1
|
Shirzad S, Tayaranian Marvian M, Abroumand Gholami A, Ghrehbaghi M, Marefati N, Salmani H, Mahdavizade V, Hosseini M, Vafaee F. Unveiling the Effects of Left Hemispheric Intracerebral Hemorrhage on Long-term Potentiation and Inflammation in the Bilateral Hippocampus: A Preclinical Study. J Stroke Cerebrovasc Dis 2024; 33:107523. [PMID: 38198945 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVE Changes in cognition and memory are common complications of intracerebral hemorrhage (ICH), although the exact cause of this phenomenon is still unknown. The objectives of our project were to assess the changes in long-term potentiation, inflammation, and cell damage in the bilateral hippocampus following striatal intracerebral hemorrhage at different time points. MATERIALS AND METHODS Unilateral ICH was induced in the striatum of 96 Wistar rats (6 control groups and 6 ICH groups). We measured changes in synaptic inputs in the bilateral hippocampus using the field potential recording method on days 3, 7, and 14 after ICH. After staining the section with hematoxylin, the volume and number of hippocampal cells were measured. The number of NF-κB positive cells was evaluated using the immunohistochemistry method. RESULTS There was a significant change in the amplitude and slope of the hippocampal excitatory potential in the ICH group compared to the sham group, but only on the 7th day after surgery. Specifically, the ipsilateral hippocampus in the ICH-7 group showed an increase in stimulation recording in 90 minutes compared to the sham-7 group (p<0.0001), while the contralateral hippocampus in the ICH-7 group exhibited a decrease in potential recording compared to the sham-7 group (p<0.0001). By day 14, the ICH group had a lower cell density in both the ipsilateral (p<0.05) and contralateral hippocampus (p<0.05) compared to the sham group, but there was no significant change in the hippocampal volume between the groups at any time interval. Furthermore, our immunohistochemical analysis revealed that the number of NF-kB-positive cells in both hemispheres of the ICH groups was significantly greater than that of the sham groups across all time intervals. CONCLUSIONS These findings suggest that striatal injury may lead to inflammation and cell death in the bilateral hippocampus, which can impair cognitive function after ICH.
Collapse
Affiliation(s)
- Shima Shirzad
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Arman Abroumand Gholami
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Cellular Biology and Anatomical Sciences, School of Medicine Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamad Ghrehbaghi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Salmani
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Vahid Mahdavizade
- Student Research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Innocenti GM, Schmidt K, Milleret C, Fabri M, Knyazeva MG, Battaglia-Mayer A, Aboitiz F, Ptito M, Caleo M, Marzi CA, Barakovic M, Lepore F, Caminiti R. The functional characterization of callosal connections. Prog Neurobiol 2021; 208:102186. [PMID: 34780864 PMCID: PMC8752969 DOI: 10.1016/j.pneurobio.2021.102186] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
The functional characterization of callosal connections is informed by anatomical data. Callosal connections play a conditional driving role depending on the brain state and behavioral demands. Callosal connections play a modulatory function, in addition to a driving role. The corpus callosum participates in learning and interhemispheric transfer of sensorimotor habits. The corpus callosum contributes to language processing and cognitive functions.
The brain operates through the synaptic interaction of distant neurons within flexible, often heterogeneous, distributed systems. Histological studies have detailed the connections between distant neurons, but their functional characterization deserves further exploration. Studies performed on the corpus callosum in animals and humans are unique in that they capitalize on results obtained from several neuroscience disciplines. Such data inspire a new interpretation of the function of callosal connections and delineate a novel road map, thus paving the way toward a general theory of cortico-cortical connectivity. Here we suggest that callosal axons can drive their post-synaptic targets preferentially when coupled to other inputs endowing the cortical network with a high degree of conditionality. This might depend on several factors, such as their pattern of convergence-divergence, the excitatory and inhibitory operation mode, the range of conduction velocities, the variety of homotopic and heterotopic projections and, finally, the state-dependency of their firing. We propose that, in addition to direct stimulation of post-synaptic targets, callosal axons often play a conditional driving or modulatory role, which depends on task contingencies, as documented by several recent studies.
Collapse
Affiliation(s)
- Giorgio M Innocenti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale (EPFL), Lausanne, Switzerland
| | - Kerstin Schmidt
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Chantal Milleret
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U 1050, Label Memolife, PSL Research University, Paris, France
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Maria G Knyazeva
- Laboratoire de Recherche en Neuroimagerie (LREN), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Leenaards Memory Centre and Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | - Francisco Aboitiz
- Centro Interdisciplinario de Neurociencias and Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maurice Ptito
- Harland Sanders Chair in Visual Science, École d'Optométrie, Université de Montréal, Montréal, Qc, Canada; Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Qc, Canada; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Matteo Caleo
- Department of Biomedical Sciences, University of Padua, Italy; CNR Neuroscience Institute, Pisa, Italy
| | - Carlo A Marzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Muhamed Barakovic
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale (EPFL), Lausanne, Switzerland
| | - Franco Lepore
- Department of Psychology, Centre de Recherche en Neuropsychologie et Cognition, University of Montréal, Montréal, QC, Canada
| | - Roberto Caminiti
- Department of Physiology and Pharmacology, University of Rome SAPIENZA, Rome, Italy; Neuroscience and Behavior Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
3
|
Chung YG, Han SW, Kim HS, Chung SC, Park JY, Wallraven C, Kim SP. Intra- and inter-hemispheric effective connectivity in the human somatosensory cortex during pressure stimulation. BMC Neurosci 2014; 15:43. [PMID: 24649878 PMCID: PMC3994419 DOI: 10.1186/1471-2202-15-43] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/13/2014] [Indexed: 01/08/2023] Open
Abstract
Background Slow-adapting type I (SA-I) afferents deliver sensory signals to the somatosensory cortex during low-frequency (or static) mechanical stimulation. It has been reported that the somatosensory projection from SA-I afferents is effective and reliable for object grasping and manipulation. Despite a large number of neuroimaging studies on cortical activation responding to tactile stimuli mediated by SA-I afferents, how sensory information of such tactile stimuli flows over the somatosensory cortex remains poorly understood. In this study, we investigated tactile information processing of pressure stimuli between the primary (SI) and secondary (SII) somatosensory cortices by measuring effective connectivity using dynamic causal modeling (DCM). We applied pressure stimuli for 3 s to the right index fingertip of healthy participants and acquired functional magnetic resonance imaging (fMRI) data using a 3T MRI system. Results DCM analysis revealed intra-hemispheric effective connectivity between the contralateral SI (cSI) and SII (cSII) characterized by both parallel (signal inputs to both cSI and cSII) and serial (signal transmission from cSI to cSII) pathways during pressure stimulation. DCM analysis also revealed inter-hemispheric effective connectivity among cSI, cSII, and the ipsilateral SII (iSII) characterized by serial (from cSI to cSII) and SII-level (from cSII to iSII) pathways during pressure stimulation. Conclusions Our results support a hierarchical somatosensory network that underlies processing of low-frequency tactile information. The network consists of parallel inputs to both cSI and cSII (intra-hemispheric), followed by serial pathways from cSI to cSII (intra-hemispheric) and from cSII to iSII (inter-hemispheric). Importantly, our results suggest that both serial and parallel processing take place in tactile information processing of static mechanical stimuli as well as highlighting the contribution of callosal transfer to bilateral neuronal interactions in SII.
Collapse
Affiliation(s)
| | | | | | | | | | - Christian Wallraven
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.
| | | |
Collapse
|
4
|
Bao R, Wei P, Li K, Lu J, Zhao C, Wang Y, Zhang T. Within-limb somatotopic organization in human SI and parietal operculum for the leg: an fMRI study. Brain Res 2012; 1445:30-9. [PMID: 22305143 DOI: 10.1016/j.brainres.2012.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/05/2012] [Accepted: 01/12/2012] [Indexed: 12/31/2022]
Abstract
Somatotopic organizations in human somatosensory cortex (SI and SII) for scattered portions of the leg have not been systematically observed with functional magnetic resonance imaging (fMRI). In this research we compared functional representations in the contralateral SI and bilateral parietal operculum (that contained subregions OP1, 3-4 of SII and OP2) of four acupoints in right leg in proximal-distal and medial-lateral arrangement. The results were: (1) somatotopy of SI demonstrated a lateral-to-medial and inferior-to-superior pattern when acupoints were shifting from proximal to distal or from medial to lateral; (2) the contralateral OP1 also showed a clear somatotopic organization for the four separated leg portions, and the ipsilateral OP1 showed a similar pattern to the contralateral OP1, thus arrangements of responses in the two areas were mirror-symmetric against y-axis; (3) the contralateral OP2 showed a somatotopic organization when acupoints shifting from proximal to distal, while the contralateral OP3 presented a trend of somatotopy opposite to that of the contralateral OP1. These results first show definite within-leg somatotopy of human SI for scattered leg portions in medial-lateral arrangement using fMRI. Within-limb somatotopic organization of OP1 for leg portions arranging from proximal to distal as well as from medial to lateral, and somatotopy of OP2 for leg portions arranging from proximal to distal, are also shown for the first time. Our results also reinforce the proposal of a somatotopic map existing in human OP3, and indicating a fourth somatotopic map in OP2 in human parietal operculum, which suggests that OP 2 is not just a vestibular area. In addition, separable activations in somatosensory cortex induced by adjacent acupoints should play a fundamental role in acupoint-specific effects in the brain.
Collapse
Affiliation(s)
- Ruixue Bao
- Beijing Boai hospital, China Rehabilitation Research Center, School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, PR China
| | | | | | | | | | | | | |
Collapse
|
5
|
Albanese MC, Duerden EG, Bohotin V, Rainville P, Duncan GH. Differential effects of cognitive demand on human cortical activation associated with vibrotactile stimulation. J Neurophysiol 2009; 102:1623-31. [PMID: 19553476 DOI: 10.1152/jn.91295.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This event-related functional MRI study examines the neural correlates of vibrotactile sensation within the context of different psychophysical demands. Nine subjects received vibrotactile stimuli on the right volar forearm during detection, localization, and passive tasks. In the detection task, subjects indicated the offset (end) of each stimulus by pressing a response key with their left hand. In the localization task, subjects identified the location of the stimulus ("distal?" or "proximal?") by pressing the appropriate response key 4 s after the end of the stimulus. In the passive task, subjects received the same vibrotactile stimuli, but no response was required. Analysis of stimulus-evoked activity compared with the resting baseline period revealed significant bilateral secondary somatosensory cortex activation for all three tasks. However, only in the offset-detection and localization tasks was stimulus-evoked activation observed in other expected areas of tactile processing, such as contralateral primary somatosensory cortex neighboring the posterior parietal cortex (SI/PPC) and in bilateral anterior insular cortex (aIC). During the localization task, we identified vibrotactile-evoked activation in the right aIC, which was maintained after the termination of the stimulus. Results suggest that vibrotactile-related activation within SI/PPC and aIC is enhanced by the increased levels of attention and cognitive demands required by the detection and localization tasks. Activation of aIC not only during vibrotactile stimulation, but also during the poststimulus delay in the localization trials, is consistent with the growing literature linking this area with the perception and short-term memory of tactile information.
Collapse
Affiliation(s)
- M-C Albanese
- Department of Psychology, McGill University, Montreal, Quebec H3T 1J4, Canada
| | | | | | | | | |
Collapse
|
6
|
Favorov OV, Whitsel BL, Chiu JS, Tommerdahl M. Activation of cat SII cortex by flutter stimulation of contralateral vs. ipsilateral forepaws. Brain Res 2006; 1071:81-90. [PMID: 16412394 DOI: 10.1016/j.brainres.2005.11.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 11/07/2005] [Accepted: 11/12/2005] [Indexed: 11/17/2022]
Abstract
A distinguishing feature of SII cortex is that it receives substantial input from skin mechanoreceptors located on both sides of the body. It remains uncertain, however, if integration of bilateral inputs occurs mainly in those regions of SII that represent near-midline body regions or also occurs to a significant extent in those regions of SII that represent the distal extremities. This issue was addressed using extracellular microelectrode recordings in cat SII in combination with the method of optical intrinsic signal (OIS) imaging. Stimulation of the central pad of either the contra- or ipsilateral forepaw with a 25-Hz sinusoidal vertical skin displacement ("skin flutter") stimulus evoked a prominent OIS response ("activation") in an extensive anteroposterior sector of SII. In the anteriorly located SII region that yielded the maximal OIS response to stimulation of the contralateral central pad, neurons consistently possessed receptive fields that included the stimulated skin site. This "forepaw" SII region also exhibited significant although 75% weaker OIS activation in response to stimulation of the ipsilateral central pad. Stimulation of the central pads of either contra- or ipsilateral forepaws also evoked OIS activation in the posteriorly located 'hindlimb' region of SII--defined as the SII region comprised of neurons with receptive fields on the contralateral hindlimb. The OIS response to ipsilateral central pad stimulation was strongest in the posterior SII region that borders the suprasylvian fringe--a region in which neurons have very large, and frequently bilateral, cutaneous receptive fields. The results indicate that widespread regions within cat SII receive cutaneous inputs from the ipsilateral distal forelimb. It is suggested that the functional role of these ipsilateral inputs may be different in different SII regions.
Collapse
Affiliation(s)
- Oleg V Favorov
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, 27599-7575, USA
| | | | | | | |
Collapse
|
7
|
Tommerdahl M, Simons SB, Chiu JS, Tannan V, Favorov O, Whitsel B. Response of SII cortex to ipsilateral, contralateral and bilateral flutter stimulation in the cat. BMC Neurosci 2005; 6:11. [PMID: 15710047 PMCID: PMC552304 DOI: 10.1186/1471-2202-6-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 02/14/2005] [Indexed: 11/13/2022] Open
Abstract
Background A distinctive property of SII is that it is the first cortical stage of the somatosensory projection pathway that integrates information arising from both sides of the body. However, there is very little known about how inputs across the body mid-line are processed within SII. Results Optical intrinsic signal imaging was used to evaluate the response of primary somatosensory cortex (SI and SII in the same hemisphere) to 25 Hz sinusoidal vertical skin displacement stimulation ("skin flutter") applied contralaterally, ipsilaterally, and bilaterally to the central pads of the forepaws. A localized increase in absorbance in both SI and SII was evoked by both contralateral and bilateral flutter stimulation. Ipsilateral flutter stimulation evoked a localized increase in absorbance in SII, but not in SI. The SII region that responded with an increase in absorbance to ipsilateral stimulation was posterior to the region in which absorbance increased maximally in response to stimulation of the contralateral central pad. Additionally, in the posterior SII region that responded maximally to ipsilateral stimulation of the central pad, bilateral central pad stimulation approximated a linear summation of the SII responses to independent stimulation of the contralateral and ipsilateral central pads. Conversely, in anterior SII (the region that responded maximally to contralateral stimulation), bilateral stimulation was consistently less than the response evoked from the contralateral central pad. Conclusions The results indicate that two regions located at neighboring, but distinctly different A-P levels of the anterior ectosylvian gyrus process input from opposite sides of the body midline in very different ways. The results suggest that the SII cortex, in the cat, can be subdivided into at least two functionally distinct regions and that these functionally distinct regions demonstrate a laterality preference within SII.
Collapse
Affiliation(s)
- Mark Tommerdahl
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephen B Simons
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joannellyn S Chiu
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Vinay Tannan
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Oleg Favorov
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Barry Whitsel
- Department of Cellular and Molecular Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Mun-Bryce S, Roberts LJM, Hunt WC, Bartolo A, Okada Y. Acute changes in cortical excitability in the cortex contralateral to focal intracerebral hemorrhage in the swine. Brain Res 2005; 1026:218-26. [PMID: 15488483 DOI: 10.1016/j.brainres.2004.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2004] [Indexed: 11/24/2022]
Abstract
Injury to the cerebral cortex results in functional deficits not only within the vicinity of the lesion but also in remote brain regions sharing neuronal connections with the injured site. To understand the electrophysiological basis of this phenomenon, we evaluated the effects of a focal intracerebral hemorrhage (ICH) on cortical excitability in a remote, functionally connected brain region. Cortical excitability was assessed by measuring the somatic evoked potential (SEP) elicited by electrical stimulation of the swine snout, which is somatotopically represented in the rostrum area of the primary somatosensory (SI) cortex. The SEP was measured on the SI cortex ipsilateral to the site of ICH and on the contralateral SI cortex during the acute period (< or =11 h) after collagenase-induced ICH. The ICH rapidly attenuated the SEP on the ipsilateral cortex as we reported earlier. Interestingly, the ICH also attenuated the SEP on the contralateral SI cortex. Evoked potentials in the contralateral SI cortex showed a gradual decrease in amplitude during this acute period of ICH. We then investigated whether the interhemispheric connections shared by the contralateral SI and the lesion cortex were responsible for the diminished evoked potentials in the uninjured hemisphere after ICH. A separate group of animals underwent corpus callosal transection prior to electrocorticography (ECoG) recordings and ICH injury. Within hours of hemorrhagic injury, a gradual but marked increase in evoked potential amplitude was observed in the homotopic SI cortex of callosotomized animals as compared to pre-injection recordings. The enhancement suggests that there are additional effects of ICH on remote areas functionally connected to the site of injury. Functional deficits were present in both SI cortices within the first several hours of a unilateral injury indicating that the cessation of brain activity in the lesioned SI is mirrored in the contralateral hemisphere. This electrophysiological depression in the uninjured SI cortex is mediated in part by the interhemispheric connections of the corpus callosum.
Collapse
Affiliation(s)
- Sheila Mun-Bryce
- Department of Neurology, University of New Mexico Health Science Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA.
| | | | | | | | | |
Collapse
|
9
|
Nhan H, Barquist K, Bell K, Esselman P, Odderson IR, Cramer SC. Brain function early after stroke in relation to subsequent recovery. J Cereb Blood Flow Metab 2004; 24:756-63. [PMID: 15241183 DOI: 10.1097/01.wcb.0000122744.72175.9c] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study aimed to characterize brain activation and perfusion early after stroke within cortical regions that would later change activation during recovery. Patients were studied serially after stroke (mean t1, = 16 days after stroke, t2 = 3.5 months later) using perfusion-weighted imaging and functional magnetic resonance imaging during finger movement. Controls (n = 7) showed no significant change in regional activation volumes over time. Among stroke patients (n = 8), however, recovery was accompanied by several patterns of functional magnetic resonance imaging change, with increased activation volumes over time in five patients and decreased in two. Most regions increasing activation over time were in the stroke hemisphere. Of the five patients showing increased activation over time, specific activation foci enlarged at t2 were already activated at t1 in four patients, and at least one focus growing from t1 to t2 was in a different arterial distribution from the infarct in all five patients. Perfusion of sensorimotor cortex at t1 was generally not reduced in the stroke hemisphere (94% of noninfarcted hemisphere). Improved clinical outcome was related to increased activation within sensory cortices of both brain sides, including bilateral secondary somatosensory areas. Early after stroke, cortical activation that will later increase in parallel with recovery is often already identifiable, can be remote from the vascular territory of the infarct, and is not likely hindered by reduced perfusion. The findings may be useful for restorative interventions introduced during the weeks after a stroke.
Collapse
Affiliation(s)
- Hoang Nhan
- Department of Neurology, University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
10
|
Bittar RG, Ptito A, Reutens DC. Somatosensory representation in patients who have undergone hemispherectomy: a functional magnetic resonance imaging study. J Neurosurg 2000; 92:45-51. [PMID: 10616081 DOI: 10.3171/jns.2000.92.1.0045] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Removal or disconnection of an entire cerebral hemisphere is occasionally used to treat refractory seizures. Patients who have undergone a hemispherectomy provide useful models to study the reorganization of cortical somatosensory representation. This plasticity may be a consequence of the pathological lesion, the hemispherectomy itself, or both. METHODS Three patients who had undergone hemispherectomy were studied with functional magnetic resonance (fMR) imaging. Responses to sensory stimulation in normal hands and hands opposite the lesioned hemisphere were studied. Multislice T2*-weighted gradient-echo echoplanar images were obtained using a 1.5-tesla MR imager. The activation condition consisted of somatosensory stimulation of the index finger. A T1-weighted anatomical MR image was acquired. The fMR and anatomical MR images were coregistered, and statistically significant activation foci (p < 0.01) were identified. Stimulation of the normal hand produced activation in the primary somatosensory cortex (SI) in all patients. Stimulation of the impaired hand resulted in activation of the ipsilateral parietal operculum (second somatosensory area [SII]) and posterior parietal lobe (Brodmann's Area 7) in all cases, but no activation was elicited in the SI in any patient. In addition, other areas within the ipsilateral frontal and parietal lobes were activated in some individuals. CONCLUSIONS Residual somatosensory function in the hand opposite the lesioned hemisphere is mediated by the SII and other cortical regions in the intact hemisphere, without involvement of the SI.
Collapse
Affiliation(s)
- R G Bittar
- Montreal Neurological Institute and Hospital and Department of Neurology and Neurosurgery, McGill University, Quebec, Canada
| | | | | |
Collapse
|
11
|
Fabri M, Polonara G, Quattrini A, Salvolini U, Del Pesce M, Manzoni T. Role of the corpus callosum in the somatosensory activation of the ipsilateral cerebral cortex: an fMRI study of callosotomized patients. Eur J Neurosci 1999; 11:3983-94. [PMID: 10583487 DOI: 10.1046/j.1460-9568.1999.00829.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To verify whether the activation of the posterior parietal and parietal opercular cortices to tactile stimulation of the ipsilateral hand is mediated by the corpus callosum, a functional magnetic resonance imaging (fMRI, 1.0 tesla) study was performed in 12 control and 12 callosotomized subjects (three with total and nine with partial resection). Eleven patients were also submitted to the tactile naming test. In all subjects, unilateral tactile stimulation provoked a signal increase temporally correlated with the stimulus in three cortical regions of the contralateral hemisphere. One corresponded to the first somatosensory area, the second was in the posterior parietal cortex, and the third in the parietal opercular cortex. In controls, activation was also observed in the ipsilateral posterior parietal and parietal opercular cortices, in regions anatomically corresponding to those activated contralaterally. In callosotomized subjects, activation in the ipsilateral hemisphere was observed only in two patients with splenium and posterior body intact. These two patients and another four with the entire splenium and variable portions of the posterior body unsectioned named objects explored with the right and left hand without errors. This ability was impaired in the other patients. The present physiological and anatomical data indicate that in humans activation of the posterior parietal and parietal opercular cortices in the hemisphere ipsilateral to the stimulated hand is mediated by the corpus callosum, and that the commissural fibres involved probably cross the midline in the posterior third of its body.
Collapse
Affiliation(s)
- M Fabri
- Institute of Human Physiology, University of Ancona, 60020 Ancona, Italy
| | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Schiavetto A, Lepore F, Lassonde M. Somesthetic discrimination thresholds in the absence of the corpus callosum. Neuropsychologia 1993; 31:695-707. [PMID: 8371843 DOI: 10.1016/0028-3932(93)90141-l] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The aim of this study was to investigate how the absence of the corpus callosum affects somesthetic sensation on the axial midline and in proximal and distal body regions. For this purpose, two-point discrimination ability was evaluated in four acallosal subjects, four callosotomized subjects, six IQ-matched subjects and 10 control subjects with average and above average IQ. Sensory thresholds were established in the distal (index, palm), proximal (forearm), cranio-axial (forehead) and axial (dorsal trunk) body regions. The threshold was defined as the smallest separation at which the two points were perceived at a 70% accuracy level. Results showed that the thresholds of the acallosal and the callosotomized subjects were not significantly different from those of the IQ-matched control groups in the distal, proximal and cranio-axial body regions. However, thresholds in the dorsal trunk were significantly higher in the two experimental groups. It thus appears that the axial regions of the body that are normally densely represented in the corpus callosum function abnormally when this structure is absent or transected. Moreover, compensatory mechanisms normally seen in cases of early brain injury do not seem to apply in the present case since the acallosals showed the same impairments as the callosotomized subjects.
Collapse
Affiliation(s)
- A Schiavetto
- Groupe de Recherche en Neuropsychologie Expérimentale, Université de Montréal, Québec, Canada
| | | | | |
Collapse
|
14
|
Guillemot JP, Richer L, Ptito M, Guilbert M, Lepore F. Somatosensory receptive field properties of corpus callosum fibres in the raccoon. J Comp Neurol 1992; 321:124-32. [PMID: 1613134 DOI: 10.1002/cne.903210111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Anatomical studies in a number of species have shown that most areas of the somatosensory cortex are callosally interconnected. This is also true for the raccoon, at least for those parts representing proximal and axial body regions. Electrophysiologically, studies carried out in cats and monkeys have demonstrated that all sensory sub-modalities cross in the callosum. Moreover, cells representing the paws and fingers, though occupying a large portion of areas SI and SII, seem to send proportionately fewer axons through the callosum than axial structures. No comparable study has been carried out in the raccoon. The purpose of the present experiment was therefore to investigate the functional organization of the callosal system in this animal by examining the receptive field properties of the somatosensory fibres crossing in the callosum. Axonal activity was recorded directly through tungsten microelectrodes in the corpus callosum of eight raccoons. Results indicated that somatosensory information is transmitted in its rostral portion. Most receptive fields concerned axial and proximal body regions and the head and face. Some receptive fields represented para-axial regions of the body and a few concerned the hands and fingers. Slowly and rapidly adapting fibres were found, as were all the sensory sub-modalities tested. A substantial proportion of the axons had bilateral receptive fields. These results are discussed in relation to those obtained in other species, with particular reference to: (1) the midline fusion hypothesis of callosal function; (2) the representation within this structure of the distal extremities, and (3) the origin of the bilateral receptive fields.
Collapse
Affiliation(s)
- J P Guillemot
- Département de Kinanthropologie, Université du Québec, Montréal, Canada
| | | | | | | | | |
Collapse
|
15
|
Lassonde M, Sauerwein H, Chicoine AJ, Geoffroy G. Absence of disconnexion syndrome in callosal agenesis and early callosotomy: brain reorganization or lack of structural specificity during ontogeny? Neuropsychologia 1991; 29:481-95. [PMID: 1944857 DOI: 10.1016/0028-3932(91)90006-t] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Four acallosal subjects, one child, aged 5, and three adults, as well as five epileptic patients who underwent callosotomy between the ages of 6-21 years, were tested on a variety of intra- and intermanual tasks in a study aimed at elucidating the developmental aspects of callosal plasticity. The performance of the clinical sample was compared to that of 48 normal children, aged 5-12 years, an age span generally considered to coincide with the final stages of callosal maturation. As previously reported, interhemispheric integration improved with increasing age in the normal sample. The two patients having undergone callosotomy in childhood performed as well as their normal peers, whereas the three others who had the operation in late adolescence or adulthood showed the typical disconnexion deficits reported in the literature. The acallosal subjects, including the youngest one, outperformed all groups. We speculate that the remarkable plasticity seen in the acallosals and the young callosotomized patients may be related to a critical period in development coinciding with a phase of synaptic overproduction and redundancy that would favor the reinforcement of alternative neural pathways. The compensatory mechanisms appear to become more limited in late adolescence when synaptic distribution presumably assumes adult patterns.
Collapse
Affiliation(s)
- M Lassonde
- Groupe de Recherche en Neuropsychologie Experimentale, Université de Montréal, Canada
| | | | | | | |
Collapse
|
16
|
Picard N, Lepore F, Ptito M, Guillemot JP. Bilateral interaction in the second somatosensory area (SII) of the cat and contribution of the corpus callosum. Brain Res 1990; 536:97-104. [PMID: 2085764 DOI: 10.1016/0006-8993(90)90013-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There are indications in the literature that convergent ipsilateral and contralateral input to the second somatosensory area (SII) may interact. Single unit activity of SII bilateral cells was studied to evaluate the impact of simultaneous bilateral stimulation of the receptive fields (RF) on neural discharge. The cellular responses to unilateral ipsilateral and contralateral, as well as to bilateral stimulation were compared. 22% of bilateral cells showed interaction, usually facilitation. Bilaterally evoked responses were found to be as great as 250% of the strongest unilateral response. Only bilateral responses stronger or weaker than the dominant unilateral response by at least 50% were considered as interactive. The great majority of interactive cells had their RF on the forelimb and were responsive to deep stimulation. The corpus callosum appears to be responsible for part of the observed interaction since in callosotomized cats only 5% of bilateral cells were interactive. A non-callosal ipsilateral pathway must be postulated because both bilaterality and bilateral interaction persist to some degree after callosotomy. A putative role for bilateral interaction in sensory-motor integration is discussed.
Collapse
Affiliation(s)
- N Picard
- Département de Psychologie, Université de Montréal, Que., Canada
| | | | | | | |
Collapse
|