1
|
Singh R, Kumawat M, Gogoi H, Madhyastha H, Lichtfouse E, Daima HK. Engineered Nanomaterials for Immunomodulation: A Review. ACS APPLIED BIO MATERIALS 2024; 7:727-751. [PMID: 38166376 DOI: 10.1021/acsabm.3c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The immune system usually provides a defense against invading pathogenic microorganisms and any other particulate contaminants. Nonetheless, it has been recently reported that nanomaterials can evade the immune system and modulate immunological responses due to their unique physicochemical characteristics. Consequently, nanomaterial-based activation of immune components, i.e., neutrophils, macrophages, and other effector cells, may induce inflammation and alter the immune response. Here, it is essential to distinguish the acute and chronic modulations triggered by nanomaterials to determine the possible risks to human health. Nanomaterials size, shape, composition, surface charge, and deformability are factors controlling their uptake by immune cells and the resulting immune responses. The exterior corona of molecules adsorbed over nanomaterials surfaces also influences their immunological effects. Here, we review current nanoengineering trends for targeted immunomodulation with an emphasis on the design, safety, and potential toxicity of nanomaterials. First, we describe the characteristics of engineered nanomaterials that trigger immune responses. Then, the biocompatibility and immunotoxicity of nanoengineered particles are debated, because these factors influence applications. Finally, future nanomaterial developments in terms of surface modifications, synergistic approaches, and biomimetics are discussed.
Collapse
Affiliation(s)
| | - Mamta Kumawat
- Department of Biotechnology, School of Sciences, JECRC University, Sitapura Extension, Jaipur 303905, Rajasthan, India
| | - Himanshu Gogoi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, University of Miyazaki, Miyazaki 8891692, Japan
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University Xi'an, Shaanxi 710049, China
| | - Hemant Kumar Daima
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindari 305817, Ajmer, India
| |
Collapse
|
2
|
Bordon G, Ramakrishna SN, Edalat SG, Eugster R, Arcifa A, Vermathen M, Aleandri S, Bertoncelj MF, Furrer J, Vermathen P, Isa L, Crockett R, Distler O, Luciani P. Liposomal aggregates sustain the release of rapamycin and protect cartilage from friction. J Colloid Interface Sci 2023; 650:1659-1670. [PMID: 37494862 DOI: 10.1016/j.jcis.2023.07.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Liposomes show promise as biolubricants for damaged cartilage, but their small size results in low joint and cartilage retention. We developed a zinc ion-based liposomal drug delivery system for local osteoarthritis therapy, focusing on sustained release and tribological protection from phospholipid lubrication properties. Our strategy involved inducing aggregation of negatively charged liposomes with zinc ions to extend rapamycin (RAPA) release and improve cartilage lubrication. Liposomal aggregation occurred within 10 min and was irreversible, facilitating excess cation removal. The aggregates extended RAPA release beyond free liposomes and displayed irregular morphology influenced by RAPA. At nearly 100 µm, the aggregates were large enough to exceed the previously reported size threshold for increased joint retention. Tribological assessment on silicon surfaces and ex vivo porcine cartilage revealed the system's excellent protective ability against friction at both nano- and macro-scales. Moreover, RAPA was shown to attenuate the fibrotic response in human OA synovial fibroblasts. Our findings suggest the zinc ion-based liposomal drug delivery system has potential to enhance OA therapy through extended release and cartilage tribological protection, while also illustrating the impact of a hydrophobic drug like RAPA on liposome aggregation and morphology.
Collapse
Affiliation(s)
- Gregor Bordon
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Shivaprakash N Ramakrishna
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Vladimir- Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Sam G Edalat
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Remo Eugster
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Andrea Arcifa
- Laboratory for Surface Science and Coating Technologies, EMPA, Uberlandstrasse 129, 8600 Dubendorf, Switzerland
| | - Martina Vermathen
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Peter Vermathen
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University & Inselspital Bern, sitem-insel AG, Freiburgstrasse 3, 3010 Bern, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Vladimir- Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Rowena Crockett
- Laboratory for Surface Science and Coating Technologies, EMPA, Uberlandstrasse 129, 8600 Dubendorf, Switzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| |
Collapse
|
3
|
Transferrin conjugated Stealth liposomes for sirolimus active targeting in breast cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Innovative therapeutic strategy using prostaglandin I 2 agonist (ONO1301) combined with nano drug delivery system for pulmonary arterial hypertension. Sci Rep 2021; 11:7292. [PMID: 33790393 PMCID: PMC8012709 DOI: 10.1038/s41598-021-86781-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/03/2021] [Indexed: 02/05/2023] Open
Abstract
Clinical outcomes of pulmonary arterial hypertension (PAH) may be improved using targeted delivery system. We investigated the efficacy of ONO1301 (prostacyclin agonist) nanospheres (ONONS) in Sugen5416/hypoxia rat models of PAH. The rats were injected with saline (control) or ONONS (n = 10, each) on days 21 and 28, respectively. Hepatocyte growth factor (HGF)-expressing fibroblasts and inflammatory cytokines were measured. Cardiac performance was assessed and targeted delivery was monitored in vivo, using Texas red-labeled nanoparticles. Compared with control, HGF-expressing fibroblasts and HGF expression levels were significantly higher in the ONONS group, while the levels of interleukin-6, interleukin-1β, transforming growth factor-β, and platelet-derived growth factor were lower. Histological assessment revealed significant amelioration of the percent medial wall thickness in pulmonary vasculature of rats in the ONONS group. Rats in the ONONS group showed decreased proliferating cell nuclear antigen-positive smooth muscle cells and improved right ventricle pressure/left ventricle pressure. No difference was seen in the accumulation of Texas red-labeled nanoparticles in the brain, heart, liver, and spleen between PAH and normal rats. However, a significant area of nanoparticles was detected in the lungs of PAH rats. ONONS effectively ameliorated PAH, with selective delivery to the damaged lung.
Collapse
|
5
|
Nandi U, Onyesom I, Douroumis D. Anti-cancer activity of sirolimus loaded liposomes in prostate cancer cell lines. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Nandi U, Onyesom I, Douroumis D. An in vitro evaluation of antitumor activity of sirolimus-encapsulated liposomes in breast cancer cells. J Pharm Pharmacol 2021; 73:300-309. [PMID: 33793879 DOI: 10.1093/jpp/rgaa061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/28/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Design and examine the effect of sirolimus-PEGylated (Stealth) liposomes for breast cancer treatment. In this study, we developed conventional and Stealth liposome nanoparticles comprising of distearoylphosphatidylcholine (DSPC) or dipalmitoyl-phosphatidylcholine (DPPC) and DSPE-MPEG-2000 lipids loaded with sirolimus as an anticancer agent. The effect of lipid grade, drug loading and incubation times were evaluated. METHODS Particle size distribution, encapsulation efficiency of conventional and Stealth liposomes were studied followed by cytotoxicity evaluation. The cellular uptake and internal localisation of liposome formulations were investigated using confocal microscopy. KEY FINDINGS The designed Stealth liposome formulations loaded with sirolimus demonstrated an effective in vitro anticancer therapy compared with conventional liposomes while the length of the acyl chain affected the cell viability. Anticancer activity was found to be related on the drug loading amounts and incubation times. Cell internalization was observed after 5 h while significant cellular uptake of liposome was detected after 24 h with liposome particles been located in the cytoplasm round the cell nucleus. Sirolimus Stealth liposomes induced cell apoptosis. CONCLUSIONS The design and evaluation of sirolimus-loaded PEGylated liposome nanoparticles demonstrated their capacity as drug delivery carrier for the treatment of breast cancer tumours.
Collapse
Affiliation(s)
- Uttom Nandi
- Medway School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent, UK
| | - Ichioma Onyesom
- Medway School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent, UK
| | - Dennis Douroumis
- Medway School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent, UK
| |
Collapse
|
7
|
Preparation and Characterization of Liposomal Everolimus by Thin-Film Hydration Technique. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/5462949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In 10% to 40% of the cases of coronary stent implantation, patients face in-stent restenosis due to an inflammatory response, which induces artery thickening. Everolimus, a drug that inhibits growth factor-stimulated cell proliferation of endothelial cells, represents a promising alternative to prevent in-stent restenosis. In this study, everolimus was encapsulated by a film hydration technique in liposomes by using phosphatidylcholine and cholesterol at different ratios. As the ratio of cholesterol increases, it modulates the rigidity of the structure which can affect the encapsulation efficiency of the drug due to steric hindrance. Moreover, various lipid : drug ratios were tested, and it was found that as the lipid : drug ratio increases, the encapsulation efficiency also increases. This behavior is observed because everolimus is a hydrophobic drug; therefore, if the lipidic region increases, more drug can be entrapped into the liposomes. In addition, stability of the encapsulated drug was tested for 4 weeks at 4°C. Our results demonstrate that it is possible to prepare liposomal everolimus by film hydration technique followed by extrusion with high entrapment efficiency as a viable drug delivery system.
Collapse
|
8
|
Le-Deygen IM, Skuredina AA, Kudryashova EV. Experimental Methods to Study the Mechanisms of Interaction of Lipid Membranes with Low-Molecular-Weight Drugs. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Condello M, Mancini G, Meschini S. The Exploitation of Liposomes in the Inhibition of Autophagy to Defeat Drug Resistance. Front Pharmacol 2020; 11:787. [PMID: 32547395 PMCID: PMC7272661 DOI: 10.3389/fphar.2020.00787] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a mechanism involved in many human diseases and in cancers can have a cytotoxic/cytostatic or protective action, being in the latter case involved in multidrug resistance. Understanding which of these roles autophagy has in cancer is thus fundamental for therapeutical decisions because it permits to optimize the therapeutical approach by activating or inhibiting autophagy according to the progression of the disease. However, a serious drawback of cancer treatment is often the scarce availability of drugs and autophagy modulators at the sites of interest. In the recent years, several nanocarriers have been developed and investigated to improve the solubility, bioavailability, controlled release of therapeutics and increase their cytotoxic effect on cancer cell. Here we have reviewed only liposomes as carriers of chemotherapeutics and autophagy inhibitors because they have low toxicity and immunogenicity and they are biodegradable and versatile. In this review after the analysis of the dual role of autophagy, of the main autophagic pathways, and of the role of autophagy in multidrug resistance, we will focus on the most effective liposomal formulations, thus highlighting the great potential of these targeting systems to defeat cancer diseases.
Collapse
Affiliation(s)
- Maria Condello
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| | - Giovanna Mancini
- Institute for Biological Systems, National Research Council, Rome, Italy
| | - Stefania Meschini
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| |
Collapse
|
10
|
Abud MB, Louzada RN, Isaac DLC, Souza LG, Dos Reis RG, Lima EM, de Ávila MP. In vivo and in vitro toxicity evaluation of liposome-encapsulated sirolimus. Int J Retina Vitreous 2019; 5:35. [PMID: 31572617 PMCID: PMC6757363 DOI: 10.1186/s40942-019-0186-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022] Open
Abstract
Background To evaluate the in vivo and in vitro toxicity of a new formulation of liposome-encapsulated sirolimus (LES). Methods In vitro experiments were done using ARPE-19 and HRP cells. An MTT assay was used to determine cell metabolic activity and a TUNEL assay for detecting DNA fragmentation. In vivo experiments were conducted on New Zealand albino rabbits that received intravitreal injections of empty liposomes (EL) or different concentrations of LES. Histopathological and immunohistochemical analyses were performed on the rabbit’s eyes following injection. Results Eighteen eyes of nine rabbits were used. MTT assay cell viability was 95.04% in group 1 (12.5 µL/mL LES). 92.95% in group 2 (25 µL/mL LES), 91.59% in group 3 (50 µL/mL LES), 98.09% in group 4 (12.5 µL/mL EL), 95.20% on group 5 (50 µL/mL EL), 98.53% in group 6 (50 µL/mL EL), and 2.84% on group 8 (50 µL/mL DMSO). There was no statistically significant difference among groups 1 to 7 in cell viability (p = 1.0), but the comparison of all groups with group 8 was significant (p < 0.0001). The TUNEL assay comparing two groups was not statistically significant from groups 1 to 7 (p = 1.0). The difference between groups 1 to 7 and group 8 (p < 0.0001) was significant. Histopathological changes were not found in any group. No activation of Müller cells was detected. Conclusion A novel formulation of LES delivered intravitreally did not cause in vitro toxicity, as evaluated by MTT and TUNEL assays, nor in vivo toxicity as evaluated by histopathology and immunohistochemistry in rabbit eyes.
Collapse
Affiliation(s)
| | - Ricardo Noguera Louzada
- 1Federal University of Goias, Goiania, GO Brazil.,Present Address: Instituto de Olhos São Sebastião, Largo do Machado 54, 1208, Rio de Janeiro, RJ 22221-020 Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Yoon HY, Chang IH, Goo YT, Kim CH, Kang TH, Kim SY, Lee SJ, Song SH, Whang YM, Choi YW. Intravesical delivery of rapamycin via folate-modified liposomes dispersed in thermo-reversible hydrogel. Int J Nanomedicine 2019; 14:6249-6268. [PMID: 31496684 PMCID: PMC6689153 DOI: 10.2147/ijn.s216432] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/12/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose To develop an intravesical instillation system for the treatment of bladder cancer, rapamycin (Rap) was encapsulated into liposomes and then homogeneously dispersed throughout a poloxamer 407 (P407)-based hydrogel. Methods Rap-loaded conventional liposomes (R-CL) and folate-modified liposomes (R-FL) were prepared using a film hydration method and pre-loading technique, and characterized by particle size, drug entrapment efficiency, and drug loading. The cellular uptake behavior in folate receptor-expressing bladder cancer cells was observed by flow cytometry and confocal laser scanning microscopy using a fluorescent probe. In vitro cytotoxic effects were evaluated using MTT assay, colony forming assay, and Western blot. For in vivo intravesical instillation, Rap-loaded liposomes were dispersed in P407-gel, generating R-CL/P407 and R-FL/P407. Gel-forming capacities and drug release were evaluated. Using the MBT2/Luc orthotopic bladder cancer mouse model, in vivo antitumor efficacy was evaluated according to regions of interest (ROI) measurement. Results R-CL and R-FL were successfully prepared, at approximately <160 nm, 42% entrapment efficiency, and 57 μg/mg drug loading. FL cellular uptake was enhanced over 2-fold than that of CL; folate receptor-mediated endocytosis was confirmed using a competitive assay with folic acid pretreatment. In vitro cytotoxic effects increased dose-dependently. Rap-loaded liposomes inhibited mTOR signaling and induced autophagy in urothelial carcinoma cells. With gelation time of <30 seconds and gel duration of >12 hrs, both R-CL/P407 and R-FL/P407 preparations transformed into gel immediately after instillation into the mouse bladder. Drug release from the liposomal gel was erosion controlled. In orthotopic bladder cancer mouse model, statistically significant differences in ROI values were found between R-CL/P407 and R-FL/P407 groups at day 11 (P=0.0273) and day 14 (P=0.0088), indicating the highest tumor growth inhibition by R-FL/P407. Conclusion Intravesical instillation of R-FL/P407 might represent a good candidate for bladder cancer treatment, owing to its enhanced retention and FR-targeting.
Collapse
Affiliation(s)
- Ho Yub Yoon
- College of Pharmacy, Chung-ang University , Seoul, Korea
| | - In Ho Chang
- College of Medicine, Chung-ang University , Seoul, Korea
| | - Yoon Tae Goo
- College of Pharmacy, Chung-ang University , Seoul, Korea
| | - Chang Hyun Kim
- College of Pharmacy, Chung-ang University , Seoul, Korea
| | - Tae Hoon Kang
- College of Pharmacy, Chung-ang University , Seoul, Korea
| | - Soo-Yeon Kim
- Research Institute, National Cancer Center , Goyang, Korea
| | - Sang Jin Lee
- Research Institute, National Cancer Center , Goyang, Korea
| | - Seh Hyon Song
- College of Pharmacy, Kyungsung University , Busan, Korea
| | - Young Mi Whang
- College of Medicine, Chung-ang University , Seoul, Korea
| | | |
Collapse
|
12
|
Haeri A, Osouli M, Bayat F, Alavi S, Dadashzadeh S. Nanomedicine approaches for sirolimus delivery: a review of pharmaceutical properties and preclinical studies. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1-14. [DOI: 10.1080/21691401.2017.1408123] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Azadeh Haeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahraz Osouli
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Bayat
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sonia Alavi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Benedetto G, Vestal CG, Richardson C. Aptamer-Functionalized Nanoparticles as "Smart Bombs": The Unrealized Potential for Personalized Medicine and Targeted Cancer Treatment. Target Oncol 2016; 10:467-85. [PMID: 25989948 DOI: 10.1007/s11523-015-0371-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Conventional delivery of chemotherapeutic agents leads to multiple systemic side effects and toxicity, limiting the doses that can be used. The development of targeted therapies to selectively deliver anti-cancer agents to tumor cells without damaging neighboring unaffected cells would lead to higher effective local doses and improved response rates. Aptamers are single-stranded oligonucleotides that bind to target molecules with both high affinity and high specificity. The high specificity exhibited by aptamers promotes localization and uptake by specific cell populations, such as tumor cells, and their conjugation to anti-cancer drugs has been explored for targeted therapy. Advancements in the development of polymeric nanoparticles allow anti-cancer drugs to be encapsulated in protective nonreactive shells for controlled drug delivery with reduced toxicity. The conjugation of aptamers to nanoparticle-based therapeutics may further enhance direct targeting and personalized medicine. Here we present how the combinatorial use of aptamer and nanoparticle technologies has the potential to develop "smart bombs" for targeted cancer treatment, highlighting recent pre-clinical studies demonstrating efficacy for the direct targeting to particular tumor cell populations. However, despite these pre-clinical promising results, there has been little progress in moving this technology to the bedside.
Collapse
Affiliation(s)
- Gregory Benedetto
- Department of Biological Sciences, UNC Charlotte, 1902 University City Blvd., Woodward Hall Room 386B, Charlotte, NC, 28223, USA.
| | - C Greer Vestal
- Department of Biological Sciences, UNC Charlotte, 1902 University City Blvd., Woodward Hall Room 386B, Charlotte, NC, 28223, USA.
| | - Christine Richardson
- Department of Biological Sciences, UNC Charlotte, 1902 University City Blvd., Woodward Hall Room 386B, Charlotte, NC, 28223, USA.
| |
Collapse
|
14
|
Mazuryk J, Deptuła T, Polchi A, Gapiński J, Giovagnoli S, Magini A, Emiliani C, Kohlbrecher J, Patkowski A. Rapamycin-loaded solid lipid nanoparticles: Morphology and impact of the drug loading on the phase transition between lipid polymorphs. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Hinna AH, Hupfeld S, Kuntsche J, Bauer-Brandl A, Brandl M. Mechanism and kinetics of the loss of poorly soluble drugs from liposomal carriers studied by a novel flow field-flow fractionation-based drug release-/transfer-assay. J Control Release 2016; 232:228-37. [PMID: 27112112 DOI: 10.1016/j.jconrel.2016.04.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 01/30/2023]
Abstract
Liposomes represent a versatile drug formulation approach e.g. for improving the water-solubility of poorly soluble drugs but also to achieve drug targeting and controlled release. For the latter applications it is essential that the drug remains associated with the liposomal carrier during transit in the vascular bed. A range of in vitro test methods has been suggested over the years for prediction of the release of drug from liposomal carriers. The majority of these fail to give a realistic prediction for poorly water-soluble drugs due to the intrinsic tendency of such compounds to remain associated with liposome bilayers even upon extensive dilution. Upon i.v. injection, in contrast, rapid drug loss often occurs due to drug transfer from the liposomal carriers to endogenous lipophilic sinks such as lipoproteins, plasma proteins or membranes of red blood cells and endothelial cells. Here we report on the application of a recently introduced in vitro predictive drug transfer assay based on incubation of the liposomal drug carrier with large multilamellar liposomes, the latter serving as a biomimetic model sink, using flow field-flow fractionation as a tool to separate the two types of liposomes. By quantifying the amount of drug remaining associated with the liposomal drug carrier as well as that transferred to the acceptor liposomes at distinct times of incubation, both the kinetics of drug transfer and release to the water phase could be established for the model drug p-THPP (5,10,15,20-tetrakis(4-hydroxyphenyl)21H,23H-porphine). p-THPP is structurally similar to temoporfin, a photosensitizer which is under clinical evaluation in a liposomal formulation. Mechanistic insights were gained by varying the donor-to-acceptor lipid mass ratio, size and lamellarity of the liposomes. Drug transfer kinetics from one liposome to another was found rate determining as compared to redistribution from the outermost to the inner concentric bilayers, such that the overall process could be adequately described by a single 1st order kinetic model. By varying the donor-to-acceptor lipid mass ratio in the range 1:1 to 1:10, a correlation was established between donor-to-acceptor-lipid mass ratio and transfer kinetics, which is regarded essential for scaling to physiological lipid mass ratios. By applying the assay to a series of structurally related model compounds of different bilayer affinity, transfer and release kinetics were established over the whole expected range of liposome bilayer associated drugs in terms of water solubility and lipophilicity. A very rapid transfer and considerable release from liposomes to the water phase was observed for the more water-soluble compounds Sudan II (clogP 5.45) and Sudan III (clogP 6.83). For the more lipophilic compounds, the rate of transfer from the donor liposomes followed the rank order Sudan IV (fastest)>Oil Red O>Sudan Black>p-THPP (slowest). For an equimolar donor-to-acceptor lipid mass ratio, half-lifes of transfer in the range of 12min (Sudan IV) up to 1.5h (p-THPP) were determined. In essence, the results presented here allow for both, mechanistic insights and predictions of drug loss from liposomal carriers upon exposure to biological sinks, which appear more realistic than the commonly employed in vitro release tests.
Collapse
Affiliation(s)
- Askell Hvid Hinna
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy, Campusvej 55, DK-5230 Odense, Denmark
| | - Stefan Hupfeld
- Aker Biomarine Antarctic AS, Oksenøyveien 10, P.O Box 496, NO-1327 Lysaker, Norway; Institute for Energy Technology, Isotope laboratories, Instituttveien 18, P.O. Box 40, NO-2027 Kjeller, Norway
| | - Judith Kuntsche
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy, Campusvej 55, DK-5230 Odense, Denmark
| | - Annette Bauer-Brandl
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy, Campusvej 55, DK-5230 Odense, Denmark
| | - Martin Brandl
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy, Campusvej 55, DK-5230 Odense, Denmark.
| |
Collapse
|
16
|
Heat-Shock Protein 90–Targeted Nano Anticancer Therapy. J Pharm Sci 2016; 105:1454-66. [DOI: 10.1016/j.xphs.2015.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/16/2015] [Accepted: 10/12/2015] [Indexed: 11/20/2022]
|
17
|
Eloy JO, Petrilli R, Topan JF, Antonio HMR, Barcellos JPA, Chesca DL, Serafini LN, Tiezzi DG, Lee RJ, Marchetti JM. Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy. Colloids Surf B Biointerfaces 2016; 141:74-82. [PMID: 26836480 DOI: 10.1016/j.colsurfb.2016.01.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 12/27/2022]
Abstract
Paclitaxel and rapamycin have been reported to act synergistically to treat breast cancer. Albeit paclitaxel is available for breast cancer treatment, the most commonly used formulation in the clinic presents side effects, limiting its use. Furthermore, both drugs present pharmacokinetics drawbacks limiting their in vivo efficacy and clinic combination. As an alternative, drug delivery systems, particularly liposomes, emerge as an option for drug combination, able to simultaneously deliver co-loaded drugs with improved therapeutic index. Therefore, the purpose of this study is to develop and characterize a co-loaded paclitaxel and rapamycin liposome and evaluate it for breast cancer efficacy both in vitro and in vivo. Results showed that a SPC/Chol/DSPE-PEG (2000) liposome was able to co-encapsulate paclitaxel and rapamycin with suitable encapsulation efficiency values, nanometric particle size, low polydispersity and neutral zeta potential. Taken together, FTIR and thermal analysis evidenced drug conversion to the more bioavailable molecular and amorphous forms, respectively, for paclitaxel and rapamycin. The pegylated liposome exhibited excellent colloidal stability and was able to retain drugs encapsulated, which were released in a slow and sustained fashion. Liposomes were more cytotoxic to 4T1 breast cancer cell line than the free drugs and drugs acted synergistically, particularly when co-loaded. Finally, in vivo therapeutic evaluation carried out in 4T1-tumor-bearing mice confirmed the in vitro results. The co-loaded paclitaxel/rapamycin pegylated liposome better controlled tumor growth compared to the solution. Therefore, we expect that the formulation developed herein might be a contribution for future studies focusing on the clinical combination of paclitaxel and rapamycin.
Collapse
Affiliation(s)
- Josimar O Eloy
- College of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Avenida do Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil; College of Pharmacy, The Ohio State University, Columbus, 500W 12th Ave, Columbus, OH 43210, United States
| | - Raquel Petrilli
- College of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Avenida do Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil; College of Pharmacy, The Ohio State University, Columbus, 500W 12th Ave, Columbus, OH 43210, United States
| | - José Fernando Topan
- College of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Avenida do Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil
| | - Heriton Marcelo Ribeiro Antonio
- School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Avenida Bandeirantes s/n, 14040-040 Ribeirao Preto, SP, Brazil
| | - Juliana Palma Abriata Barcellos
- College of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Avenida do Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil
| | - Deise L Chesca
- School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Avenida Bandeirantes s/n, 14040-040 Ribeirao Preto, SP, Brazil
| | - Luciano Neder Serafini
- School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Avenida Bandeirantes s/n, 14040-040 Ribeirao Preto, SP, Brazil
| | - Daniel G Tiezzi
- School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Avenida Bandeirantes s/n, 14040-040 Ribeirao Preto, SP, Brazil
| | - Robert J Lee
- College of Pharmacy, The Ohio State University, Columbus, 500W 12th Ave, Columbus, OH 43210, United States
| | - Juliana Maldonado Marchetti
- College of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Avenida do Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
18
|
Cholkar K, Gunda S, Earla R, Pal D, Mitra AK. Nanomicellar Topical Aqueous Drop Formulation of Rapamycin for Back-of-the-Eye Delivery. AAPS PharmSciTech 2015; 16:610-22. [PMID: 25425389 DOI: 10.1208/s12249-014-0244-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/23/2014] [Indexed: 12/20/2022] Open
Abstract
The objective of this study was to develop a clear, aqueous rapamycin-loaded mixed nanomicellar formulations (MNFs) for the back-of-the-eye delivery. MNF of rapamycin (0.2%) was prepared with vitamin E tocopherol polyethylene glycol succinate (TPGS) (Vit E TPGS) and octoxynol-40 (Oc-40) as polymeric matrix. MNF was characterized by various parameters such as size, charge, shape, and viscosity. Proton nuclear magnetic resonance ((1)H NMR) was used to identify unentrapped rapamycin in MNF. Cytotoxicity was evaluated in human retinal pigment epithelial (D407) and rabbit primary corneal epithelial cells (rPCECs). In vivo posterior ocular rapamycin distribution studies were conducted in male New Zealand white rabbits. The optimized MNF has excellent rapamycin entrapment and loading efficiency. The average size of MNF was 10.98 ± 0.089 and 10.84 ± 0.11 nm for blank and rapamycin-loaded MNF, respectively. TEM analysis revealed that nanomicelles are spherical in shape. Absence of free rapamycin in the MNF was confirmed by (1)H NMR studies. Neither placebo nor rapamycin-loaded MNF produced cytotoxicity on D407 and rPCECs indicating formulations are tolerable. In vivo studies demonstrated a very high rapamycin concentration in retina-choroid (362.35 ± 56.17 ng/g tissue). No drug was identified in the vitreous humor indicating the sequestration of rapamycin in lipoidal retinal tissues. In summary, a clear, aqueous MNF comprising of Vit E TPGS and Oc-40 loaded with rapamycin was successfully developed. Back-of-the-eye tissue distribution studies demonstrated a very high rapamycin levels in retina-choroid (place of drug action) with a negligible drug partitioning into vitreous humor.
Collapse
|
19
|
Valizadeh H, Ghanbarzadeh S, Zakeri-Milani P. Fusogenic liposomal formulation of sirolimus: improvement of drug anti-proliferative effect on human T-cells. Drug Dev Ind Pharm 2014; 41:1558-65. [DOI: 10.3109/03639045.2014.971032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Ilinskaya AN, Dobrovolskaia MA. Immunosuppressive and anti-inflammatory properties of engineered nanomaterials. Br J Pharmacol 2014; 171:3988-4000. [PMID: 24724793 PMCID: PMC4243973 DOI: 10.1111/bph.12722] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/24/2014] [Accepted: 04/03/2014] [Indexed: 12/24/2022] Open
Abstract
Nanoparticle interactions with various components of the immune system are determined by their physicochemical properties such as size, charge, hydrophobicity and shape. Nanoparticles can be engineered to either specifically target the immune system or to avoid immune recognition. Nevertheless, identifying their unintended impacts on the immune system and understanding the mechanisms of such accidental effects are essential for establishing a nanoparticle's safety profile. While immunostimulatory properties have been reviewed before, little attention in the literature has been given to immunosuppressive and anti-inflammatory properties. The purpose of this review is to fill this gap. We will discuss intended immunosuppression achieved by either nanoparticle engineering, or the use of nanoparticles to carry immunosuppressive or anti-inflammatory drugs. We will also review unintended immunosuppressive properties of nanoparticles per se and consider how such properties could be either beneficial or adverse.
Collapse
Affiliation(s)
- A N Ilinskaya
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research IncFrederick, MD, USA
| | - M A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research IncFrederick, MD, USA
| |
Collapse
|
21
|
Ghanbarzadeh S, Arami S, Pourmoazzen Z, Khorrami A. Improvement of the antiproliferative effect of rapamycin on tumor cell lines by poly (monomethylitaconate)-based pH-sensitive, plasma stable liposomes. Colloids Surf B Biointerfaces 2013; 115:323-30. [PMID: 24394948 DOI: 10.1016/j.colsurfb.2013.12.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/05/2013] [Accepted: 12/10/2013] [Indexed: 01/05/2023]
Abstract
pH-responsive polymers produce liposomes with pH-sensitive property which can release their encapsulated drug under mild acidic conditions found inside the cellular endosomes, inflammatory tissues and cancerous cells. The aim of this study was preparing pH-sensitive and plasma stable liposomes in order to enhance the selectivity and antiproliferative effect of Rapamycin. In the present study we used PEG-poly (monomethylitaconate)-CholC6 (PEG-PMMI-CholC6) copolymer and Oleic acid (OA) to induce pH-sensitive property in Rapamycin liposomes. pH-sensitive liposomal formulations bearing copolymer PEG-PMMI-CholC6 and OA were characterized in regard to physicochemical stability, pH-responsiveness and stability in human plasma. The ability of pH-sensitive liposomes in enhancing the cytotoxicity of Rapamycin was evaluated in vitro by using colon cancer cell line (HT-29) and compared with its cytotoxicity on human umbilical vein endothelial cell (HUVEC) line. Both formulations were found to release their contents under mild acidic conditions rapidly. However, unlike OA-based liposomes, the PEG-PMMI-CholC6 bearing liposomes preserved their pH-sensitivity in plasma. Both types of pH-sensitive Rapamycin-loaded liposomes exhibited high physicochemical stability and could deliver antiproliferative agent into HT-29 cells much more efficiently in comparison with conventional liposomes. Conversely, the antiproliferative effect of pH-sensitive liposomes on HUVEC cell line was less than conventional liposomes. This study showed that both OA and PEG-PMMI-CholC6-based vesicles could submit pH-sensitive property, however, only PEG-PMMI-CholC6-based liposomes could preserve pH-sensitive property after incubation in plasma. As a result pH-sensitive PEG-PMMI-CholC6-based liposomal formulation can improve the selectivity, stability and antiproliferative effect of Rapamycin.
Collapse
Affiliation(s)
- Saeed Ghanbarzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Arami
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zhaleh Pourmoazzen
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Iran
| | - Arash Khorrami
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Patel NR, Pattni BS, Abouzeid AH, Torchilin VP. Nanopreparations to overcome multidrug resistance in cancer. Adv Drug Deliv Rev 2013; 65:1748-62. [PMID: 23973912 DOI: 10.1016/j.addr.2013.08.004] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/02/2013] [Indexed: 01/08/2023]
Abstract
Multidrug resistance is the most widely exploited phenomenon by which cancer eludes chemotherapy. Broad variety of factors, ranging from the cellular ones, such as over-expression of efflux transporters, defective apoptotic machineries, and altered molecular targets, to the physiological factors such as higher interstitial fluid pressure, low extracellular pH, and formation of irregular tumor vasculature are responsible for multidrug resistance. A combination of various undesirable factors associated with biological surroundings together with poor solubility and instability of many potential therapeutic small & large molecules within the biological systems and systemic toxicity of chemotherapeutic agents has necessitated the need for nano-preparations to optimize drug delivery. The physiology of solid tumors presents numerous challenges for successful therapy. However, it also offers unique opportunities for the use of nanotechnology. Nanoparticles, up to 400 nm in size, have shown great promise for carrying, protecting and delivering potential therapeutic molecules with diverse physiological properties. In this review, various factors responsible for the MDR and the use of nanotechnology to overcome the MDR, the use of spheroid culture as well as the current technique of producing microtumor tissues in vitro are discussed in detail.
Collapse
|
23
|
Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 2013; 65:1866-79. [PMID: 24120656 PMCID: PMC5812459 DOI: 10.1016/j.addr.2013.09.019] [Citation(s) in RCA: 496] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 09/29/2013] [Accepted: 09/30/2013] [Indexed: 12/27/2022]
Abstract
Nanomedicine is an emerging form of therapy that focuses on alternative drug delivery and improvement of the treatment efficacy while reducing detrimental side effects to normal tissues. Cancer drug resistance is a complicated process that involves multiple mechanisms. Here we discuss the major forms of drug resistance and the new possibilities that nanomedicines offer to overcome these treatment obstacles. Novel nanomedicines that have a high ability for flexible, fast drug design and production based on tumor genetic profiles can be created making drug selection for personal patient treatment much more intensive and effective. This review aims to demonstrate the advantage of the young medical science field, nanomedicine, for overcoming cancer drug resistance. With the advanced design and alternative mechanisms of drug delivery known for different nanodrugs including liposomes, polymer conjugates, micelles, dendrimers, carbon-based, and metallic nanoparticles, overcoming various forms of multi-drug resistance looks promising and opens new horizons for cancer treatment.
Collapse
Affiliation(s)
- Janet L Markman
- Nanomedicine Research Center, Department of Neurosurgery at Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | | | | | |
Collapse
|
24
|
Onyesom I, Lamprou DA, Sygellou L, Owusu-Ware SK, Antonijevic M, Chowdhry BZ, Douroumis D. Sirolimus encapsulated liposomes for cancer therapy: physicochemical and mechanical characterization of sirolimus distribution within liposome bilayers. Mol Pharm 2013; 10:4281-93. [PMID: 24099044 DOI: 10.1021/mp400362v] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sirolimus has recently been introduced as a therapeutic agent for breast and prostate cancer. In the current study, conventional and Stealth liposomes were used as carriers for the encapsulation of sirolimus. The physicochemical characteristics of the sirolimus liposome nanoparticles were investigated including the particle size, zeta potential, stability and membrane integrity. In addition atomic force microscopy was used to study the morphology, surface roughness and mechanical properties such as elastic modulus deformation and deformation. Sirolimus encapsulation in Stealth liposomes showed a high degree of deformation and lower packing density especially for dipalmitoyl-phosphatidylcholine (DPPC) Stealth liposomes compared to unloaded. Similar results were obtained by differential scanning calorimetry (DSC) studies; sirolimus loaded liposomes were found to result in a distorted state of the bilayer. X-ray photon electron (XPS) analysis revealed a uniform distribution of sirolimus in multilamellar DPPC Stealth liposomes compared to a nonuniform, greater outer layer lamellar distribution in distearoylphosphatidylcholine (DSPC) Stealth liposomes.
Collapse
Affiliation(s)
- Ichioma Onyesom
- School of Science, University of Greenwich , Medway Campus, Chatham Maritime, Kent ME4 4TB, U.K
| | | | | | | | | | | | | |
Collapse
|
25
|
Haeri A, Sadeghian S, Rabbani S, Anvari MS, Boroumand MA, Dadashzadeh S. Use of remote film loading methodology to entrap sirolimus into liposomes: Preparation, characterization and in vivo efficacy for treatment of restenosis. Int J Pharm 2011; 414:16-27. [DOI: 10.1016/j.ijpharm.2011.04.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 11/16/2022]
|
26
|
Yang C, Liu HZ, Fu ZX, Lu WD. Oxaliplatin long-circulating liposomes improved therapeutic index of colorectal carcinoma. BMC Biotechnol 2011; 11:21. [PMID: 21401960 PMCID: PMC3064655 DOI: 10.1186/1472-6750-11-21] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 03/15/2011] [Indexed: 11/29/2022] Open
Abstract
Background Cytotoxic drugs are non-selective between normal and pathological tissue, and this poses a challenge regarding the strategy for treatment of tumors. To achieve sufficient antitumor activity for colorectal carcinoma, optimization of the therapeutic regimen is of great importance. We investigated the ability of oxaliplatin long-circulating liposomes (PEG-liposomal L-oHP) to provide an improved therapeutic index of colorectal carcinoma. Results We determined that PEG- liposomes conjugated with cells at 2 h, with a mean fluorescence intensity that was enhanced upon extended induction time. The PEG-liposomal L-oHP induced a significant apoptotic response as compared with free L-oHP, 23.21% ± 3.38% vs. 16.85% ± 0.98%, respectively. Fluorescence imaging with In-Vivo Imaging demonstrated that PEG- liposomes specifically targeted tumour tissue. After intravenous injections of PEG-liposomal L-oHP or free L-oHP, the tumour volume suppression ratio was 26.08% ± 12.43% and 18.19% ± 7.09%, respectively, the percentage increased life span (ILS%) was 45.36% and 76.19%, respectively, and Bcl-2, Bax mRNA and protein expression in tumour tissue was 0.27-fold vs. 0.88-fold and 1.32-fold vs. 1.61-fold compared with free L-oHP, respectively. Conclusion The PEG-liposomal L-oHP exhibited a tendency to target tumour tissue and demonstrated a significantly greater impact on apoptosis compared to free oxaliplatin.
Collapse
Affiliation(s)
- Chuang Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, Chongqing, China.
| | | | | | | |
Collapse
|
27
|
Shapira A, Livney YD, Broxterman HJ, Assaraf YG. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Updat 2011; 14:150-63. [PMID: 21330184 DOI: 10.1016/j.drup.2011.01.003] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 01/12/2011] [Accepted: 01/14/2011] [Indexed: 12/11/2022]
Abstract
Anticancer drug resistance almost invariably emerges and poses major obstacles towards curative therapy of various human malignancies. In the current review we will distinguish between mechanisms of chemoresistance that are predominantly mediated by ATP-driven multidrug resistance (MDR) efflux transporters, typically of the ATP-binding cassette (ABC) superfamily, and those that are independent of such drug efflux pumps. In recent years, multiple nanoparticle (NP)-based therapeutic systems have been developed that were rationally designed to overcome drug resistance by neutralizing, evading or exploiting various drug efflux pumps and other resistance mechanisms. NPs are being exploited for selective drug delivery to tumor cells, to cancer stem/tumor initiating cells and/or to the supportive cancer cell microenvironment, i.e. stroma or tumor vasculature. Some of these NPs are currently undergoing preclinical in vivo studies as well as advanced stages of clinical evaluation with promising results. Nanovehicles harboring a payload of therapeutic drug combinations for the selective targeting and elimination of tumor cells as well as the simultaneous overcoming of mechanisms of drug resistance are a subject of intense research efforts, some of which are expected to enter clinical trials in the near future. In the present review we highlight novel approaches to selectively target cancer cells and overcome drug resistance phenomena, through the use of various nanometric drug delivery systems. In the near future, it is anticipated that innovative theragnostic nanovehicles will be developed which will harbor four major components: (1) a selective targeting moiety, (2) a diagnostic imaging aid for the localization of the malignant tumor and its micro- or macrometastases, (3) a cytotoxic, small molecule drug(s) or novel therapeutic biological(s), and (4) a chemosensitizing agent aimed at neutralizing a resistance mechanism, or exploiting a molecular "Achilles hill" of drug resistant cells. We propose to name these envisioned four element-containing nanovehicle platform, "quadrugnostic" nanomedicine. This targeted strategy holds promise in paving the way for the introduction of highly effective nanoscopic vehicles for cancer therapeutics while overcoming drug resistance.
Collapse
Affiliation(s)
- Alina Shapira
- Russell Berrie Nanotechnology Institute, Technion, Haifa, Israel
| | | | | | | |
Collapse
|
28
|
Abdur Rouf M, Vural I, Bilensoy E, Hincal A, Erol DD. Rapamycin-cyclodextrin complexation: improved solubility and dissolution rate. J INCL PHENOM MACRO 2010. [DOI: 10.1007/s10847-010-9885-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Urbinati G, Marsaud V, Plassat V, Fattal E, Lesieur S, Renoir JM. Liposomes loaded with histone deacetylase inhibitors for breast cancer therapy. Int J Pharm 2010; 397:184-93. [DOI: 10.1016/j.ijpharm.2010.06.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
|