1
|
Bernal-Mizrachi E, Kulkarni RN, Scott DK, Mauvais-Jarvis F, Stewart AF, Garcia-Ocaña A. Human β-cell proliferation and intracellular signaling part 2: still driving in the dark without a road map. Diabetes 2014; 63:819-31. [PMID: 24556859 PMCID: PMC3931400 DOI: 10.2337/db13-1146] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enhancing β-cell proliferation is a major goal for type 1 and type 2 diabetes research. Unraveling the network of β-cell intracellular signaling pathways that promote β-cell replication can provide the tools to address this important task. In a previous Perspectives in Diabetes article, we discussed what was known regarding several important intracellular signaling pathways in rodent β-cells, including the insulin receptor substrate/phosphatidylinositol-3 kinase/Akt (IRS-PI3K-Akt) pathways, glycogen synthase kinase-3 (GSK3) and mammalian target of rapamycin (mTOR) S6 kinase pathways, protein kinase Cζ (PKCζ) pathways, and their downstream cell-cycle molecular targets, and contrasted that ample knowledge to the small amount of complementary data on human β-cell intracellular signaling pathways. In this Perspectives, we summarize additional important information on signaling pathways activated by nutrients, such as glucose; growth factors, such as epidermal growth factor, platelet-derived growth factor, and Wnt; and hormones, such as leptin, estrogen, and progesterone, that are linked to rodent and human β-cell proliferation. With these two Perspectives, we attempt to construct a brief summary of knowledge for β-cell researchers on mitogenic signaling pathways and to emphasize how little is known regarding intracellular events linked to human β-cell replication. This is a critical aspect in the long-term goal of expanding human β-cells for the prevention and/or cure of type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Ernesto Bernal-Mizrachi
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, and U.S. Department of Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI
- Corresponding authors: Ernesto Bernal-Mizrachi, , and Adolfo Garcia-Ocaña,
| | - Rohit N. Kulkarni
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Donald K. Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Franck Mauvais-Jarvis
- Division of Endocrinology and Metabolism, Tulane University School of Medicine and Health Sciences Center, New Orleans, LA
| | - Andrew F. Stewart
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Corresponding authors: Ernesto Bernal-Mizrachi, , and Adolfo Garcia-Ocaña,
| |
Collapse
|
2
|
Abstract
Secreted and intracellular proteins including antibodies, cytokines, major histocompatibility complex molecules, antigens, and enzymes can be redirected to and anchored on the surface of mammalian cells to reveal novel functions and properties such as reducing systemic toxicity, altering the in vivo distribution of drugs and extending the range of useful drugs, creating novel, specific signaling receptors and reshaping protein immunogenicity. The present review highlights progress in designing vectors to target and retain chimeric proteins on the surface of mammalian cells. Comparison of chimeric proteins indicates that selection of the proper cytoplasmic domain and introduction of oligiosaccharides near the cell surface can dramatically enhance surface expression, especially for single-chain antibodies. We also describe progress and limitations of employing surface-tethered proteins for preferential activation of prodrugs at cancer cells, imaging gene expression in living animals, performing high-throughput screening, selectively activating immune cells in tumors, producing new adhesion molecules, creating local immune privileged sites, limiting the distribution of soluble factors such as cytokines, and enhancing polypeptide immunogenicity. Surface-anchored chimeric proteins represent a rich source for developing new techniques and creating novel therapeutics.
Collapse
Affiliation(s)
- Tian-Lu Cheng
- Faculty of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | |
Collapse
|
3
|
Welsh M, Annerén C, Lindholm C, Kriz V, Oberg-Welsh C. Role of tyrosine kinase signaling for beta-cell replication and survival. Ups J Med Sci 2000; 105:7-15. [PMID: 11095102 DOI: 10.1517/03009734000000052] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Diabetes mellitus is commonly considered as a disease of a scant beta-cell mass that fails to respond adequately to the functional demand. Tyrosine kinases may play a role for beta-cell replication, differentiation (neoformation) and survival. Transfection of beta-cells with DNA constructs coding for tyrosine kinase receptors yields a ligand-dependent increase of DNA synthesis in beta-cells. A PCR-based technique was adopted to assess the repertoire of tyrosine kinases expressed in fetal islet-like structures, adult islets or RINm5F cells. Several tyrosine kinase receptors, such as the VEGFR-2 (vascular endothelial growth factor receptor 2) and c-Kit, were found to be present in pancreatic duct cells. Because ducts are thought to harbor beta-cell precursor cells, these receptors may play a role for the neoformation of beta-cells. The Src-like tyrosine kinase mouse Gtk (previously named Bsk/Iyk) is expressed in islet cells, and was found to inhibit cell proliferation. Furthermore, it conferred decreased viability in response to cytokine exposure. Shb is a Src homology 2 domain adaptor protein which participates in tyrosine kinase signaling. Transgenic mice overexpressing Shb in beta-cells exhibit an increase in the neonatal beta-cell mass, an improved glucose homeostasis, but also decreased survival in response to cytokines and streptozotocin. It is concluded that tyrosine kinase signaling may generate multiple responses in beta-cells, involving proliferation, survival and differentiation.
Collapse
Affiliation(s)
- M Welsh
- Department of Medical Cell Biology, Uppsala University, Sweden.
| | | | | | | | | |
Collapse
|
4
|
Kudla AJ, Jones NC, Rosenthal RS, Arthur K, Clase KL, Olwin BB. The FGF receptor-1 tyrosine kinase domain regulates myogenesis but is not sufficient to stimulate proliferation. J Biophys Biochem Cytol 1998; 142:241-50. [PMID: 9660877 PMCID: PMC2133035 DOI: 10.1083/jcb.142.1.241] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Ligand-stimulated activation of FGF receptors (FGFRs) in skeletal muscle cells represses terminal myogenic differentiation. Skeletal muscle cell lines and subsets of primary cells are dependent on FGFs to repress myogenesis and maintain growth. To understand the intracellular events that transduce these signals, MM14 skeletal muscle cells were transfected with expression vectors encoding chimeric receptors. The chimeras are comprised of the PDGF beta receptor (PDGFbetaR) extracellular domain, the FGFR-1 intracellular domain, and either the PDGFbetaR or FGFR-1 transmembrane domain. The chimeric receptors were autophosphorylated upon PDGF-BB stimulation and are capable of stimulating mitogen-activated protein kinase activity. Activation of the tyrosine kinase domain of either chimera repressed myogenesis, suggesting intracellular responses regulating skeletal muscle differentiation are transduced by activation of the FGFR-1 tyrosine kinase. Unexpectedly, we found that activation of either chimeric receptor failed to stimulate cellular proliferation. Thus, it appears that regulation of skeletal muscle differentiation by FGFs requires only activation of the FGFR tyrosine kinase. In contrast, stimulation of proliferation may require additional, as yet unidentified, signals involving the receptor ectodomain, the FGF ligand, and heparan sulfate either alone, or in combination.
Collapse
Affiliation(s)
- A J Kudla
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
5
|
DeAizpurua HJ, Cram DS, Naselli G, Devereux L, Dorow DS. Expression of mixed lineage kinase-1 in pancreatic beta-cell lines at different stages of maturation and during embryonic pancreas development. J Biol Chem 1997; 272:16364-73. [PMID: 9195943 DOI: 10.1074/jbc.272.26.16364] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Events controlling differentiation to insulin-secreting beta-cells in the pancreas are not well understood, although beta-cells are thought to arise from pluripotent ductal precursor cells. To search for signaling proteins that might be involved in beta-cell maturation, we analyzed protein kinase expression in two developmentally and functionally distinct pancreatic beta-cell lines, RIN-5AH and RIN-A12, by reverse transcriptase polymerase chain reaction. A number of tyrosine and serine/threonine kinases were identified in both lines. One protein kinase, mixed lineage kinase-1 (MLK-1), was expressed at both the RNA and protein levels in RIN-5AH cells, which display an immature beta-cell phenotype, but was not detected in the more mature RIN-A12 cells. Furthermore, levels of MLK-1 mRNA and protein were increased after brief stimulation of RIN-5AH cells with either the differentiation inducer, sodium butyrate, or with serum after serum starvation. These increases in expression were independent of phenotypic markers such as insulin secretion or surface expression of major histocompatibility class I- and A2B5-reactive ganglioside. In addition, increases in MLK-1 expression in the stimulated RIN-5AH cells were accompanied by phosphorylation of MLK-1 on serine but not tyrosine. Antisense oligonucleotides to two distinct regions of MLK-1 caused RIN-5AH cells, but not RIN-A12 cells, to adopt a highly undifferentiated morphology, with a reduction in DNA synthesis and MLK-1 protein levels and elevated glucagon mRNA levels, but with no effect on insulin mRNA. In an immunohistochemical survey of embryonic mouse tissues, we found that temporal expression of MLK-1 was regulated in a tissue-specific manner. In the embryonic pancreas, MLK-1 expression was evident in ductal cells from day 13 to 16 but was not detected in late stage gestation or neonatal pancreas. These data suggest that MLK-1 is regulated in immature pancreatic beta-cells and their ductal precursors at the level of functional maturity and may therefore play a role in beta-cell development.
Collapse
Affiliation(s)
- H J DeAizpurua
- Burnet Clinical Research Unit, Walter and Eliza Hall Institute of Medical Research, Post Office, Royal Melbourne Hospital, Parkville 3050, Australia.
| | | | | | | | | |
Collapse
|
6
|
Biemann HP, Harmer SL, Koshland DE. An aspartate/insulin receptor chimera mitogenically activates fibroblasts. J Biol Chem 1996; 271:27927-30. [PMID: 8910393 DOI: 10.1074/jbc.271.44.27927] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A gene encoding the ligand-binding domain of the Escherichia coli aspartate receptor fused to the cytoplasmic domain of the insulin receptor tyrosine kinase to produce the chimeric aspartate insulin receptor (AIR) was expressed in mammalian cells. A murine fibroblast transfectant line designated CA3 was generated that stably expressed the AIR receptor. This 70,000 Mr receptor containing the tyrosine kinase of the insulin receptor was recognized by aspartate receptor-specific antisera. When isolated in cellular membrane preparations, AIR was found to be capable of autophosphorylation and phosphorylation of histone H2B on tyrosine. The receptor was found to be predominately cytoplasmic and to be situated in the endoplasmic reticulum and Golgi membranes by immunofluorescence imaging of CA3 cells. Mitogenic effects of AIR were observed; CA3 cells continued DNA synthesis under serum deprivation conditions that prevented parental cells from cycling. These results demonstrate that a chimeric receptor containing procaryotic transmembrane sequences is expressed by a eucaryotic cell in intracellular membranes and functionally couples to cellular signaling pathways.
Collapse
Affiliation(s)
- H P Biemann
- Department of Cell Biology, Genzyme Corporation, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
7
|
Sjöholm A. Regulation of insulinoma cell proliferation and insulin accumulation by peptides and second messengers. Ups J Med Sci 1995; 100:201-16. [PMID: 8808183 DOI: 10.3109/03009739509178906] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The regulation of clonal rat insulinoma (RINm5F) cell proliferation and hormone accumulation was investigated with the aim of identifying putative compounds capable of inducing differentiation, i.e. decreased growth and increased insulin accumulation, by the tumor cells. In particular, interest was focused on the role of a number of peptides as well as pharmacological probes modulating various signal transduction systems and which have been shown to regulate normal beta-cell proliferation and insulin accumulation. Growth hormone stimulated insulin accumulation and inhibited DNA synthesis, whereas galanin and insulin-like growth factor I caused a moderate suppression of insulin accumulation but did not affect proliferation, while epidermal growth factor, transforming growth factor beta, platelet-derived growth factor, acidic and basic fibroblast growth factor, bradykinin and somatostatin were virtually inactive on all parameters tested. Exogenous prostaglandins E2 and F1 alpha were inactive, while the cycloxygenase inhibitor indomethacin slightly suppressed insulin accumulation. The cytokine IL-1 beta caused a significant decrease in both beta-cell mitogenesis and insulin accumulation, effects that were mediated through nitric oxide generation. The vitamin A derivative retinyl acetate slightly inhibited serum-stimulated DNA synthesis, but did not affect insulin accumulation. The vitamin E alpha-tocopherol significantly enhanced insulin release but did not affect mitogenesis. By contrast, gamma-tocopherol was inactive on both these parameters. The alpha-adrenergic agonist clonidine evoked a slight inhibition of serum-stimulated DNA synthesis, without influencing insulin accumulation, whereas phenylephrine did not affect any of these parameters. Carbamylcholine increased insulin accumulation, but not cell proliferation, whereas the adenylyl cyclase activator forskolin suppressed mitogenesis but did not affect insulin accumulation. Inhibition of protein kinase C with staurosporine or prolonged treatment with phorbol ester suppressed DNA synthesis, as did the tyrosine kinase inhibitor genistein. Stimulating Ca2+ influx by closing ATP-dependent K+ channels with glibenclamide enhanced DNA synthesis, while opening of these channels with diazoxide suppressed cell growth. Conversely, preventing Ca2+ influx by the Ca2+ channel antagonist D-600, chelating intracellular Ca2+ by fura-2 AM or inhibiting the Ca2+/calmodulin-dependent protein kinase by calmidazol resulted in a decreased DNA synthesis. On the other hand, uncontrolled influx or mobilization of Ca2+ by ionomycin or thapsigargin resulted in an arrested DNA synthesis. The present paper shows that RINm5F insulinoma cell proliferation and insulin accumulation can be modulated by various peptidergic and pharmacological agents regulating certain signal transduction pathways. However, mitogenesis in the insulinoma cells seemingly is controlled in a vastly different manner in comparison to that in normal beta-cells. The most spectacular finding in this screening study, i.e. that growth hormone, contrarily to its effect on normal beta-cells, suppresses insulinoma cell growth, merits further elucidation of the underlying mechanisms. Possibly the hormone might become of utility in a clinical setting in the treatment of patients with insulin-producing tumors.
Collapse
Affiliation(s)
- A Sjöholm
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, USA
| |
Collapse
|
8
|
Welsh M, Mares J, Oberg C, Karlsson T. Genetic factors of importance for beta-cell proliferation. DIABETES/METABOLISM REVIEWS 1993; 9:25-36. [PMID: 8344120 DOI: 10.1002/dmr.5610090104] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- M Welsh
- Department of Medical Cell Biology, Uppsala University, Sweden
| | | | | | | |
Collapse
|
9
|
Sjöholm A. Role of polyamines in the regulation of proliferation and hormone production by insulin-secreting cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 264:C501-18. [PMID: 8460662 DOI: 10.1152/ajpcell.1993.264.3.c501] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This paper focuses on the mechanisms regulating proliferation and insulin production by normal and tumoral pancreatic beta-cells. In particular, the evidence for involvement of polyamines is reviewed. Pancreatic islet cells contain high levels of polyamines, and based on findings obtained using enzyme-directed inhibitors, it appears that putrescine and spermidine are necessary for proinsulin biosynthesis, whereas spermine may exert a stimulatory or permissive role in RNA transcription-stabilization and long-term insulin release. Islet polyamine content is not altered by short-term secretory stimulation, nor is the acute secretory response impeded by polyamine synthesis inhibitors, making it unlikely that these amines play any major role in short-term insulin release. Various mitogens increase islet polyamine contents and DNA synthesis, but increases in cytosolic polyamines do not seem to mediate their mitogenicity. Nuclear polyamine content is not altered by the inhibitors, suggesting that maintenance of polyamines within this organelle may be sufficient to sustain elevated DNA synthesis. In tumoral RINm5F cells, polyamine depletion results in decreased proliferation and increased cellular content of insulin and insulin secretory granules without affecting insulin mRNA levels or translation. Moreover, polyamine-depleted RINm5F cells display improved substrate metabolism and sensitivity of the stimulus-secretion coupling. Possible levels of polyamine interaction with Ca2+ metabolism are discussed.
Collapse
Affiliation(s)
- A Sjöholm
- Department of Endocrinology, Rolf Luft Center for Diabetes Research, Karolinska Institute, Karolinska Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Chapter 10. Growth Factors in Cardiovascular Disease. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1993. [DOI: 10.1016/s0065-7743(08)60880-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|