1
|
Mišík O, Kejíková J, Cejpek O, Malý M, Jugl A, Bělka M, Mravec F, Lízal F. Nebulization and In Vitro Upper Airway Deposition of Liposomal Carrier Systems. Mol Pharm 2024; 21:1848-1860. [PMID: 38466817 PMCID: PMC10988550 DOI: 10.1021/acs.molpharmaceut.3c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Liposomal carrier systems have emerged as a promising technology for pulmonary drug delivery. This study focuses on two selected liposomal systems, namely, dipalmitoylphosphatidylcholine stabilized by phosphatidic acid and cholesterol (DPPC-PA-Chol) and dipalmitoylphosphatidylcholine stabilized by polyethylene glycol and cholesterol (DPPC-PEG-Chol). First, the research investigates the stability of these liposomal systems during the atomization process using different kinds of nebulizers (air-jet, vibrating mesh, and ultrasonic). The study further explores the aerodynamic particle size distribution of the aerosol generated by the nebulizers. The nebulizer that demonstrated optimal stability and particle size was selected for more detailed investigation, including Andersen cascade impactor measurements, an assessment of the influence of flow rate and breathing profiles on aerosol particle size, and an in vitro deposition study on a realistic replica of the upper airways. The most suitable combination of a nebulizer and liposomal system was DPPC-PA-Chol nebulized by a Pari LC Sprint Star in terms of stability and particle size. The influence of the inspiration flow rate on the particle size was not very strong but was not negligible either (decrease of Dv50 by 1.34 μm with the flow rate increase from 8 to 60 L/min). A similar effect was observed for realistic transient inhalation. According to the in vitro deposition measurement, approximately 90% and 70% of the aerosol penetrated downstream of the trachea using the stationary flow rate and the realistic breathing profile, respectively. These data provide an image of the potential applicability of liposomal carrier systems for nebulizer therapy. Regional lung drug deposition is patient-specific; therefore, deposition results might vary for different airway geometries. However, deposition measurement with realistic boundary conditions (airway geometry, breathing profile) brings a more realistic image of the drug delivery by the selected technology. Our results show how much data from cascade impactor testing or estimates from the fine fraction concept differ from those of a more realistic case.
Collapse
Affiliation(s)
- Ondrej Mišík
- Department
of Thermodynamics and Environmental Engineering, Faculty of Mechanical
Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| | - Jana Kejíková
- Institute
of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 612 00 Brno, Czech Republic
| | - Ondřej Cejpek
- Department
of Thermodynamics and Environmental Engineering, Faculty of Mechanical
Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| | - Milan Malý
- Department
of Thermodynamics and Environmental Engineering, Faculty of Mechanical
Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| | - Adam Jugl
- Institute
of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 612 00 Brno, Czech Republic
| | - Miloslav Bělka
- Department
of Thermodynamics and Environmental Engineering, Faculty of Mechanical
Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| | - Filip Mravec
- Institute
of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 612 00 Brno, Czech Republic
| | - František Lízal
- Department
of Thermodynamics and Environmental Engineering, Faculty of Mechanical
Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| |
Collapse
|
2
|
Szabová J, Mišík O, Fučík J, Mrázová K, Mravcová L, Elcner J, Lízal F, Krzyžánek V, Mravec F. Liposomal form of erlotinib for local inhalation administration and efficiency of its transport to the lungs. Int J Pharm 2023; 634:122695. [PMID: 36758881 DOI: 10.1016/j.ijpharm.2023.122695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
This contribution is focused on the preparation of a liposomal drug delivery system of erlotinib resisting the nebulization process that could be used for local treatment of non-small-cell lung cancer. Liposomes with different compositions were formulated to reveal their influence on the encapsulation efficiency of erlotinib. An encapsulation efficiency higher than 98 % was achieved for all vesicles containing phosphatidic acid (d ≈ 100 nm, ζ = - 43 mV) even in the presence of polyethylene glycol (d ≈ 150 nm, ζ = - 17 mV) which decreased this value in all other formulas. The three most promising formulations were nebulized by two air-jet and two vibrating mesh nebulizers, and the aerosol deposition in lungs was calculated by tools of computational fluid and particle mechanics. According to the numerical simulations and measurements of liposomal stability, air-jet nebulizers generated larger portion of the aerosol able to penetrate deeper into the lungs, but the delivery is likely to be more efficient when the formulation is administered by Aerogen Solo vibrating mesh nebulizer because of a higher portion of intact vesicles after the nebulization. The leakage of encapsulated drug from liposomes nebulized by this nebulizer was lower than 2 % for all chosen vesicles.
Collapse
Affiliation(s)
- Jana Szabová
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic.
| | - Ondrej Mišík
- Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Jan Fučík
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Kateřina Mrázová
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i, Brno, Czech Republic
| | - Ludmila Mravcová
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Jakub Elcner
- Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - František Lízal
- Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Vladislav Krzyžánek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i, Brno, Czech Republic
| | - Filip Mravec
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
3
|
Khan I, Al-Hasani A, Khan MH, Khan AN, -Alam FE, Sadozai SK, Elhissi A, Khan J, Yousaf S. Impact of dispersion media and carrier type on spray-dried proliposome powder formulations loaded with beclomethasone dipropionate for their pulmonary drug delivery via a next generation impactor. PLoS One 2023; 18:e0281860. [PMID: 36913325 PMCID: PMC10010524 DOI: 10.1371/journal.pone.0281860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
Drug delivery via aerosolization for localized and systemic effect is a non-invasive approach to achieving pulmonary targeting. The aim of this study was to prepare spray-dried proliposome (SDP) powder formulations to produce carrier particles for superior aerosolization performance, assessed via a next generation impactor (NGI) in combination with a dry powder inhaler. SDP powder formulations (F1-F10) were prepared using a spray dryer, employing five different types of lactose carriers (Lactose monohydrate (LMH), lactose microfine (LMF), lactose 003, lactose 220 and lactose 300) and two different dispersion media. The first dispersion medium was comprised of water and ethanol (50:50% v/v ratio), and the second dispersion medium comprised wholly of ethanol (100%). In the first dispersion medium, the lipid phase (consisting of Soya phosphatidylcholine (SPC as phospholipid) and Beclomethasone dipropionate (BDP; model drug) were dissolved in ethanol and the lactose carrier in water, followed by spray drying. Whereas in second dispersion medium, the lipid phase and lactose carrier were dispersed in ethanol only, post spray drying. SDP powder formulations (F1-F5) possessed significantly smaller particles (2.89 ± 1.24-4.48 ± 1.20 μm), when compared to SDP F6-F10 formulations (10.63 ± 3.71-19.27 ± 4.98 μm), irrespective of lactose carrier type via SEM (scanning electron microscopy). Crystallinity of the F6-F10 and amorphicity of F1-F15 formulations were confirmed by XRD (X-ray diffraction). Differences in size and crystallinity were further reflected in production yield, where significantly higher production yield was obtained for F1-F5 (74.87 ± 4.28-87.32 ± 2.42%) then F6-F10 formulations (40.08 ± 5.714-54.98 ± 5.82%), irrespective of carrier type. Negligible differences were noted in terms of entrapment efficiency, when comparing F1-F5 SDP formulations (94.67 ± 8.41-96.35 ± 7.93) to F6-F10 formulations (78.16 ± 9.35-82.95 ± 9.62). Moreover, formulations F1-F5 demonstrated significantly higher fine particle fraction (FPF), fine particle dose (FPD) and respirable fraction (RF) (on average of 30.35%, 890.12 μg and 85.90%) when compared to counterpart SDP powder formulations (F6-F10). This study has demonstrated that when a combination of water and ethanol was employed as dispersion medium (formulations F1-F5), superior formulation properties for pulmonary drug delivery were observed, irrespective of carrier type employed.
Collapse
Affiliation(s)
- Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- * E-mail: ,
| | - Ali Al-Hasani
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Mohsin H. Khan
- Surgical A Ward, Khyber Teaching Hospital, Peshawar, Pakistan
| | - Aamir N. Khan
- Cardiology Department, Lady Reading Hospital, Peshawar, Pakistan
| | - Fakhr-e -Alam
- Department of Hepatology, King’s College Hospital, Denmark Hill, London, United Kingdom
| | - Sajid K. Sadozai
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Abdelbary Elhissi
- Pharmaceutical Sciences Section, College of Pharmacy, Qatar University, Doha, Qatar
| | | | - Sakib Yousaf
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
4
|
Kabil MF, Nasr M, Ibrahim IT, Hassan YA, El-Sherbiny IM. New repurposed rolapitant in nanovesicular systems for lung cancer treatment: Development, in-vitro assessment and in-vivo biodistribution study. Eur J Pharm Sci 2022; 171:106119. [PMID: 34998905 DOI: 10.1016/j.ejps.2022.106119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/14/2021] [Accepted: 01/03/2022] [Indexed: 12/20/2022]
Abstract
Lung cancer is characterized by poor prognosis, and is considered a serious disease that causes a significant mortality. The available conventional chemotherapeutic agents suffer from several limitations; hence, new drug molecules are constantly being sought. In the current study, lipid nanovesicles (LNVs) were selected as a colloidal vehicle for encapsulation of the FDA-approved drug; rolapitant (RP), which is used particularly for the treatment of nausea and vomiting, but is repurposed for the treatment of lung cancer in the current work. RP was loaded into various LNVs (liposomes, ethosomes and transethosomes) using the thin film hydration method, and the LNVs were evaluated for particle size, zeta potential, entrapment efficiency (EE%), storage stability and surface morphology. Besides, the in-vitro drug release, in-vitro cytotoxicity on A549 lung cancer cells, nebulization performance using next generation impactor (NGI), and the in-vivo biodistribution behaviour were evaluated. The selected ethosomal and transethosomal vesicles displayed a particle size less than 400 nm, a positive charge, and EE% exceeding 90% for RP, with a sustained release pattern over 15 days. The in-vivo biodistribution results proved the high lung deposition potential of RP-LNVs with a considerable safety. Besides, the developed RP-LNVs were able to reach the metastatic organs of lung cancer, hence they were proven promising as a possible treatment modality for lung cancer.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Nanomedicine Labs, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, 12578, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ismail T Ibrahim
- Labeled compound department, Hot lab. Center, Atomic energy authority, Inshas, Egypt
| | - Yasser A Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Labs, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, 12578, Giza, Egypt.
| |
Collapse
|
5
|
Matuszak M, Ochowiak M, Włodarczak S, Krupińska A, Doligalski M. State-of-the-Art Review of The Application and Development of Various Methods of Aerosol Therapy. Int J Pharm 2021; 614:121432. [PMID: 34971755 DOI: 10.1016/j.ijpharm.2021.121432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022]
Abstract
Aerosol therapy is a rapidly developing field of science. Due to a number of advantages, the administration of drugs to the body with the use of aerosol therapy is becoming more and more popular. Spraying drugs into the patient's lungs has a significant advantage over other methods of administering drugs to the body, including injection and oral methods. In order to conduct proper and effective aerosol therapy, it is necessary to become familiar with the basic principles and applications of aerosol therapy under various conditions. The effectiveness of inhalation depends on many factors, but most of all on: the physicochemical properties of the sprayed system, the design of the medical inhaler and its correct application, the dynamics of inhalation (i.e. the frequency of breathing and the volume of inhaled air). It is worth emphasizing that respiratory system diseases are one of the most frequently occurring and fastest growing diseases in the world. Accordingly, in recent years, a significant increase in the number of new spraying devices and pharmaceutical drugs for spraying has appeared on the market. It should also be remembered that the process of spraying a liquid is a complicated and complex process, and its efficiency is very often characterized by the use of micro- and macro parameters (including average droplet diameters or the spectrum of droplet diameter distribution). In order to determine the effectiveness of the atomization process and in the delivery of drugs to the patient's respiratory tract, the analysis of the size of the generated aerosol droplets is most often performed. Based on the proposed literature review, it has been shown that many papers dealt with the issues related to aerosol therapy, the selection of an appropriate spraying device, the possibility of modifying the spraying devices in order to increase the effectiveness of inhalation, and the possibility of occurrence of certain discrepancies resulting from the use of various measurement methods to determine the characteristics of the generated aerosol. The literature review presented in the paper was prepared in order to better understand the spraying process. Moreover, it can be helpful in choosing the right medical inhaler for a given liquid with specific rheological properties. The experimental data contained in this study are of great cognitive importance and may be of interest to entities involved in pharmaceutical product engineering (in particular in the case of the production of drugs containing liquids with complex rheological properties).
Collapse
Affiliation(s)
- M Matuszak
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland.
| | - M Ochowiak
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland
| | - S Włodarczak
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland
| | - A Krupińska
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland
| | - M Doligalski
- Faculty of Computer, Electrical and Control Engineering, University of Zielona Góra, 4a Szafrana Street, 65-516 Zielona Góra, Poland
| |
Collapse
|
6
|
Šturm L, Poklar Ulrih N. Basic Methods for Preparation of Liposomes and Studying Their Interactions with Different Compounds, with the Emphasis on Polyphenols. Int J Mol Sci 2021; 22:6547. [PMID: 34207189 PMCID: PMC8234105 DOI: 10.3390/ijms22126547] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Studying the interactions between lipid membranes and various bioactive molecules (e.g., polyphenols) is important for determining the effects they can have on the functionality of lipid bilayers. This knowledge allows us to use the chosen compounds as potential inhibitors of bacterial and cancer cells, for elimination of viruses, or simply for keeping our healthy cells in good condition. As studying those effect can be exceedingly difficult on living cells, model lipid membranes, such as liposomes, can be used instead. Liposomal bilayer systems represent the most basic platform for studying those interactions, as they are simple, quite easy to prepare and relatively stable. They are especially useful for investigating the effects of bioactive compounds on the structure and kinetics of simple lipid membranes. In this review, we have described the most basic methods available for preparation of liposomes, as well as the essential techniques for studying the effects of bioactive compounds on those liposomes. Additionally, we have provided details for an easy laboratory implementation of some of the described methods, which should prove useful especially to those relatively new on this research field.
Collapse
Affiliation(s)
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| |
Collapse
|
7
|
Influence of liposomes composition on their stability during the nebulization process by vibrating mesh nebulizer. Colloids Surf B Biointerfaces 2021; 204:111793. [PMID: 33932888 DOI: 10.1016/j.colsurfb.2021.111793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 11/20/2022]
Abstract
In this study, three different molecules (cholesterol, phosphatidic acid, and polyethylene glycol) were used for the stabilization of liposomes during the nebulization process. The purpose of this article is to answer the question of whether the change in the composition of liposomes affected the parameters of generated aerosol and whether the nebulization process affected observed properties of liposomes. Firstly, liposomes with different composition were prepared and their properties were checked by dynamic and electrophoretic light scattering. The membrane properties were measured by fluorescence spectroscopy - especially generalized polarization (Laurdan) and anisotropy (Diphenylhexatriene). The same characteristic of liposomes was measured after the nebulization by vibrating mesh nebulizer. Cholesterol was capable of liposome stabilization because of increased membrane fluidity. The membrane properties of the outer and inner parts were not influenced by the nebulization process. Electrostatic stabilization was successful for the lowest concentration of phosphatidic acid, but after the nebulization process the hydration of the membrane outer part was changed. Higher amount of PEG needs to be added for successful steric stabilization. The nebulization process of the two lowest concentrations of PEG slightly influenced immobilized water and the rigidity of inner part of the membrane (especially around the phase transition temperature).
Collapse
|
8
|
Khan I, Hussein S, Houacine C, Khan Sadozai S, Islam Y, Bnyan R, Elhissi A, Yousaf S. Fabrication, characterization and optimization of nanostructured lipid carrier formulations using Beclomethasone dipropionate for pulmonary drug delivery via medical nebulizers. Int J Pharm 2021; 598:120376. [PMID: 33617949 DOI: 10.1016/j.ijpharm.2021.120376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 01/03/2023]
Abstract
Aerosolization is a non-invasive approach in drug delivery for localized and systemic effect. Nanostructured lipid carriers (NLCs) are new generation versatile carriers, which offer protection from degradation and enhance bioavailability of poorly water soluble drugs. The aim of this study was to develop and optimize NLC formulations in combination with optimized airflow rates (i.e. 60 and 15 L/min) and choice of medical nebulizers including Air jet, Vibrating mesh and Ultrasonic nebulizer for superior aerosolization performance, assessed via a next generation impactor (NGI). Novel composition and combination of NLC formulations (F1 - F15) were prepared via ultrasonication method, employing five solid lipids (glycerol trimyristate (GTM), glycerol trilaurate (GTL), cetyl palmitate (CP), glycerol monostearate (GMS) and stearic acid (SA)); and three liquid lipids (glyceryl tributyrate (GTB), propylene glycol dicaprylate/dicaprate (PGD) and isopropyl palmitate (IPP)) in 1:3 w/w ratios (i.e. combination of one solid and one liquid lipid), with Beclomethasone dipropionate (BDP) incorporated as the model drug. Out of fifteen BDP-NLC formulations, the physicochemical properties of formulations F7, F8 and F10 exhibited desirable stability (one week at 25 °C), with associated particle size of ~241 nm, and >91% of drug entrapment. Post aerosolization, F10 was observed to deposit notably smaller sized particles (from 198 to 136 nm, 283 to 135 nm and 239 to 157 nm for Air jet, Vibrating mesh and Ultrasonic nebulizers, respectively) in all stages (i.e. from stage 1 to 8) of the NGI, when compared to F7 and F8 formulations. Six week stability studies conducted at 4, 25 and 45 °C, demonstrated F10 formulation stability in terms of particle size, irrespective of temperature conditions. Nebulizer performance study using the NGI for F10 identified the Air jet to be the most efficient nebulizer, depositing lower concentrations of BDP in the earlier stages (1-3) and higher (circa 82 and 85%) in the lateral stages (4-8) using 60 and 15 L/min airflow rates, when compared to the Vibrating mesh and Ultrasonic nebulizers. Moreover, at both airflow rates, the Air jet nebulizer elicited a longer nebulization time of ~42 min, facilitating aerosol inhalation for prophylaxis of asthma with normal tidal breathing. Based on characterization and nebulizer performance employing both 60 and 15 L/min airflow rates, the Air jet nebulizer offered enhanced performance, exhibiting a higher fine particle dose (FPD) (90 and 69 µg), fine particle fraction (FPF) (70 and 54%), respirable fraction (RF) (92 and 69%), and lower mass median aerodynamic diameter (MMAD) (1.15 and 1.62 µm); in addition to demonstrating higher drug deposition in the lateral parts of the NGI, when compared to its counterpart nebulizers. The F10 formulation used with the Air jet nebulizer was identified as being the most suitable combination for delivery of BDP-NLC formulations.
Collapse
Affiliation(s)
- Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| | - Sozan Hussein
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Chahinez Houacine
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Sajid Khan Sadozai
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Yamir Islam
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Ruba Bnyan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Abdelbary Elhissi
- Pharmaceutical Sciences Section, College of Pharmacy, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sakib Yousaf
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| |
Collapse
|
9
|
Chaves MA, Pinho SC. Unpurified soybean lecithins impact on the chemistry of proliposomes and liposome dispersions encapsulating vitamin D3. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Khan I, Yousaf S, Najlah M, Ahmed W, Elhissi A. Proliposome powder or tablets for generating inhalable liposomes using a medical nebulizer. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00495-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Abstract
Purpose
The aim of this study was to develop and compare proliposome powder and proliposome tablet formulations for drug delivery from a Pari-LC Sprint nebulizer.
Methods
Proliposome powders were prepared by the slurry method and sorbitol or mannitol carbohydrate carrier were used in a 1:10 and 1:15 w/w lipid phase to carrier ratio. Beclometasone dipropionate (BDP; 2 mol%) was incorporated in the lipid phase. Proliposome powders were compressed into tablets, and liposomes were generated from proliposome powders or tablets within the nebulizer reservoir for subsequent aerosolization.
Results
Comparatively, shorter sputtering times were reported for the tablet formulations (≈ < 2.7±0.45 min), indicating uniform aerosolization. Post-nebulization, liposomes size was larger in the nebulizer reservoir in the range of 7.79±0.48 µm–9.73±1.53 µm for both powder and tablet formulations as compared to freshly prepared liposomes (5.38±0.73 µm–5.85±0.86 µm), suggesting liposome aggregation/fusion in the nebulizer’s reservoir. All formulations exhibited more than 80% mass output regardless of formulation type, but greater BDP proportions (circa 50%) were delivered to the Two-stage Impinger when tablet formulations were used. Moreover, the nebulized droplet median size and size distribution were lower for all tablet formulations in comparison to the powder formulations. Proliposome tablet and powdered formulations demonstrated the ability to generate vesicles that sustained the release of BDP.
Conclusion
Overall, this study showed that proliposome tablets could be disintegrated within a Pari-LC Sprint nebulizer to generate inhalable aerosol, with high drug output and hence can be manufactured on large scale to overcome the storage problems associated with powder formulations.
Collapse
|
11
|
Khan I, Lau K, Bnyan R, Houacine C, Roberts M, Isreb A, Elhissi A, Yousaf S. A Facile and Novel Approach to Manufacture Paclitaxel-Loaded Proliposome Tablet Formulations of Micro or Nano Vesicles for Nebulization. Pharm Res 2020; 37:116. [PMID: 32488363 PMCID: PMC7266847 DOI: 10.1007/s11095-020-02840-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/13/2020] [Indexed: 01/25/2023]
Abstract
Purpose The aim of this study was to develop novel paclitaxel-loaded proliposome tablet formulations for pulmonary drug delivery. Method Proliposome powder formulations (i.e. F1 – F27) were prepared employing Lactose monohydrate (LMH), Microcrystalline cellulose (MCC) or Starch as a carbohydrate carriers and Soya phosphatidylcholine (SPC), Hydrogenated soya phosphatidylcholine (HSPC) or Dimyristoly phosphatidylcholine (DMPC) as a phospholipid. Proliposome powder formulations were prepared in 1:5, 1:15 or 1:25 w/w lipid phase to carrier ratio (lipid phase; comprising of phospholipid and cholesterol in 1:1 M ratio) and Paclitaxel (PTX) was used as model anticancer drug. Results Based on flowability studies, out of 27 formulations; F3, F6, and F9 formulations were selected as they exhibited an excellent angle of repose (AOR) (17.24 ± 0.43, 16.41 ± 0.52 and 15.16 ± 0.72°), comparatively lower size of vesicles (i.e. 5.35 ± 0.76, 6.27 ± 0.59 and 5.43 ± 0.68 μm) and good compressibility index (14.81 ± 0.36, 15.01 ± 0.35 and 14.56 ± 0.14) via Carr’s index. The selected formulations were reduced into Nano (N) vesicles via probe sonication, followed by spray drying (SD) to get a dry powder of these formulations as F3SDN, F6SDN and F9SDN, and gave high yield (>53%) and exhibited poor to very poor compressibility index values via Carr’s Index. Post tablet manufacturing, F3 tablets formulation showed uniform weight uniformity (129.40 ± 3.85 mg), good crushing strength (14.08 ± 1.95 N), precise tablet thickness (2.33 ± 0.51 mm) and a short disintegration time of 14.35 ± 0.56 min, passing all quality control tests in accordance with British Pharmacopeia (BP). Upon nebulization of F3 tablets formulation, Ultrasonic nebulizer showed better nebulization time (8.75 ± 0.86 min) and high output rate (421.06 ± 7.19 mg/min) when compared to Vibrating mesh nebulizer. PTX-loaded F3 tablet formulations were identified as toxic (60% cell viability) to cancer MRC-5 SV2 cell lines while safe to normal MRC-5 cell lines. Conclusion Overall, in this study LMH was identified as a superior carbohydrate carrier for proliposome tablet manufacturing in a 1:25 w/w lipid to carrier ratio for in-vitro nebulization via Ultrasonic nebulizer. Electronic supplementary material The online version of this article (10.1007/s11095-020-02840-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| | - Katie Lau
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Ruba Bnyan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Chahinez Houacine
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Matthew Roberts
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Abdullah Isreb
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Abdelbary Elhissi
- Pharmaceutical Sciences Section, College of Pharmacy, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sakib Yousaf
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
| |
Collapse
|
12
|
Kim J, Jozic A, Sahay G. Naturally Derived Membrane Lipids Impact Nanoparticle-Based Messenger RNA Delivery. Cell Mol Bioeng 2020; 13:463-474. [PMID: 32837581 PMCID: PMC7250267 DOI: 10.1007/s12195-020-00619-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction Lipid based nanoparticles (LNPs) are clinically successful vectors for hepatic delivery of nucleic acids. These systems are being developed for non-hepatic delivery of mRNA for the treatment of diseases like cystic fibrosis or retinal degeneration as well as infectious diseases. Localized delivery to the lungs requires aerosolization. We hypothesized that structural lipids within LNPs would provide features of integrity which can be tuned for attributes required for efficient hepatic and non-hepatic gene delivery. Herein, we explored whether naturally occurring lipids that originate from the cell membrane of plants and microorganisms enhance mRNA-based gene transfection in vitro and in vivo and whether they assist in maintaining mRNA activity after nebulization. Methods We substituted DSPC, a structural lipid used in a conventional LNP formulation, to a series of naturally occurring membrane lipids. We measured the effect of these membrane lipids on size, encapsulation efficiency and their impact on transfection efficiency. We further characterized LNPs after nebulization and measured whether they retained their transfection efficiency. Results One plant-derived structural lipid, DGTS, led to a significant improvement in liver transfection of mRNA. DGTS LNPs had similar transfection ability when administered in the nasal cavity to conventional LNPs. In contrast, we found that DGTS LNPs had reduced transfection efficiency in cells pre-and post-nebulization while maintaining size and encapsulation similar to DSPC LNPs. Conclusions We found that structural lipids provide differential mRNA-based activities in vitro and in vivo which also depend on the mode of administration. Understanding influence of structural lipids on nanoparticle morphology and structure can lead to engineering potent materials for mRNA-based gene therapy applications.
Collapse
Affiliation(s)
- Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Sciences Building, Portland, OR USA
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Sciences Building, Portland, OR USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Sciences Building, Portland, OR USA.,Department of Biomedical Engineering, Oregon Health Science University, Robertson Life Sciences Building, Portland, OR USA
| |
Collapse
|
13
|
Nimmano N, Somavarapu S, Taylor KM. Aerosol characterisation of nebulised liposomes co-loaded with erlotinib and genistein using an abbreviated cascade impactor method. Int J Pharm 2018; 542:8-17. [DOI: 10.1016/j.ijpharm.2018.02.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/08/2018] [Accepted: 02/18/2018] [Indexed: 11/29/2022]
|
14
|
Khan I, Yousaf S, Subramanian S, Alhnan MA, Ahmed W, Elhissi A. Proliposome Powders for the Generation of Liposomes: the Influence of Carbohydrate Carrier and Separation Conditions on Crystallinity and Entrapment of a Model Antiasthma Steroid. AAPS PharmSciTech 2018; 19:262-274. [PMID: 28698930 DOI: 10.1208/s12249-017-0793-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/24/2017] [Indexed: 11/30/2022] Open
Abstract
Formulation effects on the entrapment of beclometasone dipropionate (BDP) in liposomes generated by hydration of proliposomes were studied, using the high-density dispersion medium deuterium oxide in comparison to deionized water (DW). Proliposomes incorporating BDP (2 mol% of the lipid phase consisting of soya phosphatidylcholine (SPC) and cholesterol; 1:1) were manufactured, using lactose monohydrate (LMH), sorbitol or D-mannitol as carbohydrate carriers (1:5 w/w lipid to carrier). Following hydration of proliposomes, separation of BDP-entrapped liposomes from the unentrapped (free) BDP at an optimized centrifugation duration of 90 min and a centrifugation force of 15,500g were identified. The dispersion medium was found to have a major influence on separation of BDP-entrapped liposomes from the unentrapped drug. Entrapment efficiency values were higher than 95% as estimated when DW was used. By contrast, the entrapment efficiency was 19.69 ± 5.88, 28.78 ± 4.69 and 34.84 ± 3.62% upon using D2O as a dispersion medium (for LMH-, sorbitol- and D-mannitol-based proliposomes, respectively). The similarity in size of liposomes and BDP crystals was found to be responsible for co-sedimentation of liposomes and free BDP crystals upon centrifugation in DW, giving rise to the falsely high entrapment values estimated. This was remedied by the use of D2O as confirmed by light microscopy, nuclear magnetic resonance (1HNMR), X-ray diffraction (XRD) and entrapment studies. This study showed that carrier type has a significant influence on the entrapment of BDP in liposomes generated from proliposomes, and using D2O is essential for accurate determination of steroid entrapment in the vesicles.
Collapse
|
15
|
Ren J, Fang Z, Jiang L, Du Q. Quercetin-containing self-assemble proliposome preparation and evaluation. J Liposome Res 2016; 27:335-342. [DOI: 10.1080/08982104.2016.1239635] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jin Ren
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China,
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China, and
| | - Zhengjie Fang
- Department of Analysis and Test, Xuzhou Center for Products Quality Supervision and Inspection, Xuzhou, China
| | - Liqun Jiang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China,
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China, and
| | - Qian Du
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China,
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China, and
| |
Collapse
|
16
|
Carvalho TC, McConville JT. The function and performance of aqueous aerosol devices for inhalation therapy. ACTA ACUST UNITED AC 2016; 68:556-78. [PMID: 27061412 DOI: 10.1111/jphp.12541] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 02/05/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVES In this review paper, we explore the interaction between the functioning mechanism of different nebulizers and the physicochemical properties of the formulations for several types of devices, namely jet, ultrasonic and vibrating-mesh nebulizers; colliding and extruded jets; electrohydrodynamic mechanism; surface acoustic wave microfluidic atomization; and capillary aerosol generation. KEY FINDINGS Nebulization is the transformation of bulk liquids into droplets. For inhalation therapy, nebulizers are widely used to aerosolize aqueous systems, such as solutions and suspensions. The interaction between the functioning mechanism of different nebulizers and the physicochemical properties of the formulations plays a significant role in the performance of aerosol generation appropriate for pulmonary delivery. Certain types of nebulizers have consistently presented temperature increase during the nebulization event. Therefore, careful consideration should be given when evaluating thermo-labile drugs, such as protein therapeutics. We also present the general approaches for characterization of nebulizer formulations. SUMMARY In conclusion, the interplay between the dosage form (i.e. aqueous systems) and the specific type of device for aerosol generation determines the effectiveness of drug delivery in nebulization therapies, thus requiring extensive understanding and characterization.
Collapse
Affiliation(s)
- Thiago C Carvalho
- Bristol-Myers Squibb, Drug Product Science & Technology, New Brunswick, NJ, USA
| | - Jason T McConville
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
17
|
Rudokas M, Najlah M, Alhnan MA, Elhissi A. Liposome Delivery Systems for Inhalation: A Critical Review Highlighting Formulation Issues and Anticancer Applications. Med Princ Pract 2016; 25 Suppl 2:60-72. [PMID: 26938856 PMCID: PMC5588529 DOI: 10.1159/000445116] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 03/01/2016] [Indexed: 12/18/2022] Open
Abstract
This is a critical review on research conducted in the field of pulmonary delivery of liposomes. Issues relating to the mechanism of nebulisation and liposome composition were appraised and correlated with literature reports of liposome formulations used in clinical trials to understand the role of liposome size and composition on therapeutic outcome. A major highlight was liposome inhalation for the treatment of lung cancers. Many in vivo studies that explored the potential of liposomes as anticancer carrier systems were evaluated, including animal studies and clinical trials. Liposomes can entrap anticancer drugs and localise their action in the lung following pulmonary delivery. The safety of inhaled liposomes incorporating anticancer drugs depends on the anticancer agent used and the amount of drug delivered to the target cancer in the lung. The difficulty of efficient targeting of liposomal anticancer aerosols to the cancerous tissues within the lung may result in low doses reaching the target site. Overall, following the success of liposomes as inhalable carriers in the treatment of lung infections, it is expected that more focus from research and development will be given to designing inhalable liposome carriers for the treatment of other lung diseases, including pulmonary cancers. The successful development of anticancer liposomes for inhalation may depend on the future development of effective aerosolisation devices and better targeted liposomes to maximise the benefit of therapy and reduce the potential for local and systemic adverse effects.
Collapse
Affiliation(s)
- Mindaugas Rudokas
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston
| | - Mohammad Najlah
- Faculty of Medical Science, Anglia Ruskin University, Chelmsford, UK
| | - Mohamed Albed Alhnan
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston
| | - Abdelbary Elhissi
- Pharmaceutical Sciences Section, College of Pharmacy, Qatar University, Doha, Qatar
- *Dr. Abdelbary Elhissi, Pharmaceutical Sciences Section, College of Pharmacy, Qatar University, PO Box 2713, Doha (Qatar), E-Mail
| |
Collapse
|
18
|
Cho DY, Skinner D, Zhang S, Fortenberry J, Sorscher EJ, Dean NR, Woodworth BA. Cystic fibrosis transmembrane conductance regulator activation by the solvent ethanol: implications for topical drug delivery. Int Forum Allergy Rhinol 2015; 6:178-84. [PMID: 26869199 DOI: 10.1002/alr.21638] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND Decreased cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride (Cl) secretion across mucosal surfaces contributes to the development of airway disease by depleting airway surface liquid, increasing mucus viscosity and adhesion, and consequently hindering mucociliary clearance. We serendipitously discovered during testing of drugs solubilized in low concentrations ethanol (0.25%, 43 mM) that the control vehicle produced robust activation of CFTR-mediated Cl(-) transport. The objective of the current study is to investigate low concentrations of ethanol for effects on Cl(-) secretion and ciliary beat frequency (CBF). METHODS Wild-type (WT) and transgenic CFTR(-/-) primary murine nasoseptal epithelial (MNSE) cultures and WT and F508del/F508del human sinonasal epithelial (HSNE) cultures were subjected to transepithelial ion transport measurements using pharmacologic manipulation in Ussing chambers. CBF activation was also monitored. Murine nasal potential difference (NPD) was measured in vivo. RESULTS Ussing chamber tracings revealed ethanol activated CFTR-mediated Cl transport in a dose-dependent fashion in WT MNSE (n = 4, p < 0.05) and HSNE (n = 4, p < 0.05). Ethanol also significantly increased CBF (fold change) in WT MNSE cultures in a dose-dependent fashion (phosphate-buffered saline [PBS], 1.33 ± 0.04; 0.25% ethanol, 1.37 ± 0.09; 0.5% ethanol, 1.53 ± 0.06 [p < 0.05]; 1% ethanol, 1.62 ± 0.1 [p < 0.05]). Lack of stimulation in CFTR(-/-) and F508del/F508del cultures indicated activity was dependent on the presence of intact functional CFTR. Ethanol perfusion (0.5%) resulted in a significant -3.5-mV mean NPD polarization when compared to control solution (p < 0.05). CONCLUSION The observation that brief exposure of ethanol stimulated Cl(-) secretion via CFTR-mediated pathways indicates its possible use as topical aerosol delivered alone or in combination with other CFTR activators for diseases of dysfunctional mucociliary clearance (MCC) in chronic rhinosinusitis (CRS).
Collapse
Affiliation(s)
- Do-Yeon Cho
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Birmingham, AL
| | - Daniel Skinner
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Shaoyan Zhang
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - James Fortenberry
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Birmingham, AL
| | - Eric J Sorscher
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Birmingham, AL.,Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Birmingham, AL.,Department of Medicine, University of Alabama at Birmingham, Birmingham, Birmingham, AL
| | - Nichole R Dean
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Bradford A Woodworth
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Birmingham, AL
| |
Collapse
|
19
|
Khan I, Yousaf S, Subramanian S, Korale O, Alhnan MA, Ahmed W, Taylor KMG, Elhissi A. Proliposome powders prepared using a slurry method for the generation of beclometasone dipropionate liposomes. Int J Pharm 2015; 496:342-50. [PMID: 26456265 DOI: 10.1016/j.ijpharm.2015.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/14/2015] [Accepted: 10/03/2015] [Indexed: 10/22/2022]
Abstract
A novel "slurry method" was described for the preparation of proliposome powders using soya phosphatidylcholine (SPC) with cholesterol (1:1) and for incorporation of beclometasone dipropionate (BDP) at 2mole% of the total lipid phase. Proliposomes made with a range of lipid to sucrose carrier ratios were studied in terms of surface morphology using scanning electron microscopy (SEM) and thermal properties using differential scanning calorimetry (DSC). Following hydration of proliposomes, the resultant vesicles were compared to liposomes made using the traditional proliposome method, in terms of vesicle size and drug entrapment efficiency. SEM showed that sucrose was uniformly coated with lipid regardless of lipid to carrier ratio. Liposomes generated using the slurry proliposome method tended to have smaller median size than those generated with the conventional proliposome method, being in the range of 4.72-5.20μm and 5.89-7.72μm respectively. Following centrifugation of liposomes using deuterium oxide (D2O) as dispersion medium, vesicles entrapping BDP were separated as a floating creamy layer, whilst the free drug was sedimented as crystals. Drug entrapment was dependent on formulation composition and preparation method. When 1:15 w/w lipid to carrier was used, liposomes generated using the slurry method had an entrapment efficiency of 47.05% compared to 18.67% for those generated using the conventional proliposome method. By contrast, liposomes made by the thin-film hydration method had an entrapment efficiency of 25.66%. DSC studies using 50mole% BDP demonstrated that the drug was amorphous in the proliposome formulation and tended to crystallize on hydration, resulting in low drug entrapment. In conclusion, a novel approach to the preparation of proliposomes using a slurry method has been introduced, offering higher entrapment for BDP than liposomes made using the conventional proliposome method and those prepared by thin-film hydration technique.
Collapse
Affiliation(s)
- Iftikhar Khan
- Institute of Nanotechnology and Bioengineering, University of Central Lancashire, Preston PR1 2HE, United Kingdom; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Sakib Yousaf
- Institute of Nanotechnology and Bioengineering, University of Central Lancashire, Preston PR1 2HE, United Kingdom; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Sneha Subramanian
- Institute of Nanotechnology and Bioengineering, University of Central Lancashire, Preston PR1 2HE, United Kingdom; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Oshadie Korale
- Institute of Nanotechnology and Bioengineering, University of Central Lancashire, Preston PR1 2HE, United Kingdom; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Mohamed Albed Alhnan
- Institute of Nanotechnology and Bioengineering, University of Central Lancashire, Preston PR1 2HE, United Kingdom; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Waqar Ahmed
- Institute of Nanotechnology and Bioengineering, University of Central Lancashire, Preston PR1 2HE, United Kingdom; School of Medicine, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Kevin M G Taylor
- Institute of Nanotechnology and Bioengineering, University of Central Lancashire, Preston PR1 2HE, United Kingdom; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Abdelbary Elhissi
- Pharmaceutical Sciences Section, College of Pharmacy, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
20
|
Kamalaporn H, Leung K, Nagel M, Kittanakom S, Calvieri B, Reithmeier RAF, Coates AL. Aerosolized liposomal Amphotericin B: a potential prophylaxis of invasive pulmonary aspergillosis in immunocompromised patients. Pediatr Pulmonol 2014; 49:574-80. [PMID: 23843366 DOI: 10.1002/ppul.22856] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/10/2013] [Indexed: 11/08/2022]
Abstract
BACKGROUND Aerosolized liposomal Amphotericin B may reduce the incidence of invasive pulmonary Aspergillosis in adults with chemotherapy-induced prolonged neutropenia with less nephrotoxicity. The breath-actuated AeroEclipse® BAN nebulizer is very efficient and minimizes environmental drug contamination since no aerosol is produced, unless the patient is inspiring through the device. Our aim is to develop an appropriate delivery system suitable for children that does not disrupt the liposomes due to the shear forces in nebulization. METHODS This is an in vitro experimental study in vitro. Six ml of 4 mg/ml liposomal Amphotericin B solution (AmBisome®; Astellas Pharma Inc., Markham, Ontario, CA) was nebulized with the breath-actuated nebulizer (AeroEclipse®; Trudell Medical International, Canada) and captured by the glass liquid impinger. Sodium dodecyl sulfate was used as detergent to disrupt the liposomes in control samples. Gel filtration, electron microscopy, and high performance liquid chromatography (HPLC) were used to compare the size and shape of the liposomes, and amount of the drug before and after nebulization. The aerosol particle size was obtained by the laser diffraction. RESULTS After nebulization, 97.5% of amphotericin B was captured by the liquid impinger and detected by HPLC. Gel filtration and electron microscopy demonstrated that the drug remained in its liposomal configuration after nebulization. The mass median diameter (MMD) was 3.7 μm and 66% of aerosol particles were less than 5 μm in diameter. CONCLUSIONS We demonstrated that liposomal Amphotericin B can be nebulized successfully without disrupting the liposomes and minimize drug loss by using the breath-actuated nebulizer.
Collapse
Affiliation(s)
- Harutai Kamalaporn
- Division of Pulmonology, Department of Pediatrics, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | |
Collapse
|
21
|
Najlah M, Parveen I, Alhnan MA, Ahmed W, Faheem A, Phoenix DA, Taylor KMG, Elhissi A. The effects of suspension particle size on the performance of air-jet, ultrasonic and vibrating-mesh nebulisers. Int J Pharm 2013; 461:234-41. [PMID: 24275450 DOI: 10.1016/j.ijpharm.2013.11.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/08/2013] [Accepted: 11/15/2013] [Indexed: 10/26/2022]
Abstract
Using latex microspheres as model suspensions, the influence of suspension particle size (1, 4.5 and 10 μm) on the properties of aerosols produced using Pari LC Sprint (air-jet), Polygreen (ultrasonic), Aeroneb Pro (actively vibrating-mesh) and Omron MicroAir NE-U22 (passively vibrating-mesh) nebulisers was investigated. The performance of the Pari nebuliser was independent of latex spheres particle size. For both Polygreen and Aeroneb Pro nebulizers, total aerosol output increased when the size of latex spheres increased, with highest fine particle fraction (FPF) values being recorded. However, following nebulisation of 1 or 4.5 μm suspensions with the Polygreen device, no particles were detected in the aerosols deposited in a two-stage impinger, suggesting that the aerosols generated from this device consisted mainly of the continuous phase while the dispersed microspheres were excluded and remained in the nebuliser. The Omron nebuliser efficiently nebulised the 1 μm latex spheres, with high output rate and no particle aggregation. However, this device functioned inefficiently when delivering 4.5 or 10 μm suspensions, which was attributed to the mild vibrations of its mesh and/or the blockage of the mesh apertures by the microspheres. The Aeroneb Pro fragmented latex spheres into smaller particles, but uncontrolled aggregation occurred upon nebulisation. This study has shown that the design of the nebuliser influenced the aerosol properties using latex spheres as model suspensions. Moreover, for the recently marketed mesh nebulisers, the performance of the Aeroneb Pro device was less dependent on particle size of the suspension compared with the Omron MicroAir nebuliser.
Collapse
Affiliation(s)
| | - Ishrat Parveen
- Institute of Nanotechnology and Bioengineering, University of Central Lancashire, Preston PR1 2HE, England, UK; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, England, UK
| | - Mohamed Albed Alhnan
- Institute of Nanotechnology and Bioengineering, University of Central Lancashire, Preston PR1 2HE, England, UK; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, England, UK
| | - Waqar Ahmed
- Institute of Nanotechnology and Bioengineering, University of Central Lancashire, Preston PR1 2HE, England, UK; School of Medicine and Dentistry, University of Central Lancashire, Preston PR1 2HE, England, UK
| | - Ahmed Faheem
- School of Pharmacy and Pharmaceutical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK
| | - David A Phoenix
- Institute of Nanotechnology and Bioengineering, University of Central Lancashire, Preston PR1 2HE, England, UK
| | - Kevin M G Taylor
- Institute of Nanotechnology and Bioengineering, University of Central Lancashire, Preston PR1 2HE, England, UK; Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, England, UK
| | - Abdelbary Elhissi
- Institute of Nanotechnology and Bioengineering, University of Central Lancashire, Preston PR1 2HE, England, UK; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, England, UK.
| |
Collapse
|
22
|
Nasr M, Najlah M, D'Emanuele A, Elhissi A. PAMAM dendrimers as aerosol drug nanocarriers for pulmonary delivery via nebulization. Int J Pharm 2013; 461:242-50. [PMID: 24275446 DOI: 10.1016/j.ijpharm.2013.11.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/11/2013] [Accepted: 11/15/2013] [Indexed: 10/26/2022]
Abstract
Polyamidoamine (PAMAM) dendrimers were evaluated as nanocarriers for pulmonary delivery of the model poorly soluble anti-asthma drug beclometasone dipropionate (BDP) using G3, G4 and G4(12) dendrimers. BDP-loaded dendrimers were characterized for drug solubility, in vitro drug release and aerosolization properties using three nebulizers: Pari LC Sprint (air-jet), Aeroneb Pro (actively vibrating-mesh) and Omron MicroAir (passively vibrating-mesh) nebulizers. Solubilization of BDP using dendrimers was increased by increasing the dendrimer generation and by using higher pH media. In vitro release studies showed that BDP when complexed with dendrimers exhibited a sustained release, and for all dendrimer formulations less than 35% of the drug was released after 8h. Nebulization studies revealed that aerosol performance was dependent on nebulizer rather than dendrimer generation. Nebulization output values for the Pari (air-jet) and Aeroneb Pro (active mesh) nebulizers were in the range of 90-92% and 85-89% respectively compared to 57-63% for the Omron (passive mesh) nebulizer. The size of the droplets generated from the jet nebulizer was slightly smaller and aerosol polydispersity was lower compared to both mesh devices. The "fine particle fraction (FPF)" of the aerosols was in the following order: Pari (air-jet)>Aeroneb Pro (active mesh)>Omron (passive mesh). This study demonstrates that BDP-dendrimers have potential for pulmonary inhalation using air-jet and vibrating-mesh nebulizers. Moreover, the aerosol characteristics are influenced by nebulizer design rather than dendrimer generation.
Collapse
Affiliation(s)
- Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt; Institute of Nanotechnology and Bioengineering, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, United Kingdom
| | | | - Antony D'Emanuele
- Institute of Nanotechnology and Bioengineering, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, United Kingdom
| | - Abdelbary Elhissi
- Institute of Nanotechnology and Bioengineering, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, United Kingdom.
| |
Collapse
|
23
|
Najlah M, Vali A, Taylor M, Arafat BT, Ahmed W, Phoenix DA, Taylor KM, Elhissi A. A study of the effects of sodium halides on the performance of air-jet and vibrating-mesh nebulizers. Int J Pharm 2013; 456:520-7. [DOI: 10.1016/j.ijpharm.2013.08.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/12/2013] [Accepted: 08/15/2013] [Indexed: 10/26/2022]
|
24
|
Abstract
No marketed inhaled products currently use sustained release formulations such as liposomes to enhance drug disposition in the lung, but that may soon change. This review focuses on the interaction between liposomal formulations and the inhalation technology used to deliver them as aerosols. There have been a number of dated reviews evaluating nebulization of liposomes. While the information they shared is still accurate, this paper incorporates data from more recent publications to review the factors that affect aerosol performance. Recent reviews have comprehensively covered the development of dry powder liposomes for aerosolization and only the key aspects of those technologies will be summarized. There are now at least two inhaled liposomal products in late-stage clinical development: ARIKACE® (Insmed, NJ, USA), a liposomal amikacin, and Pulmaquin™ (Aradigm Corp., CA, USA), a liposomal ciprofloxacin, both of which treat a variety of patient populations with lung infections. This review also highlights the safety of inhaled liposomes and summarizes the clinical experience with liposomal formulations for pulmonary application.
Collapse
|
25
|
Carvalho TC, McCook JP, Narain NR, McConville JT. Development and characterization of phospholipid-stabilized submicron aqueous dispersions of coenzyme Q₁₀ presenting continuous vibrating-mesh nebulization performance. J Liposome Res 2013; 23:276-90. [PMID: 23772691 DOI: 10.3109/08982104.2013.796976] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Coenzyme Q₁₀ (CoQ₁₀) is a poorly-water soluble compound that is being investigated for the treatment of carcinomas. The aim of this research was to develop a suitable formulation for pulmonary delivery of this anticancer agent. An appropriate selection of excipients (phospholipids) and a suitable device (Aeroneb Pro® vibrating-mesh nebulizer) were selected initially after reviewing the literature. After characterization of the bulk drug, a feasible manufacturing process was selected to obtain small particle size dispersions of CoQ₁₀. Following selection of an appropriate process, the parameters affecting drug particle size were studied. Using LD and gravimetrical analysis, nebulization was evaluated to assess the performance of the inhalation system triad: drug-excipients-device. CoQ₁₀ powder studied was crystalline with a melting point approximately at 51 °C and with a particle size of 30 µm. Microfluidization was found to be a suitable method to prepare submicron drug particles in aqueous dispersions. Increasing microfluidization processing to more than 50 passes did not provide further particle downsizing for both soya phosphatidylcholine (lecithin) and dipalmitoyl phosphatidylcholine (DPPC) dispersions of CoQ₁₀, presenting Z-average values of approximately 130 and 70 nm, respectively. Nebulization performance of lecithin-stabilized CoQ₁₀ dispersions varied according to number of passes in the microfluidizer. Formulations processed with 10 passes presented steadier nebulization over time and different rheological behavior compared to those processed with 30 or 50 passes. In conclusion, aqueous dispersions of CoQ₁₀ were adequately produced using a microfluidizer with characteristics that were suitable for pulmonary delivery with an Aeroneb Pro® nebulizer. Furthermore, the rheology of these dispersions appeared to play a significant role in the aerosol generation from the active vibrating-mesh nebulizer used.
Collapse
Affiliation(s)
- Thiago C Carvalho
- College of Pharmacy, Division of Pharmaceutics, The University of Texas at Austin , Austin, TX , USA
| | | | | | | |
Collapse
|
26
|
Li H, Yu Y, Faraji Dana S, Li B, Lee CY, Kang L. Novel engineered systems for oral, mucosal and transdermal drug delivery. J Drug Target 2013; 21:611-29. [PMID: 23869879 DOI: 10.3109/1061186x.2013.805335] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Technological advances in drug discovery have resulted in increasing number of molecules including proteins and peptides as drug candidates. However, how to deliver drugs with satisfactory therapeutic effect, minimal side effects and increased patient compliance is a question posted before researchers, especially for those drugs with poor solubility, large molecular weight or instability. Microfabrication technology, polymer science and bioconjugate chemistry combine to address these problems and generate a number of novel engineered drug delivery systems. Injection routes usually have poor patient compliance due to their invasive nature and potential safety concerns over needle reuse. The alternative non-invasive routes, such as oral, mucosal (pulmonary, nasal, ocular, buccal, rectal, vaginal), and transdermal drug delivery have thus attracted many attentions. Here, we review the applications of the novel engineered systems for oral, mucosal and transdermal drug delivery.
Collapse
Affiliation(s)
- Hairui Li
- Department of Pharmacy, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
27
|
Elhissi A, Hidayat K, Phoenix DA, Mwesigwa E, Crean S, Ahmed W, Faheem A, Taylor KM. Air-jet and vibrating-mesh nebulization of niosomes generated using a particulate-based proniosome technology. Int J Pharm 2013; 444:193-9. [DOI: 10.1016/j.ijpharm.2012.12.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 12/25/2012] [Accepted: 12/29/2012] [Indexed: 10/27/2022]
|
28
|
Elhissi AM, Giebultowicz J, Stec AA, Wroczynski P, Ahmed W, Alhnan MA, Phoenix D, Taylor KM. Nebulization of ultradeformable liposomes: The influence of aerosolization mechanism and formulation excipients. Int J Pharm 2012; 436:519-26. [DOI: 10.1016/j.ijpharm.2012.06.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/28/2012] [Accepted: 06/30/2012] [Indexed: 10/28/2022]
|
29
|
Nasr M, Nawaz S, Elhissi A. Amphotericin B lipid nanoemulsion aerosols for targeting peripheral respiratory airways via nebulization. Int J Pharm 2012; 436:611-6. [PMID: 22842623 DOI: 10.1016/j.ijpharm.2012.07.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/14/2012] [Accepted: 07/17/2012] [Indexed: 11/26/2022]
Abstract
Amphotericin B (AmB) lipid nanoemulsions were prepared and characterized and their suitability for pulmonary delivery via nebulization was evaluated. AmB nanoemulsions were prepared by sonicating and vortexing the drug with two commercially available lipid nanoemulsions: the Intralipid(®) or Clinoleic(®). Loading the nanoemulsions with the drug slightly increased the size of the lipid droplets and did not affect the zeta potential of the nanoemulsions. The loading efficiency of AmB was found to be 87.46±2.21% in the Intralipid(®) nanoemulsions and 80.7±0.70% in the Clinoleic(®) formulation. This respectively corresponded to 21.86 mg and 20.19 mg of AmB being successfully loaded in the nanoemulsions. On aerosolization using a Pari Sprint jet nebulizer, both nanoemulsions produced very high drug output which was approximately 90% for both formulations. Using the two-stage impinger, the Clinoleic(®) emulsion had higher fine particle fraction (FPF) than the Intralipid(®), since the Clinoleic(®) displayed higher deposition of AmB in the lower impinger stage (exceeding 80%), compared to 57% for the Intralipid(®). Overall, the ease of preparation of the AmB lipid nanoemulsions, along with their in vitro nebulization performance suggest that lipid nanoemulsions could be successful nanocarriers for delivery of AmB to the peripheral respiratory airways.
Collapse
Affiliation(s)
- Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | | |
Collapse
|
30
|
Manca ML, Manconi M, Valenti D, Lai F, Loy G, Matricardi P, Fadda AM. Liposomes Coated with Chitosan–Xanthan Gum (Chitosomes) as Potential Carriers for Pulmonary Delivery of Rifampicin. J Pharm Sci 2012; 101:566-75. [DOI: 10.1002/jps.22775] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/05/2011] [Accepted: 09/08/2011] [Indexed: 12/20/2022]
|