1
|
Liu XY, Li P, Li XS, Simoncini T, Cheng Y. 17β-Estradiol nongenomically induces vasodilation is enhanced by promoting phosphorylation of endophilin A2. Gynecol Endocrinol 2022; 38:644-650. [PMID: 35730594 DOI: 10.1080/09513590.2022.2088731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/22/2022] [Accepted: 06/08/2022] [Indexed: 11/11/2022] Open
Abstract
ObjectiveA previous study found that the tyrosine phosphorylation of endophilin A2 (Endo II) was responsible for increase surface expression of MT1-MMP and ECM degradation; however, there is little information about whether Endo II could influence membrane estrogen receptors (mERs) and its functions.Materials and methodsIn the present study, Human umbilical vein endothelial cells (HUVECs) were treated with E2, PPT, DPN, ICI 182780, Endo siRNA or negative control siRNA, and the biological behavior of the treated cells was observed. The mice were randomly divided into AAV-control-shRNA + Ach, AAV-Endo II-shRNA + Ach, AAV-control-shRNA + E2, AAV-Endo II-shRNA + E2 groups and the thoracic aorta were isolated, cut into 2-mm rings, then the wall tension was detected.ResultsWe found that 17β-Estradiol (E2) enhanced mERα protein level, which was further increased after knocking down Endo II, the mechanism maybe involved in E2-induced tyrosine phosphorylation of Endo II. In addition, we also observed that Endo II blocked the activation of Akt, ERK1/2 and eNOS signaling in HUVECs treated with E2. E2 induced vasodilation was significantly increased by silencing of Endo II expression.ConclusionOur study provided a sound basis to selective modulate Endo II for E2's nongenomic pathway, which can be benefit for cardiovascular system.
Collapse
Affiliation(s)
- Xiao-Yun Liu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Clinical Pharmacy (School of Integrative Pharmacy, Institute of Integrative Pharmaceutical Research), Guangdong Pharmaceutical University, Guangzhou, China
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ping Li
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Sa Li
- Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
| | - Yang Cheng
- Department of Gynecology and Obstetrics, Guangzhou First People's Hospital, South China University of Technology, Guang zhou, Guangdong, China
| |
Collapse
|
2
|
Reyes-García J, Montaño LM, Carbajal-García A, Wang YX. Sex Hormones and Lung Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:259-321. [PMID: 34019274 DOI: 10.1007/978-3-030-68748-9_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic marker in numerous lung disorders. Several immune cells, such as macrophages, dendritic cells, eosinophils, as well as T and B lymphocytes, synthetize and release cytokines involved in the inflammatory process. Gender differences in the incidence and severity of inflammatory lung ailments including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer (LC), and infectious related illnesses have been reported. Moreover, the effects of sex hormones on both androgens and estrogens, such as testosterone (TES) and 17β-estradiol (E2), driving characteristic inflammatory patterns in those lung inflammatory diseases have been investigated. In general, androgens seem to display anti-inflammatory actions, whereas estrogens produce pro-inflammatory effects. For instance, androgens regulate negatively inflammation in asthma by targeting type 2 innate lymphoid cells (ILC2s) and T-helper (Th)-2 cells to attenuate interleukin (IL)-17A-mediated responses and leukotriene (LT) biosynthesis pathway. Estrogens may promote neutrophilic inflammation in subjects with asthma and COPD. Moreover, the activation of estrogen receptors might induce tumorigenesis. In this chapter, we summarize the most recent advances in the functional roles and associated signaling pathways of inflammatory cellular responses in asthma, COPD, PF, LC, and newly occurring COVID-19 disease. We also meticulously deliberate the influence of sex steroids on the development and progress of these common and severe lung diseases.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
3
|
X‑irradiation induces acute and early term inflammatory responses in atherosclerosis‑prone ApoE‑/‑ mice and in endothelial cells. Mol Med Rep 2021; 23:399. [PMID: 33786610 PMCID: PMC8025474 DOI: 10.3892/mmr.2021.12038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023] Open
Abstract
Thoracic radiotherapy is an effective treatment for many types of cancer; however it is also associated with an increased risk of developing cardiovascular disease (CVD), appearing mainly ≥10 years after radiation exposure. The present study investigated acute and early term physiological and molecular changes in the cardiovascular system after ionizing radiation exposure. Female and male ApoE‑/‑ mice received a single exposure of low or high dose X‑ray thoracic irradiation (0.1 and 10 Gy). The level of cholesterol and triglycerides, as well as a large panel of inflammatory markers, were analyzed in serum samples obtained at 24 h and 1 month after irradiation. The secretion of inflammatory markers was further verified in vitro in coronary artery and microvascular endothelial cell lines after exposure to low and high dose of ionizing radiation (0.1 and 5 Gy). Local thoracic irradiation of ApoE‑/‑ mice increased serum growth differentiation factor‑15 (GDF‑15) and C‑X‑C motif chemokine ligand 10 (CXCL10) levels in both female and male mice 24 h after high dose irradiation, which were also secreted from coronary artery and microvascular endothelial cells in vitro. Sex‑specific responses were observed for triglyceride and cholesterol levels, and some of the assessed inflammatory markers as detailed below. Male ApoE‑/‑ mice demonstrated elevated intercellular adhesion molecule‑1 and P‑selectin at 24 h, and adiponectin and plasminogen activator inhibitor‑1 at 1 month after irradiation, while female ApoE‑/‑ mice exhibited decreased monocyte chemoattractant protein‑1 and urokinase‑type plasminogen activator receptor at 24 h, and basic fibroblast growth factor 1 month after irradiation. The inflammatory responses were mainly significant following high dose irradiation, but certain markers showed significant changes after low dose exposure. The present study revealed that acute/early inflammatory responses occurred after low and high dose thoracic irradiation. However, further research is required to elucidate early asymptomatic changes in the cardiovascular system post thoracic X‑irradiation and to investigate whether GDF‑15 and CXCL10 could be considered as potential biomarkers for the early detection of CVD risk in thoracic radiotherapy‑treated patients.
Collapse
|
4
|
Holvoet P, Klocke B, Vanhaverbeke M, Menten R, Sinnaeve P, Raitoharju E, Lehtimäki T, Oksala N, Zinser C, Janssens S, Sipido K, Lyytikainen LP, Cagnin S. RNA-sequencing reveals that STRN, ZNF484 and WNK1 add to the value of mitochondrial MT-COI and COX10 as markers of unstable coronary artery disease. PLoS One 2019; 14:e0225621. [PMID: 31821324 PMCID: PMC6903720 DOI: 10.1371/journal.pone.0225621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/09/2019] [Indexed: 12/23/2022] Open
Abstract
Markers in monocytes, precursors of macrophages, which are related to CAD, are largely unknown. Therefore, we aimed to identify genes in monocytes predictive of a new ischemic event in patients with CAD and/or discriminate between stable CAD and acute coronary syndrome. We included 66 patients with stable CAD, of which 24 developed a new ischemic event, and 19 patients with ACS. Circulating CD14+ monocytes were isolated with magnetic beads. RNA sequencing analysis in monocytes of patients with (n = 13) versus without (n = 11) ischemic event at follow-up and in patients with ACS (n = 12) was validated with qPCR (n = 85). MT-COI, STRN and COX10 predicted new ischemic events in CAD patients (power for separation at 1% error rate of 0.97, 0.90 and 0.77 respectively). Low MT-COI and high STRN were also related to shorter time between blood sampling and event. COX10 and ZNF484 together with MT-COI, STRN and WNK1 separated ACS completely from stable CAD patients. RNA expressions in monocytes of MT-COI, COX10, STRN, WNK1 and ZNF484 were independent of cholesterol lowering and antiplatelet treatment. They were independent of troponin T, a marker of myocardial injury. But, COX10 and ZNF484 in human plaques correlated to plaque markers of M1 macrophage polarization, reflecting vascular injury. Expression of MT-COI, COX10, STRN and WNK1, but not that of ZNF484, PBMCs paired with that in monocytes. The prospective study of relation of MT-COI, COX10, STRN, WNK1 and ZNF484 with unstable CAD is warranted.
Collapse
Affiliation(s)
- Paul Holvoet
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- * E-mail:
| | | | | | - Roxane Menten
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Peter Sinnaeve
- Department of Clinical Cardiology, UZ Leuven, Leuven, Belgium
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Life Sciences University of Tampere, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Life Sciences University of Tampere, Tampere, Finland
| | - Niku Oksala
- Division of Vascular Surgery, Department of Surgery, Tampere University Hospital, Tampere, Finland
| | | | - Stefan Janssens
- Department of Clinical Cardiology, UZ Leuven, Leuven, Belgium
| | - Karin Sipido
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Leo-Pekka Lyytikainen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Life Sciences University of Tampere, Tampere, Finland
| | - Stefano Cagnin
- Department of Biology, CRIBI Biotechnology Centre, Padova, Italy
- CIR-Myo Myology Centre, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Inthachart K, Manotham K, Eiam-Ong S, Eiam-Ong S. Aldosterone Rapidly Enhances Levels of the Striatin and Caveolin-1 Proteins in Rat Kidney: The Role of the Mineralocorticoid Receptor. Endocrinol Metab (Seoul) 2019; 34:291-301. [PMID: 31565882 PMCID: PMC6769340 DOI: 10.3803/enm.2019.34.3.291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Striatin and caveolin-1 (cav-1) are scaffolding/regulating proteins that are associated with salt-sensitive high blood pressure and promote renal sodium and water reabsorption, respectively. The mineralocorticoid receptor (MR) interacts with striatin and cav-1, while aldosterone increases striatin and cav-1 levels. However, no in vivo data have been reported for the levels of these proteins in the kidney. METHODS Male Wistar rats were intraperitoneally injected with normal saline solution, aldosterone alone (Aldo: 150 μg/kg body weight), or aldosterone after pretreatment with eplerenone, an MR blocker, 30 minutes before the aldosterone injection (eplerenone [Ep.]+Aldo). Thirty minutes after the aldosterone injection, the amount and localization of striatin and cav-1 were determined by Western blot analysis and immunohistochemistry, respectively. RESULTS Aldosterone increased striatin levels by 150% (P<0.05), and cav-1 levels by 200% (P<0.001). Eplerenone had no significant effect on striatin levels, but partially blocked the aldosterone-induced increase in cav-1 levels. Aldosterone stimulated striatin and cav-1 immunoreactivity in both the cortex and medulla. Eplerenone reduced cav-1 immunostaining in both areas; however, striatin intensity was reduced in the cortex, but increased in the medulla. CONCLUSION This is the first in vivo study demonstrating that aldosterone rapidly enhances renal levels of striatin and cav-1. Aldosterone increases striatin levels via an MR-independent pathway, whereas cav-1 is partially regulated through MR.
Collapse
Affiliation(s)
- Kevalin Inthachart
- Interdepartment of Physiology, Chulalongkorn University Graduate School, Bangkok, Thailand
| | | | - Somchai Eiam-Ong
- Division of Nephrology, Department of Medicine, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| | - Somchit Eiam-Ong
- Department of Physiology, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand.
| |
Collapse
|
6
|
Estrogen in vascular smooth muscle cells: A friend or a foe? Vascul Pharmacol 2018; 111:15-21. [PMID: 30227233 DOI: 10.1016/j.vph.2018.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 01/10/2023]
Abstract
Cardiovascular disease (CVD) continues to be the leading cause of death worldwide. The effect of estrogen on these diseases has been assessed in in vitro and in vivo models, as well as in observational studies. Collectively, these studies alluded to a cardiovasculo-protective effect of estrogen. However, comprehensive clinical investigation failed to produce concrete proof of a cardiovascular protective effect for hormone replacement therapy (HRT), let alone rule out potential harm. These seemingly paradoxical effects of estrogen were explained by the 'theory of timing and opportunity'. This theory states that the effect of estrogen, whether cardiovasculo-protective or pathological, significantly depends on the age of the individual when estrogen administration takes place. Here, we review the conflicting effects of estrogen on vascular smooth muscle cells, mainly proliferation and migration as two cellular capacities intimately related to physiology and pathophysiology of the cardiovascular system. Furthermore, we critically discuss the major parameters and signaling pathways that may account for the aforementioned paradoxical observations, as well as the key molecular players involved.
Collapse
|
7
|
Zheng S, Sun P, Liu H, Li R, Long L, Xu Y, Chen S, Xu J. 17β-estradiol upregulates striatin protein levels via Akt pathway in human umbilical vein endothelial cells. PLoS One 2018; 13:e0202500. [PMID: 30138337 PMCID: PMC6107185 DOI: 10.1371/journal.pone.0202500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/04/2018] [Indexed: 11/19/2022] Open
Abstract
17β-estradiol (E2) has been shown to have beneficial effects on the cardiovascular system. We previously demonstrated that E2 increases striatin levels and inhibits migration in vascular smooth muscle cells. The objective of the present study was to investigate the effects of E2 on the regulation of striatin expression in human umbilical vein endothelial cells (HUVECs). We demonstrated that E2 increased striatin protein expression in a dose- and time-dependent manner in HUVECs. Pretreatment with ICI 182780 or the phosphatidylinositol-3 kinase inhibitor, wortmannin, abolished E2-mediated upregulation of striatin protein expression. Treatment with E2 resulted in Akt phosphorylation in a time-dependent manner. Moreover, silencing striatin significantly inhibited HUVEC migration, while striatin overexpression significantly promoted HUVEC migration. Finally, E2 enhanced HUVEC migration, which was inhibited by silencing striatin. In conclusion, our results demonstrated that E2-mediated upregulation of striatin promotes cell migration in HUVECs.
Collapse
Affiliation(s)
- Shuhui Zheng
- Research Center of Translational Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Peng Sun
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative innovation Center for Cancer Medicine, Guangzhou, China
| | - Haimei Liu
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Runmei Li
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Lingli Long
- Research Center of Translational Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yuxia Xu
- Research Center of Translational Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Suiqing Chen
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Jinwen Xu
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
- * E-mail:
| |
Collapse
|
8
|
Zhang G, Li C, Zhu N, Chen Y, Yu Q, Liu E, Wang R. Sex differences in the formation of atherosclerosis lesion in apoE-/-mice and the effect of 17β-estrodiol on protein S-nitrosylation. Biomed Pharmacother 2018; 99:1014-1021. [DOI: 10.1016/j.biopha.2018.01.145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/12/2018] [Accepted: 01/28/2018] [Indexed: 01/19/2023] Open
|
9
|
Shortrede JE, Montt-Guevara MM, Pennacchio G, Finiguerra M, Giannini A, Genazzani AD, Simoncini T. Ulipristal Acetate Interferes With Actin Remodeling Induced by 17β-Estradiol and Progesterone in Human Endometrial Stromal Cells. Front Endocrinol (Lausanne) 2018; 9:350. [PMID: 30013514 PMCID: PMC6036300 DOI: 10.3389/fendo.2018.00350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/11/2018] [Indexed: 12/16/2022] Open
Abstract
Ulipristal acetate (UPA) is a selective progesterone receptor modulator (SPRM) used for emergency contraception and for the medical management of symptomatic uterine fibroids (UF). Treatment with UPA turns in amenorrhea and UF volume reduction. Treatment with UPA is associated with the frequent development of benign, transitory endometrial changes known as SPRM-associated endometrial changes (PAECs). Why PAECs develop and their biological or cellular basis is unknown. Sex steroids, including estrogen and progesterone, are established modulators of the actin cytoskeleton in various cells, including endometrial cells. This explains several morphological and functional changes in endometrial cells. We thus hypothesized that UPA may alter the appearance of the endometrium by interfering with the actions of 17β-estradiol (E2) or progesterone (P4) on actin dynamics. We isolated and cultured human endometrial stromal cells (ESC) from endometrial biopsies from healthy fertile women. Treatment with E2 or P4 stimulated visible actin rearrangements with actin remodeling toward the membrane. Activation through phosphorylation of the actin regulatory proteins, Moesin, and focal adhesion kinase (FAK), hacked actin remodeling induced by E2 and P4. Membrane re-localization of Paxillin and Vinculin were also induced by E2 and P4, showing the formation of focal adhesion complexes. All these E2 and P4 actions were inhibited by co-treatment with UPA, which was otherwise inactive if given alone. The cytoskeletal changes induced by E2 and P4 turned into increased motility of ESC, and UPA again blocked the actions E2 and P4. In conclusion, we find that UPA interferes with the cytoskeletal actions of E2 and P4 in ESC. This finding helps understanding the mode of actions of SPRMs in the endometrium and may be relevant for other potential clinical applications of UPA.
Collapse
Affiliation(s)
- Jorge E. Shortrede
- Molecular and Cellular Gynecological Endocrinology Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria M. Montt-Guevara
- Molecular and Cellular Gynecological Endocrinology Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gisela Pennacchio
- Institute of Experimental Medicine and Biology of Cuyo, Technology and Scientific Center (CCT)-National Research Council of Argentina, Mendoza, Argentina
| | - Michele Finiguerra
- Molecular and Cellular Gynecological Endocrinology Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Giannini
- Molecular and Cellular Gynecological Endocrinology Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro D. Genazzani
- Department of Obstetrics and Gynecology, Center for Gynecological Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- *Correspondence: Tommaso Simoncini
| |
Collapse
|
10
|
Li H, Cheng Y, Simoncini T, Xu S. 17β-Estradiol inhibits TNF-α-induced proliferation and migration of vascular smooth muscle cells via suppression of TRAIL. Gynecol Endocrinol 2016; 32:581-6. [PMID: 26878683 DOI: 10.3109/09513590.2016.1141882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is an inflammatory disease and involves migration of vascular smooth muscle cells (VSMCs). Estrogen inhibits VSMCs migration, while the underlying mechanism remains to be revealed. Recent years, there is emerging evidence showing that TNF-related apoptosis-inducing ligand (TRAIL) increases proliferation and migration of VSMCs. In this study, we investigated the regulatory effect of estrogen on TRAIL expression in VSMCs. TNF-α greatly enhanced TRAIL protein expression and stimulated VSMCs proliferation and migration. This effect was partially inhibited by the addition of TRAIL neutralizing antibody, suggesting that TRAIL is important in TNF-α-induced migration. 17β-estradiol (E2) inhibited TRAIL expression under TNF-α stimulation in a time- and concentration-dependent manner. This effect was was mimicked by ERα agonist 4',4″,4‴-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT), but not ERβ agonist 2,3-bis-(4-hydroxyphenyl)-propionitrile (DPN), indicating that ERα is involved in this action. TNF-α led to nuclear factor kappa B (NF-κB) p65 phosphorylation and the inhibitor pyrrolidine dithiocarbama (PDTC) inhibited TRAIL expression, suggesting that NF-κB signaling is crucial for TARIL production. E2 suppressed p65 phosphorylation in VSMCs and the overexpression of p65 subunit reversed the inhibitory effect of E2 on TRAIL expression and cell proliferation and migration. Taken together, our results indicate that E2 inhibits VSMCs proliferation and migration by downregulation of TRAIL expression via suppression of NF-κB pathway.
Collapse
Affiliation(s)
- Hengchang Li
- a Department of Anesthesiology , Zhujiang Hospital of Southern Medical University , Guangzhou, Guangdong Province , China
- b Guangzhou First People's Hospital , Guangzhou, Guangdong Province , China , and
| | - Yang Cheng
- b Guangzhou First People's Hospital , Guangzhou, Guangdong Province , China , and
| | - Tommaso Simoncini
- c Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa , Pisa , Italy
| | - Shiyuan Xu
- a Department of Anesthesiology , Zhujiang Hospital of Southern Medical University , Guangzhou, Guangdong Province , China
| |
Collapse
|
11
|
Huang F, Yin J, Li K, Li Y, Qi H, Fang L, Yuan C, Liu W, Wang M, Li X. GPR30 decreases with vascular aging and promotes vascular smooth muscle cells maintaining differentiated phenotype and suppressing migration via activation of ERK1/2. Onco Targets Ther 2016; 9:3415-22. [PMID: 27354813 PMCID: PMC4907733 DOI: 10.2147/ott.s104972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Estrogen receptors, including classic nuclear receptors ERα, ERβ, and membrane receptor GPR30, are expressed in vascular tissues and exert protective actions in vascular diseases. But the expression pattern and functional roles of GPR30 in vascular smooth muscle cells (VSMCs) remain unclear. In this study, we found that ERα, ERβ, and GPR30 were decreased with VSMCs passaging in vitro or growing in vivo and activation of GPR30 promoted ERα expression. Then, we validated that activation of GPR30 significantly decreased migratory capability of VSMCs and suppressed ERα, whereas PDGF-BB (20 ng/mL) treatment caused increase of migration. And activation of GPR30 led to reduction of osteopontin and cellular retinol binding protein 1, enhancement of calponin and 3F8, and upregulation of total and phosphorylated ERK1/2 expression in VSMCs knocked down by GPR30, ERα, and ERβ or treated with PDGF-BB. These data suggest that GPR30 promotes VSMCs reducing migration and maintaining differentiated phenotype via activation of ERK1/2 pathway. Our findings provide novel mechanisms of GPR30 protection of VSMCs as well as a new target for prevention of vascular aging.
Collapse
Affiliation(s)
- Fang Huang
- Department of Cardiology, The First Hospital of Changsha, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China; Department of Cardiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Jianguo Yin
- Department of Cardiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Keyu Li
- Department of Cardiology, The First Hospital of Changsha, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Ying Li
- Department of Cardiology, The First Hospital of Changsha, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Heng Qi
- Department of Cardiology, The First Hospital of Changsha, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Li Fang
- Department of Cardiology, The First Hospital of Changsha, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Cong Yuan
- Department of Cardiology, The First Hospital of Changsha, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Weiwei Liu
- Department of Cardiology, The First Hospital of Changsha, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Min Wang
- Department of Cardiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Xiangping Li
- Department of Cardiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|