1
|
Nandi S, Swain R, Habibullah S, Sahoo RN, Nayak AK, Mallick S. Lipid-Gelucire based rectal delivery of ramipril prodrug exhibits significant lowering of intra-ocular pressure in normotensive rabbit: sustained structural relaxation release kinetics and IVIVC. Pharm Dev Technol 2024; 29:468-476. [PMID: 38662798 DOI: 10.1080/10837450.2024.2345807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Carboxylesterase enzymes convert a prodrug ramipril into the biologically active metabolite ramiprilat. It is prescribed for controlling ocular hypertension after oral administration. High concentrations of carboxylesterase enzymes in rectal and colon tissue can transform ramipril significantly to ramiprilat. Sustained rectal delivery of ramipril has been developed for intra-ocular pressure lowering effect using a normotensive rabbit model. Rectal suppositories have been formulated using a matrix base of HPMC K100-PEG 400-PEG 6000, incorporating varying amounts of Gelucire by the fusion moulding method. The presence of Gelucire in the suppository exhibited sustained structural relaxation-based release kinetics of RM compared to its absence. Intravenous and oral administration of ramipril has decreased IOP in the treated rabbit up to 90 and 360 min, respectively. Treated rabbits with suppositories have revealed decreased IOP for an extended period compared to the above. Formulation containing GEL 3% reduced intra-ocular pressure to 540 min, with the highest area under the decreased IOP curve. Compared to oral, the pharmacodynamic bioavailability of ramipril has been improved significantly using a sustained-release rectal suppository. A rectal suppository for sustained delivery of ramipril could be used to lower IOP significantly.
Collapse
Affiliation(s)
- Souvik Nandi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Rakesh Swain
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sk Habibullah
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Rudra Narayan Sahoo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Subrata Mallick
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Adel IM, ElMeligy MF, Amer MS, Elkasabgy NA. Polymeric nanocomposite hydrogel scaffold for jawbone regeneration: The role of rosuvastatin calcium-loaded silica nanoparticles. Int J Pharm X 2023; 6:100213. [PMID: 37927584 PMCID: PMC10622845 DOI: 10.1016/j.ijpx.2023.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Bones are subject to different types of damages ranging from simple fatigue to profound defects. In serious cases, the endogenous healing mechanism is not capable of healing the damage or restoring the normal structure and function of the bony tissue. The aim of this research was to achieve a sustained delivery of rosuvastatin and assess its efficacy in healing bone tissue damage. Rosuvastatin was entrapped into silica nanoparticles and the system was loaded into an alginate hydrogel to be implanted in the damaged tissue. Silica nanoparticles were formulated based on a modified Stöber technique and alginate hydrogel was prepared via sprinkling alginate onto silica nanoparticle dispersion followed by addition of CaCl2 to promote crosslinking and hydrogel rigidification. The selected nanoparticle formulation possessed high % drug content (100.22± 0.67%), the smallest particle size (221.00± 7.30 nm) and a sustained drug release up to 4 weeks (98.72± 0.52%). The fabricated hydrogel exhibited a further delay in drug release (81.52± 4.81% after 4 weeks). FT-IR indicated the silica nanoparticle formation and hydrogel crosslinking. SEM visualized the porous and dense surface of hydrogel. In-vivo testing on induced bone defects in New Zealand rabbits revealed the enhanced rate of new bone tissue formation, its homogeneity in color as well as similarity in structure to the original tissue.
Collapse
Affiliation(s)
- Islam M. Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Mohamed F. ElMeligy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Mohammed S. Amer
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt
| | - Nermeen A. Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
3
|
ElShagea HN, Makar RR, Salama AH, Elkasabgy NA, Basalious EB. Investigating the Targeting Power to Brain Tissues of Intranasal Rasagiline Mesylate-Loaded Transferosomal In Situ Gel for Efficient Treatment of Parkinson's Disease. Pharmaceutics 2023; 15:pharmaceutics15020533. [PMID: 36839855 PMCID: PMC9967009 DOI: 10.3390/pharmaceutics15020533] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Rasagiline mesylate (RSM) is a hydrophilic drug with poor oral bioavailability (36%) because of hepatic first-pass metabolism. The present study focuses on delivering RSM directly to the brain through its inclusion within transferosomal in situ gel administered through the intranasal (IN) route. Transferosomes were formed by the thin-film hydration method with the aid of Design-Expert® software by varying the edge activator (EA) type in the absence or presence of cholesterol. By desirability calculations, the optimum formulation was composed of phosphatidylcholine and sodium deoxycholate as an EA (5:1% w/w) with no cholesterol. The optimum formulation was 198.63 ± 34.98 nm in size and displayed an entrapment efficiency of 95.73 ± 0.09%. Transmission electron microscopy revealed discrete and spherical vesicles. Optimized transferosomes were further incorporated into an in situ gel composed of 0.5% pectin, 15% Pluronic® F-127, and 5% Pluronic® F-68 and tested for the in vivo performance. The systemic as well as brain kinetics were assessed in rats by comparing the IN-administered in situ gel to the IV aqueous solution. The optimum in situ gel showed safety and biocompatibility on rats' nasal mucosa with enhanced brain bioavailability (131.17%). Drug targeting efficiency and direct transport percentage indices (304.53% and 67.16%, respectively) supported successful brain targeting offering direct nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Hala N. ElShagea
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Cairo 12451, Egypt
| | - Rana R. Makar
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Cairo 12451, Egypt
| | - Alaa H. Salama
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Cairo 12451, Egypt
- Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Nermeen A. Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
- Correspondence:
| | - Emad B. Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
4
|
Different Curcumin-Loaded Delivery Systems for Wound Healing Applications: A Comprehensive Review. Pharmaceutics 2022; 15:pharmaceutics15010038. [PMID: 36678665 PMCID: PMC9862251 DOI: 10.3390/pharmaceutics15010038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Curcumin or turmeric is the active constituent of Curcuma longa L. It has marvelous medicinal applications in many diseases. When the skin integrity is compromised due to either acute or chronic wounds, the body initiates several steps leading to tissue healing and skin barrier function restoration. Curcumin has very strong antibacterial and antifungal activities with powerful wound healing ability owing to its antioxidant activity. Nevertheless, its poor oral bioavailability, low water solubility and rapid metabolism limit its medical use. Tailoring suitable drug delivery systems for carrying curcumin improves its pharmaceutical and pharmacological effects. This review summarizes the most recent reported curcumin-loaded delivery systems for wound healing purposes, chiefly hydrogels, films, wafers, and sponges. In addition, curcumin nanoformulations such as nanohydrogels, nanoparticles and nanofibers are also presented, which offer better solubility, bioavailability, and sustained release to augment curcumin wound healing effects through stimulating the different healing phases by the aid of the small carrier.
Collapse
|
5
|
Blynskaya EV, Tishkov SV, Vinogradov VP, Alekseev KV, Marakhova AI, Vetcher AA. Polymeric Excipients in the Technology of Floating Drug Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14122779. [PMID: 36559272 PMCID: PMC9786229 DOI: 10.3390/pharmaceutics14122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The combination of targeted transport and improvement of the release profile of the active pharmaceutical ingredient (API) is a current trend in the development of oral medicinal products (MP). A well-known way to implement this concept is to obtain floating gastroretentive delivery systems that provide a long stay of the dosage form (DF) on the surface of the stomach contents. The nomenclature of excipients (Es) of a polymeric nature used in the technology of obtaining floating drug delivery systems (FDDS) is discussed. Based on the data presented in research papers, the most widely used groups of polymers, their properties, and their purpose in various technological approaches to achieving buoyancy have been determined. In addition, ways to modify the release of APIs in these systems and the Es used for this are described. The current trends in the use of polymers in the technology of floating dosage forms (FDF) and generalized conclusions about the prospects of this direction are outlined.
Collapse
Affiliation(s)
- Evgenia V. Blynskaya
- V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Sergey V. Tishkov
- V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Vladimir P. Vinogradov
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Konstantin V. Alekseev
- V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Anna I. Marakhova
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya St., 117588 Moscow, Russia
- Correspondence:
| |
Collapse
|
6
|
Elkasabgy NA, Salama A, Salama AH. Exploring the effect of intramuscularly injected polymer/lipid hybrid nanoparticles loaded with quetiapine fumarate on the behavioral and neurological changes in cuprizone-induced schizophrenia in mice. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Eldeeb AE, Salah S, Elkasabgy NA. Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review. AAPS PharmSciTech 2022; 23:267. [PMID: 36163568 PMCID: PMC9512992 DOI: 10.1208/s12249-022-02419-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/09/2022] [Indexed: 01/10/2023] Open
Abstract
Tissue engineering has emerged as an interesting field nowadays; it focuses on accelerating the auto-healing mechanism of tissues rather than organ transplantation. It involves implanting an In Vitro cultured initiative tissue or a scaffold loaded with tissue regenerating ingredients at the damaged area. Both techniques are based on the use of biodegradable, biocompatible polymers as scaffolding materials which are either derived from natural (e.g. alginates, celluloses, and zein) or synthetic sources (e.g. PLGA, PCL, and PLA). This review discusses in detail the recent applications of different biomaterials in tissue engineering highlighting the targeted tissues besides the in vitro and in vivo key findings. As well, smart biomaterials (e.g. chitosan) are fascinating candidates in the field as they are capable of elucidating a chemical or physical transformation as response to external stimuli (e.g. temperature, pH, magnetic or electric fields). Recent trends in tissue engineering are summarized in this review highlighting the use of stem cells, 3D printing techniques, and the most recent 4D printing approach which relies on the use of smart biomaterials to produce a dynamic scaffold resembling the natural tissue. Furthermore, the application of advanced tissue engineering techniques provides hope for the researchers to recognize COVID-19/host interaction, also, it presents a promising solution to rejuvenate the destroyed lung tissues.
Collapse
Affiliation(s)
- Alaa Emad Eldeeb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Salwa Salah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
8
|
Eldeeb AE, Salah S, Amer MS, Elkasabgy NA. 3D nanocomposite alginate hydrogel loaded with pitavastatin nanovesicles as a functional wound dressing with controlled drug release; preparation, in-vitro and in-vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Farag MM, Louis MM, Badawy AA, Nessem DI, Elmalak NSA. Drotaverine Hydrochloride Superporous Hydrogel Hybrid System: a Gastroretentive Approach for Sustained Drug Delivery and Enhanced Viscoelasticity. AAPS PharmSciTech 2022; 23:124. [PMID: 35471680 DOI: 10.1208/s12249-022-02280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
This study aims to prepare drotaverine hydrochloride superporous hydrogel hybrid systems (DSHH systems) to prolong its residence time in the stomach, provide extended release and reduce its frequency of administration. Drotaverine hydrochloride (DRH) is a spasmolytic drug that suffers from brief residence due to intestinal hypermotility during diarrheal episodes associated with gastrointestinal colics resulting in low bioavailability and repeated dosing. Eight DSHH systems were prepared using gas blowing technique. The prepared DSHH systems were evaluated regarding their morphology, incorporation efficiency, density, porosity, swelling ratio, viscoelastic property, erosion percentage and release kinetics. The FH8 formula containing equal proportion of chitosan (3%) /polyvinyl alcohol (3%) as strengthener and crosslinked with tripolyphosphate showed the highest incorporation efficiency (91.83 ± 1.33%), good swelling ratio (28.32 ± 3.15% after 24 h), optimum viscoelastic properties (60.19 ± 3.82 kPa) and sustained release profile (88.03 ± 2.15% after 24 h). A bioequivalence study was done to compare the bioavailability of the candidate formula versus Spasmocure®. Statistical analysis showed significant (P < 0.05) increase in bioavailability 2.7 folds with doubled Tmax (4 h) compared to the marketed product (2 h). These results declared that the superporous hydrogel hybrid systems could be a potential gastroretentive approach for the sustained delivery of drugs with short residence time with enhanced viscoelasticity.
Collapse
|
10
|
El Taweel MM, Aboul-Einien MH, Kassem MA, Elkasabgy NA. Intranasal Zolmitriptan-Loaded Bilosomes with Extended Nasal Mucociliary Transit Time for Direct Nose to Brain Delivery. Pharmaceutics 2021; 13:1828. [PMID: 34834242 PMCID: PMC8624645 DOI: 10.3390/pharmaceutics13111828] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/10/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
This study aimed at delivering intranasal zolmitriptan directly to the brain through preparation of bilosomes incorporated into a mucoadhesive in situ gel with extended nasal mucociliary transit time. Zolmitriptan-loaded bilosomes were constructed through a thin film hydration method applying Box-Behnken design. The independent variables were amount of sodium deoxycholate and the amount and molar ratio of cholesterol/Span® 40 mixture. Bilosomes were assessed for their entrapment efficiency, particle size and in vitro release. The optimal bilosomes were loaded into mucoadhesive in situ gel consisting of poloxamer 407 and hydroxypropyl methylcellulose. The systemic and brain kinetics of Zolmitriptan were evaluated in rats by comparing intranasal administration of prepared gel to an IV solution. Statistical analysis suggested an optimized bilosomal formulation composition of sodium deoxycholate (5 mg) with an amount and molar ratio of cholesterol/Span® 40 mixture of 255 mg and 1:7.7, respectively. The mucoadhesive in situ gel containing bilosomal formulation had a sol-gel temperature of 34.03 °C and an extended mucociliary transit time of 22.36 min. The gelling system possessed enhanced brain bioavailability compared to bilosomal dispersion (1176.98 vs. 835.77%, respectively) following intranasal administration. The gel revealed successful brain targeting with improved drug targeting efficiency and direct transport percentage indices. The intranasal delivery of mucoadhesive in situ gel containing zolmitriptan-loaded bilosomes offered direct nose-to-brain drug targeting with enhanced brain bioavailability.
Collapse
Affiliation(s)
- Mai M. El Taweel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; (M.H.A.-E.); (M.A.K.); (N.A.E.)
| | | | | | | |
Collapse
|
11
|
Drotaverine hydrochloride gastroretentive floating mini-tablets: Formulation, in-vitro and in-vivo evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Elkasabgy NA, Abdel-Salam FS, Mahmoud AA, Basalious EB, Amer MS, Mostafa AA, Elkheshen SA. Long lasting in-situ forming implant loaded with raloxifene HCl: An injectable delivery system for treatment of bone injuries. Int J Pharm 2019; 571:118703. [PMID: 31536761 DOI: 10.1016/j.ijpharm.2019.118703] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
Bone injury is very serious in elder people or osteoporotic patients. In-situ forming implants (IFI) for bone rebuilding are usually poly-lactic-co-glycolic acid (PLGA)-based, which have a burst release effect. This study aimed to prepare novel liquid lipid-based PLGA-IFI loaded with raloxifene hydrochloride for prolonged non-surgical treatment of bone injuries by applying solvent-induced phase inversion technique. Labrasol® and Maisine® were added to the selected IFI forming long lasting lipid-based IFI (LLL-IFI). The formulations were characterized by analysing their in-vitro drug release, solidification time, injectability, rheological properties, and DSC in addition to their morphological properties. Results revealed that the LLL-IFI composed of 10%w/v PLGA with a lactide to glycolide ratio of 75:25 with ester terminal and 10% Maisine® possessed the most sustained drug release and lowest burst effect, as well as delayed pore formation compared to its counterpart lacking Maisine®. The selected LLL-IFI and PLGA-IFI formulations were tested for their capability to enhance bone regeneration in bone injuries induced in rats. Both formulations succeeded in healing the bones completely with the superiority of LLL-IFI in the formation of well-organized bone structures lacking fibrous tissues. The results suggest that LLL-IFI and PLGA-IFI are innovative approaches for treating critical and non-critical sized bone injuries.
Collapse
Affiliation(s)
- Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt
| | | | - Azza A Mahmoud
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt; Department of Pharmaceutical Technology, Pharmaceutical and Drug Industries Research Division, National Research Center, Dokki, Cairo, Egypt
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt
| | - Mohammed S Amer
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Amany A Mostafa
- Refractories, Ceramics and Building Materials Department, Inorganic Chemical Industries and Mineral Resources Division, Nanomedicine and Tissue Engineering Lab, National Research Centre, Dokki, Cairo, Egypt
| | - Seham A Elkheshen
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
13
|
Rangaraj N, Shah S, A J M, Pailla SR, Cheruvu HS, D S, Sampathi S. Quality by Design Approach for the Development of Self-Emulsifying Systems for Oral Delivery of Febuxostat: Pharmacokinetic and Pharmacodynamic Evaluation. AAPS PharmSciTech 2019; 20:267. [PMID: 31346822 DOI: 10.1208/s12249-019-1476-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022] Open
Abstract
The goal of the present investigation is to formulate febuxostat (FXT) self-nanoemulsifying delivery systems (liquid SNEDDS, solid SNEDDS, and pellet) to ameliorate the solubility and bioavailability. To determine the self-nanoemulsifying region, ternary plot was constructed utilizing Capmul MCM C8 NF® as an oil phase, Labrasol® as principal surfactant, and Transcutol HP® being the co-surfactant. Liquid SNEDDS (L-SNEDDS) were characterized by evaluating droplet size, zeta potential, % transmission, and for thermodynamic stability. In vitro dissolution study of FXT loaded L-SNEDDS (batch F7) showed increased dissolution (about 48.54 ± 0.43% in 0.1 N HCl while 86.44 ± 0.16% in phosphate buffer pH 7.4 within 30 min) compared to plain drug (19.65 ± 2.95% in 0.1 N HCl while about 17.61 ± 2.63% in phosphate buffer pH 7.4 within 30 min). Single pass intestinal permeability studies revealed fourfold increase in the intestinal permeability of F7 compared to plain drug. So, for commercial aspects, F7 was further transformed into solid SNEDDS (S-SNEDDS) as readily nanoemulsifying powder form (SNEP) as well as pellets prepared by application of extruder spheronizer. The developed formulation was found superior to pure FXT with enhanced oral bioavailability and anti-gout activity (with reduced uric acid levels), signifying a lipidic system being an efficacious substitute for gout treatment.
Collapse
|
14
|
ElShagea HN, ElKasabgy NA, Fahmy RH, Basalious EB. Freeze-Dried Self-Nanoemulsifying Self-Nanosuspension (SNESNS): a New Approach for the Preparation of a Highly Drug-Loaded Dosage Form. AAPS PharmSciTech 2019; 20:258. [PMID: 31332638 DOI: 10.1208/s12249-019-1472-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Febuxostat suffers from relatively low bioavailability owing to the poor drug solubility and hepatic first-pass effect. This study aimed to prepare highly drug-loaded self-nanoemulsifying self-nanosuspension systems (SNESNS). SNESNS were designed to improve febuxostat's oral bioavailability by enhancing its solubility. Different oil and surfactant/co-surfactant mixtures were used for the preparation of SNESNS. The prepared SNESNS were estimated for their particle size, in vitro drug release and transmission electron microscopy (TEM). Results revealed that the oil mixture of Capryol™ 90:Miglyol® 812 (1:1 w/w) with surfactant/co-surfactant mixture of Cremophor® RH 40/Transcutol® HP loaded with drug in 4-fold greater concentration than its saturated solubility resulted in the formation of SNESNS by dilution under the effect of magnetic stirring. SNESNS were freeze-dried using trehalose as a cryoprotectant. TEM images and the bimodal particle size curve confirmed the formation of the biphasic nanosystems after dilution (nanoemulsion and nanosuspension). Higher Cmax and AUC0-48 values compared to those of the market product Feburic® tablets confirmed the success of the SNESNS as a promising carrier for drugs suffering from poor water solubility like febuxostat.
Collapse
|
15
|
Development and evaluation of performance characteristics of timolol-loaded composite ocular films as potential delivery platforms for treatment of glaucoma. Int J Pharm 2019; 566:111-125. [DOI: 10.1016/j.ijpharm.2019.05.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/24/2019] [Accepted: 05/22/2019] [Indexed: 02/04/2023]
|
16
|
Chen N, Niu J, Li Q, Li J, chen X, Ren Y, Wu G, Liu Y, Shi Y. Development and evaluation of a new gastroretentive drug delivery system: Nanomicelles-loaded floating mucoadhesive beads. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Gökbulut E, Vural İ, Aşıkoğlu M, Özdemir N. Floating drug delivery system of itraconazole: Formulation, in vitro and in vivo studies. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Gelucire: A versatile polymer for modified release drug delivery system. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2018. [DOI: 10.1016/j.fjps.2017.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Ammar HO, Ghorab MM, Mahmoud AA, Noshi SH. Formulation of risperidone in floating microparticles to alleviate its extrapyramidal side effects. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2016. [DOI: 10.1016/j.fjps.2016.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
20
|
Liu Y, Chen L, Zhou C, Yang J, Hou Y, Wang W. Development and evaluation of alginate-chitosan gastric floating beads loading with oxymatrine solid dispersion. Drug Dev Ind Pharm 2015; 42:456-63. [DOI: 10.3109/03639045.2015.1088866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People’s Republic of China,
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People’s Republic of China, and
| | - Lihong Chen
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People’s Republic of China,
| | - Chengming Zhou
- The Affiliated Tumor Hospital of General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People’s Republic of China,
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People’s Republic of China, and
| | - Yanhui Hou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People’s Republic of China,
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People’s Republic of China, and
| | - Wenping Wang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People’s Republic of China,
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People’s Republic of China, and
| |
Collapse
|
21
|
Kaushik AY, Tiwari AK, Gaur A. Role of excipients and polymeric advancements in preparation of floating drug delivery systems. Int J Pharm Investig 2015; 5:1-12. [PMID: 25599027 PMCID: PMC4286829 DOI: 10.4103/2230-973x.147219] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Since decade or two, the development of floating drug delivery systems becomes a significant and novel tool as having low density than gastric content. There are various advanced polymers including chitosan, eudragit, etc., and excipients such as; pore forming agent, surfactants, etc. All of them are discussed briefly, and results are concluded from various reputed researches. We have discussed all natural and synthetic systems with their effect on the release and other parameters which are essential for the floating formulation development.
Collapse
Affiliation(s)
- Avinash Y Kaushik
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | - Ajay K Tiwari
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | - Ajay Gaur
- Department of Pharmaceutics, Lachoo Memorial College of Science and Technology, Jodhpur, Rajasthan, India
| |
Collapse
|