Dilger
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Institute for Technical Chemistry (ITC), Karlsruhe Institute of Technology, Campus North, Karlsruhe, Germany
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology, Campus North, Karlsruhe, Germany
| | - Hanns-Rudolf Paur
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Institute for Technical Chemistry (ITC), Karlsruhe Institute of Technology, Campus North, Karlsruhe, Germany
| | - Christoph Schlager
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Institute for Technical Chemistry (ITC), Karlsruhe Institute of Technology, Campus North, Karlsruhe, Germany
| | - Sonja Mülhopt
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Institute for Technical Chemistry (ITC), Karlsruhe Institute of Technology, Campus North, Karlsruhe, Germany
| | - Silvia Diabaté
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology, Campus North, Karlsruhe, Germany
| | - Carsten Weiss
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology, Campus North, Karlsruhe, Germany
| | - Benjamin Stengel
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Chair of Piston Machines and Internal Combustion Engines, University Rostock, Rostock, Germany
| | - Rom Rabe
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Chair of Piston Machines and Internal Combustion Engines, University Rostock, Rostock, Germany
| | - Horst Harndorf
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Chair of Piston Machines and Internal Combustion Engines, University Rostock, Rostock, Germany
| | - Tiina Torvela
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jorma K. Jokiniemi
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Maija-Riitta Hirvonen
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland
- National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701, Kuopio, Finland
| | - Carsten Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Helmholtz Zentrum München and Technische Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Claudia Traidl-Hoffmann
- CK-CARE, Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
- Institute of environmental medicine, UNIKA-T, Technische Universität, Munich, Germany
| | - Kelly A. BéruBé
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Lung and Particle Research Group, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Anna J. Wlodarczyk
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Lung and Particle Research Group, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Zoë Prytherch
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Lung and Particle Research Group, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München—German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Tobias Krebs
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Vitrocell GmbH, Waldkirch, Germany
| | - André S. H. Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Michael Kelbg
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Institute of Physics, University Rostock, Rostock, Germany
| | - Josef Tiggesbäumker
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Institute of Physics, University Rostock, Rostock, Germany
| | - Erwin Karg
- Joint Mass Spectrometry Centre, CMA—Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gert Jakobi
- Joint Mass Spectrometry Centre, CMA—Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sorana Scholtes
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Joint Mass Spectrometry Centre, CMA—Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Centre, CMA—Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jutta Lintelmann
- Joint Mass Spectrometry Centre, CMA—Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Georg Matuschek
- Joint Mass Spectrometry Centre, CMA—Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Sklorz
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University Rostock, Rostock, Germany
| | - Sophie Klingbeil
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University Rostock, Rostock, Germany
| | - Jürgen Orasche
- Joint Mass Spectrometry Centre, CMA—Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Patrick Richthammer
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Joint Mass Spectrometry Centre, CMA—Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Laarnie Müller
- Joint Mass Spectrometry Centre, CMA—Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Elsasser
- Joint Mass Spectrometry Centre, CMA—Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ahmed Reda
- Joint Mass Spectrometry Centre, CMA—Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Gröger
- Joint Mass Spectrometry Centre, CMA—Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Benedikt Weggler
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Joint Mass Spectrometry Centre, CMA—Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Theo Schwemer
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University Rostock, Rostock, Germany
| | - Hendryk Czech
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University Rostock, Rostock, Germany
| | - Christopher P. Rüger
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University Rostock, Rostock, Germany
| | - Gülcin Abbaszade
- Joint Mass Spectrometry Centre, CMA—Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Radischat
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University Rostock, Rostock, Germany
| | - Karsten Hiller
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-Belval, Luxembourg
| | - Jeroen T. M. Buters
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Center of Allergy and Environment (ZAUM), Helmholtz Zentrum München and Technische Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
- CK-CARE, Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Gunnar Dittmar
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Mass Spectrometry Core Unit, Max Delbrück Center for Molecular Medicine Berlin-Buch, Germany
| | - Ralf Zimmermann
- HICE—Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and Health, www.hice-vi.eu, Neuherberg, Rostock, Munich, Karlsruhe, Berlin, Waldkirch, Germany, Kuopio, Finland, Cardiff, UK, Esch-Belval, Luxembourg
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University Rostock, Rostock, Germany
- Joint Mass Spectrometry Centre, CMA—Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
21
|
Konduru NV, Murdaugh KM, Sotiriou GA, Donaghey TC, Demokritou P, Brain JD, Molina RM. Bioavailability, distribution and clearance of tracheally-instilled and gavaged uncoated or silica-coated zinc oxide nanoparticles. Part Fibre Toxicol 2014; 11:44. [PMID: 25183210 PMCID: PMC4237897 DOI: 10.1186/s12989-014-0044-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/20/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nanoparticle pharmacokinetics and biological effects are influenced by several factors. We assessed the effects of amorphous SiO2 coating on the pharmacokinetics of zinc oxide nanoparticles (ZnO NPs) following intratracheal (IT) instillation and gavage in rats. METHODS Uncoated and SiO2-coated ZnO NPs were neutron-activated and IT-instilled at 1 mg/kg or gavaged at 5 mg/kg. Rats were followed over 28 days post-IT, and over 7 days post-gavage. Tissue samples were analyzed for 65Zn radioactivity. Pulmonary responses to instilled NPs were also evaluated at 24 hours. RESULTS SiO2-coated ZnO elicited significantly higher inflammatory responses than uncoated NPs. Pulmonary clearance of both 65ZnO NPs was biphasic with a rapid initial t1/2 (0.2 - 0.3 hours), and a slower terminal t1/2 of 1.2 days (SiO2-coated ZnO) and 1.7 days (ZnO). Both NPs were almost completely cleared by day 7 (>98%). With IT-instilled 65ZnO NPs, significantly more 65Zn was found in skeletal muscle, liver, skin, kidneys, cecum and blood on day 2 in uncoated than SiO2-coated NPs. By 28 days, extrapulmonary levels of 65Zn from both NPs significantly decreased. However, 65Zn levels in skeletal muscle, skin and blood remained higher from uncoated NPs. Interestingly, 65Zn levels in bone marrow and thoracic lymph nodes were higher from coated 65ZnO NPs. More 65Zn was excreted in the urine from rats instilled with SiO2-coated 65ZnO NPs. After 7 days post-gavage, only 7.4% (uncoated) and 6.7% (coated) of 65Zn dose were measured in all tissues combined. As with instilled NPs, after gavage significantly more 65Zn was measured in skeletal muscle from uncoated NPs and less in thoracic lymph nodes. More 65Zn was excreted in the urine and feces with coated than uncoated 65ZnO NPs. However, over 95% of the total dose of both NPs was eliminated in the feces by day 7. CONCLUSIONS Although SiO2-coated ZnO NPs were more inflammogenic, the overall lung clearance rate was not affected. However, SiO2 coating altered the tissue distribution of 65Zn in some extrapulmonary tissues. For both IT instillation and gavage administration, SiO2 coating enhanced transport of 65Zn to thoracic lymph nodes and decreased transport to the skeletal muscle.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ramon M Molina
- Center for Nanotechnology and Nanotoxicology, Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, School of Public Health, Harvard University, 665 Huntington Avenue, Boston 02115, MA, USA.
| |
Collapse
|
22
|
Verstraelen S, Remy S, Casals E, De Boever P, Witters H, Gatti A, Puntes V, Nelissen I. Gene expression profiles reveal distinct immunological responses of cobalt and cerium dioxide nanoparticles in two in vitro lung epithelial cell models. Toxicol Lett 2014; 228:157-69. [PMID: 24821434 DOI: 10.1016/j.toxlet.2014.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 12/27/2022]
Abstract
Fragmentary knowledge exists on cellular signaling responses underlying possible adverse health effects of CoO- and CeO2-nanoparticles (NP)s after inhalation. We aimed to perform a time kinetic study of gene expression profiles induced by these NPs in alveolar A549 and bronchial BEAS-2B epithelial cells, and investigated possible immune system modulation. The kinetics of the cell responses induced by the NPs were different between the lung epithelial models. Both CoO- and CeO2-NP exposure induced mainly downregulation of gene transcription. BEAS-2B cells were found to be more sensitive, as they showed a higher number of differentially expressed transcripts (DET) at a 10-fold lower NP-concentration than A549 cells. Hierarchical clustering of all DET indicated that the transcriptional responses were heterogeneous among the two cell types and two NPs. Between 1% and 14% DET encoding markers involved in immune processes were observed. The transcriptional impact of the metal oxide NPs appeared to be cell-dependent, both at the general and immune response level, whereas each lung epithelial cell model responded differently to the two NP types. Thus, the study provides gene expression markers and immune processes involved in CoO- and CeO2-NP-induced toxicity, and demonstrates the usefulness of comprehensive-omics studies to differentiate between NP responses.
Collapse
Affiliation(s)
- Sandra Verstraelen
- Flemish Institute for Technological Research (VITO NV), Environmental Risk and Health Unit, Mol, Belgium.
| | - Sylvie Remy
- Flemish Institute for Technological Research (VITO NV), Environmental Risk and Health Unit, Mol, Belgium.
| | - Eudald Casals
- Institut Català de Nanotecnologia (ICN), Barcelona, Spain.
| | - Patrick De Boever
- Flemish Institute for Technological Research (VITO NV), Environmental Risk and Health Unit, Mol, Belgium; Hasselt University, Centre for Environmental Sciences, Diepenbeek, Belgium.
| | - Hilda Witters
- Flemish Institute for Technological Research (VITO NV), Environmental Risk and Health Unit, Mol, Belgium.
| | - Antonietta Gatti
- Università di Modena e Reggio Emilia, Laboratorio Biomateriali, Modena, Italy.
| | - Victor Puntes
- Institut Català de Nanotecnologia (ICN), Barcelona, Spain.
| | - Inge Nelissen
- Flemish Institute for Technological Research (VITO NV), Environmental Risk and Health Unit, Mol, Belgium.
| |
Collapse
|
23
|
Scanlan LD, Reed RB, Loguinov AV, Antczak P, Tagmount A, Aloni S, Nowinski DT, Luong P, Tran C, Karunaratne N, Pham D, Lin XX, Falciani F, Higgins CP, Ranville JF, Vulpe CD, Gilbert B. Silver nanowire exposure results in internalization and toxicity to Daphnia magna. ACS NANO 2013; 7:10681-94. [PMID: 24099093 PMCID: PMC3912856 DOI: 10.1021/nn4034103] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Nanowires (NWs), high-aspect-ratio nanomaterials, are increasingly used in technological materials and consumer products and may have toxicological characteristics distinct from nanoparticles. We carried out a comprehensive evaluation of the physicochemical stability of four silver nanowires (AgNWs) of two sizes and coatings and their toxicity to Daphnia magna . Inorganic aluminum-doped silica coatings were less effective than organic poly(vinyl pyrrolidone) coatings at preventing silver oxidation or Ag(+) release and underwent a significant morphological transformation within 1 h following addition to low ionic strength Daphnia growth media. All AgNWs were highly toxic to D. magna but less toxic than ionic silver. Toxicity varied as a function of AgNW dimension, coating, and solution chemistry. Ag(+) release in the media could not account for observed AgNW toxicity. Single-particle inductively coupled plasma mass spectrometry distinguished and quantified dissolved and nanoparticulate silver in microliter-scale volumes of Daphnia magna hemolymph with a limit of detection of approximately 10 ppb. The silver levels within the hemolymph of Daphnia exposed to both Ag(+) and AgNW met or exceeded the initial concentration in the growth medium, indicating effective accumulation during filter feeding. Silver-rich particles were the predominant form of silver in hemolymph following exposure to both AgNWs and Ag(+). Scanning electron microscopy imaging of dried hemolymph found both AgNWs and silver precipitates that were not present in the AgNW stock or the growth medium. Both organic and inorganic coatings on the AgNW were transformed during ingestion or absorption. Pathway, gene ontology, and clustering analyses of gene expression response indicated effects of AgNWs distinct from ionic silver on Daphnia magna .
Collapse
Affiliation(s)
- Leona D. Scanlan
- University of California Berkeley, Department of Nutritional Sciences and Toxicology, 119 Morgan Hall, Berkeley, CA 94720
| | - Robert B. Reed
- Colorado School of Mines, Department of Chemistry and Geochemistry, 1500 Illinois St., Golden, CO 80401
| | - Alexandre V. Loguinov
- University of California Berkeley, Department of Nutritional Sciences and Toxicology, 119 Morgan Hall, Berkeley, CA 94720
| | - Philipp Antczak
- University of Liverpool Centre for Computational Biology and Modeling, Institute of Integrative Biology, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Abderrahmane Tagmount
- University of California Berkeley, Department of Nutritional Sciences and Toxicology, 119 Morgan Hall, Berkeley, CA 94720
| | - Shaul Aloni
- Molecular Foundry, Lawrence Berkeley National Laboratory, Materials Sciences Division, 1 Cyclotron Rd., MS 90-1116, Berkeley, CA, 94720
| | - Daniel Thomas Nowinski
- University of California Berkeley, Department of Nutritional Sciences and Toxicology, 119 Morgan Hall, Berkeley, CA 94720
| | - Pauline Luong
- University of California Berkeley, Department of Nutritional Sciences and Toxicology, 119 Morgan Hall, Berkeley, CA 94720
| | - Christine Tran
- University of California Berkeley, Department of Nutritional Sciences and Toxicology, 119 Morgan Hall, Berkeley, CA 94720
| | - Nadeeka Karunaratne
- University of California Berkeley, Department of Nutritional Sciences and Toxicology, 119 Morgan Hall, Berkeley, CA 94720
| | - Don Pham
- University of California Berkeley, Department of Nutritional Sciences and Toxicology, 119 Morgan Hall, Berkeley, CA 94720
| | - Xin Xin Lin
- University of California Berkeley, Department of Nutritional Sciences and Toxicology, 119 Morgan Hall, Berkeley, CA 94720
| | - Francesco Falciani
- University of Liverpool Centre for Computational Biology and Modeling, Institute of Integrative Biology, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Chris P. Higgins
- Molecular Foundry, Lawrence Berkeley National Laboratory, Materials Sciences Division, 1 Cyclotron Rd., MS 90-1116, Berkeley, CA, 94720
| | - James F. Ranville
- Colorado School of Mines, Department of Chemistry and Geochemistry, 1500 Illinois St., Golden, CO 80401
| | - Chris D. Vulpe
- University of California Berkeley, Department of Nutritional Sciences and Toxicology, 119 Morgan Hall, Berkeley, CA 94720
- Address correspondence to
| | - Benjamin Gilbert
- Earth Science Division, Lawrence Berkeley National Laboratory, Earth Sciences Division, 1 Cyclotron Rd., MS 74-316C, Berkeley, CA, 94720
| |
Collapse
|
24
|
Singh R, Manickam N, Mudiam MKR, Murthy RC, Misra V. An integrated (nano-bio) technique for degradation of γ-HCH contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2013; 258-259:35-41. [PMID: 23692681 DOI: 10.1016/j.jhazmat.2013.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/30/2013] [Accepted: 04/11/2013] [Indexed: 05/24/2023]
Abstract
We have evaluated the effect of an integrated (nano-bio) technique involving the use of stabilized Pd/Fe(0) bimetallic nanoparticles (CMC-Pd/nFe(0)) and a Sphingomonas sp. strain NM05, on the degradation of γ-HCH in soil. Factors affecting degradation such as pH, incubation temperature and γ-HCH initial concentration were also studied. The results revealed that γ-HCH degradation efficiency is ~ 1.7-2.1 times greater in integrated system as compared to system containing either NM05 or CMC-Pd/nFe(0) alone. The integration showed synergistic effect on γ-HCH degradation. Further, cell growth studies indicated that NM05 gets well acclimatized to nanoparticles, showing potential growth in the presence of CMC-Pd/nFe(0) with respect to control system. This study signifies the potential efficacy of integrated technique to become an effective alternative remedial tool for γ-HCH contaminated soil. Further research in this direction could lead to the development of effective remediation strategies for other isomers of HCH and other chlorinated pesticides as well.
Collapse
Affiliation(s)
- Ritu Singh
- Ecotoxicology Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, UP, India
| | | | | | | | | |
Collapse
|
25
|
Liu G, Gao J, Ai H, Chen X. Applications and potential toxicity of magnetic iron oxide nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1533-45. [PMID: 23019129 DOI: 10.1002/smll.201201531] [Citation(s) in RCA: 360] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Indexed: 05/22/2023]
Abstract
Owing to their unique physical and chemical properties, magnetic iron oxide nanoparticles have become a powerful platform in many diverse aspects of biomedicine, including magnetic resonance imaging, drug and gene delivery, biological sensing, and hyperthermia. However, the biomedical applications of magnetic iron oxide nanoparticles arouse serious concerns about their pharmacokinetics, metabolism, and toxicity. In this review, the updated research on the biomedical applications and potential toxicity of magnetic iron oxide nanoparticles is summarized. Much more effort is required to develop magnetic iron oxide nanoparticles with improved biocompatible surface engineering to achieve minimal toxicity, for various applications in biomedicine.
Collapse
Affiliation(s)
- Gang Liu
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005, China.
| | | | | | | |
Collapse
|
26
|
Toxicity of silver nanoparticles at the air-liquid interface. BIOMED RESEARCH INTERNATIONAL 2012; 2013:328934. [PMID: 23484109 PMCID: PMC3591145 DOI: 10.1155/2013/328934] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/10/2012] [Accepted: 11/14/2012] [Indexed: 12/26/2022]
Abstract
Silver nanoparticles are one of the most prevalent nanomaterials in consumer products. Some of these products are likely to be aerosolized, making silver nanoparticles a high priority for inhalation toxicity assessment. To study the inhalation toxicity of silver nanoparticles, we have exposed cultured lung cells to them at the air-liquid interface. Cells were exposed to suspensions of silver or nickel oxide (positive control) nanoparticles at concentrations of 2.6, 6.6, and 13.2 μg cm−2 (volume concentrations of 10, 25, and 50 μg ml−1) and to 0.7 μg cm−2 silver or 2.1 μg cm−2 nickel oxide aerosol at the air-liquid interface. Unlike a number of in vitro studies employing suspensions of silver nanoparticles, which have shown strong toxic effects, both suspensions and aerosolized nanoparticles caused negligible cytotoxicity and only a mild inflammatory response, in agreement with animal exposures. Additionally, we have developed a novel method using a differential mobility analyzer to select aerosolized nanoparticles of a single diameter to assess the size-dependent toxicity of silver nanoparticles.
Collapse
|
27
|
Alwi R, Telenkov S, Mandelis A, Leshuk T, Gu F, Oladepo S, Michaelian K. Silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biocompatible contrast agent in biomedical photoacoustics. BIOMEDICAL OPTICS EXPRESS 2012; 3:2500-9. [PMID: 23082291 PMCID: PMC3470002 DOI: 10.1364/boe.3.002500] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/28/2012] [Accepted: 09/11/2012] [Indexed: 05/18/2023]
Abstract
In this study, we report for the first time the use of silica-coated superparamagnetic iron oxide nanoparticles (SPION) as contrast agents in biomedical photoacoustic imaging. Using frequency-domain photoacoustic correlation (the photoacoustic radar), we investigated the effects of nanoparticle size, concentration and biological media (e.g. serum, sheep blood) on the photoacoustic response in turbid media. Maximum detection depth and the minimum measurable SPION concentration were determined experimentally. The nanoparticle-induced optical contrast ex vivo in dense muscular tissues (avian pectus and murine quadricept) was evaluated and the strong potential of silica-coated SPION as a possible photoacoustic contrast agents was demonstrated.
Collapse
Affiliation(s)
- Rudolf Alwi
- Center for Advanced Diffusion-Wave Technologies (CADIFT), Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, ON, M5S 3G8, Canada
| | - Sergey Telenkov
- Center for Advanced Diffusion-Wave Technologies (CADIFT), Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, ON, M5S 3G8, Canada
| | - Andreas Mandelis
- Center for Advanced Diffusion-Wave Technologies (CADIFT), Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, ON, M5S 3G8, Canada
| | - Timothy Leshuk
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Frank Gu
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Sulayman Oladepo
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, AB, T9G 1A8, Canada
| | - Kirk Michaelian
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, AB, T9G 1A8, Canada
| |
Collapse
|
28
|
Luo Y, Wang C, Qiao Y, Hossain M, Ma L, Su M. In vitro cytotoxicity of surface modified bismuth nanoparticles. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2563-2573. [PMID: 22802106 DOI: 10.1007/s10856-012-4716-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/26/2012] [Indexed: 06/01/2023]
Abstract
This paper describes in vitro cytotoxicity of bismuth nanoparticles revealed by three complementary assays (MTT, G6PD, and calcein AM/EthD-1). The results show that bismuth nanoparticles are more toxic than most previously reported bismuth compounds. Concentration dependent cytotoxicities have been observed for bismuth nanoparticles and surface modified bismuth nanoparticles. The bismuth nanoparticles are non-toxic at concentration of 0.5 nM. Nanoparticles at high concentration (50 nM) kill 45, 52, 41, 34 % HeLa cells for bare nanoparticles, amine terminated bismuth nanoparticles, silica coated bismuth nanoparticles, and polyethylene glycol (PEG) modified bismuth nanoparticles, respectively; which indicates cytotoxicity in terms of cell viability is in the descending order of amine terminated bismuth nanoparticles, bare bismuth nanoparticles, silica coated bismuth nanoparticles, and PEG modified bismuth nanoparticles. HeLa cells are more susceptible to toxicity from bismuth nanoparticles than MG-63 cells. The simultaneous use of three toxicity assays provides information on how nanoparticles interact with cells. Silica coated bismuth nanoparticles can damage cellular membrane yet keep mitochondria less influenced; while amine terminated bismuth nanoparticles can affect the metabolic functions of cells. The findings have important implications for caution of nanoparticle exposure and evaluating toxicity of bismuth nanoparticles.
Collapse
Affiliation(s)
- Yang Luo
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | | | | | | | | | | |
Collapse
|
29
|
Shim W, Paik MJ, Nguyen DT, Lee JK, Lee Y, Kim JH, Shin EH, Kang JS, Jung HS, Choi S, Park S, Shim JS, Lee G. Analysis of changes in gene expression and metabolic profiles induced by silica-coated magnetic nanoparticles. ACS NANO 2012; 6:7665-7680. [PMID: 22830605 DOI: 10.1021/nn301113f] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Magnetic nanoparticles (MNPs) have proven themselves to be useful in biomedical research; however, previous reports were insufficient to address the potential dangers of nanoparticles. Here, we investigated gene expression and metabolic changes based on the microarray and gas chromatography-mass spectrometry with human embryo kidney 293 cells treated with MNPs@SiO(2)(RITC), a silica-coated MNP containing Rhodamine B isothiocyanate (RITC). In addition, measurement of reactive oxygen species (ROS) and ATP analysis were performed to evaluate the effect of MNPs@SiO(2)(RITC) on mitochondrial function. Compared to the nontreated control, glutamic acid was increased by more than 2.0-fold, and expression of genes related to the glutamic acid metabolic pathway was also disturbed in 1.0 μg/μL of MNPs@SiO(2)(RITC)-treated cells. Furthermore, increases in ROS concentration and mitochondrial damage were observed in this MNPs@SiO(2)(RITC) concentration. The organic acids related to the Krebs cycle were also disturbed, and the capacity of ATP synthesis was decreased in cell treated with an overdose of MNPs@SiO(2)(RITC). Collectively, these results suggest that overdose (1.0 μg/μL) of MNPs caused transcriptomic and metabolic disturbance. In addition, we suggest that a combination of gene expression and metabolic profiles will provide more detailed and sensitive toxicological evaluation for nanoparticles.
Collapse
Affiliation(s)
- Wooyoung Shim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nanotechnology and nanotoxicology in retinopathy. Int J Mol Sci 2011; 12:8288-301. [PMID: 22174664 PMCID: PMC3233470 DOI: 10.3390/ijms12118288] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 12/23/2022] Open
Abstract
Nanoparticles are nanometer-scaled particles, and can be utilized in the form of nanocapsules, nanoconjugates, or nanoparticles themselves for the treatment of retinopathy, including angiogensis-related blindness, retinal degeneration, and uveitis. They are thought to improve the bioavailability in the retina and the permeability of therapeutic molecules across the barriers of the eye, such as the cornea, conjunctiva, and especially, blood-retinal barriers (BRBs). However, consisting of multiple neuronal cells, the retina can be the target of neuronal toxicity of nanoparticles, in common with the central and peripheral nervous system. Furthermore, the ability of nanoparticles to pass through the BRBs might increase the possibility of toxicity, simultaneously promoting distribution in the retinal layers. In this regard, we discussed nanotechnology and nanotoxicology in the treatment of retinopathy.
Collapse
|