1
|
Dullin C, Albers J, Tagat A, Lorenzon A, D'Amico L, Chiriotti S, Sodini N, Dreossi D, Alves F, Bergamaschi A, Tromba G. In vivo low-dose phase-contrast CT for quantification of functional and anatomical alterations in lungs of an experimental allergic airway disease mouse model. Front Med (Lausanne) 2024; 11:1338846. [PMID: 38410752 PMCID: PMC10894991 DOI: 10.3389/fmed.2024.1338846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction Synchrotron-based propagation-based imaging (PBI) is ideally suited for lung imaging and has successfully been applied in a variety of in vivo small animal studies. Virtually all these experiments were tailored to achieve extremely high spatial resolution close to the alveolar level while delivering high x-ray doses that would not permit longitudinal studies. However, the main rationale for performing lung imaging studies in vivo in small animal models is the ability to follow disease progression or monitor treatment response in the same animal over time. Thus, an in vivo imaging strategy should ideally allow performing longitudinal studies. Methods Here, we demonstrate our findings of using PBI-based planar and CT imaging with two different detectors-MÖNCH 0.3 direct conversion detector and a complementary metal-oxide-semiconductor (CMOS) detector (Photonics Science)-in an Ovalbumin induced experimental allergic airway disease mouse model in comparison with healthy controls. The mice were imaged free breathing under isoflurane anesthesia. Results At x-ray dose levels below those once used by commercial small animal CT devices at similar spatial resolutions, we were able to resolve structural changes at a pixel size down to 25 μm and demonstrate the reduction in elastic recoil in the asthmatic mice in cinematic planar x-ray imaging with a frame rate of up to 100 fps. Discussion Thus, we believe that our approach will permit longitudinal small animal lung disease studies, closely following the mice over longer time spans.
Collapse
Affiliation(s)
- Christian Dullin
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
- Translational Molecular Imaging, Max-Plank-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jonas Albers
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
- European Molecular Biology Laboratory, Hamburg Unit c/o Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Aishwarya Tagat
- Department of Urology, University Hospital of Saarland, Homburg, Germany
| | | | - Lorenzo D'Amico
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy
- Department of Physics, University of Trieste, Trieste, Italy
| | - Sabina Chiriotti
- PSD Detector Science and Characterization Group, Paul Scherrer Institute, Villingen, Switzerland
| | - Nicola Sodini
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | - Diego Dreossi
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | - Frauke Alves
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
- Translational Molecular Imaging, Max-Plank-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Anna Bergamaschi
- PSD Detector Science and Characterization Group, Paul Scherrer Institute, Villingen, Switzerland
| | | |
Collapse
|
2
|
Janiak MK, Waligórski MPR. Can Low-Level Ionizing Radiation Do Us Any Harm? Dose Response 2023. [DOI: 10.1177/15593258221148013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The current system of radiological protection relies on the linear no-threshold (LNT) hypothesis of cancer risk due to humans being exposed to ionizing radiation (IR). Under this tenet, effects of low doses (i.e. of those not exceeding 100 mGy or 0.1 mGy/min. of X- or γ-rays for acute and chronic exposures, respectively) are evaluated by downward linear extrapolation from regions of higher doses and dose rates where harmful effects are actually observed. However, evidence accumulated over many years clearly indicates that exposure of humans to low doses of radiation does not cause any harm and often promotes health. In this review, we discuss results of some epidemiological analyses, clinical trials and controlled experimental animal studies. Epidemiological data indicate the presence of a threshold and departure from linearity at the lowest dose ranges. Experimental studies clearly demonstrate the qualitative difference between biological mechanisms and effects at low and at higher doses of IR. We also discuss the genesis and the likely reasons for the persistence of the LNT tenet, despite its scientific implausibility and deleterious social consequences. It is high time to replace the LNT paradigm by a scientifically based dose-effect relationship where realistic quantitative hormetic or threshold models are exploited.
Collapse
Affiliation(s)
- Marek K. Janiak
- Professor Emeritus of Medical Sciences, a retiree from the Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Michael P. R. Waligórski
- Centre of Oncology, Kraków Division and Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
3
|
Laurent PA, Morel D, Meziani L, Depil S, Deutsch E. Radiotherapy as a means to increase the efficacy of T-cell therapy in solid tumors. Oncoimmunology 2022; 12:2158013. [PMID: 36567802 PMCID: PMC9788698 DOI: 10.1080/2162402x.2022.2158013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cells have demonstrated significant improvements in the treatment of refractory B-cell malignancies that previously showed limited survival. In contrast, early-phase clinical studies targeting solid tumors have been disappointing. This may be due to both a lack of specific and homogeneously expressed targets at the surface of tumor cells, as well as intrinsic properties of the solid tumor microenvironment that limit homing and activation of adoptive T cells. Faced with these antagonistic conditions, radiotherapy (RT) has the potential to change the overall tumor landscape, from depleting tumor cells to reshaping the tumor microenvironment. In this article, we describe the current landscape and discuss how RT may play a pivotal role for enhancing the efficacy of adoptive T-cell therapies in solid tumors. Indeed, by improving homing, expansion and activation of infused T cells while reducing tumor volume and heterogeneity, the use of RT could help the implementation of engineered T cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Pierre-Antoine Laurent
- Department of Radiation Oncology, Gustave Roussy Cancer Campus; UNICANCER, Villejuif, France
- INSERM U1030, Molecular Radiation Therapy and Therapeutic Innovation, Gustave Roussy Cancer Campus, University of Paris-Saclay, SIRIC SOCRATE, Villejuif, France
| | - Daphne Morel
- Drug Development Department (D.I.T.E.P), Gustave Roussy Cancer Campus; UNICANCER, Villejuif, France
| | - Lydia Meziani
- INSERM U1030, Molecular Radiation Therapy and Therapeutic Innovation, Gustave Roussy Cancer Campus, University of Paris-Saclay, SIRIC SOCRATE, Villejuif, France
| | | | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus; UNICANCER, Villejuif, France
- INSERM U1030, Molecular Radiation Therapy and Therapeutic Innovation, Gustave Roussy Cancer Campus, University of Paris-Saclay, SIRIC SOCRATE, Villejuif, France
| |
Collapse
|
4
|
Nowosielska EM, Cheda A, Pociegiel M, Cheda L, Szymański P, Wiedlocha A. Effects of a Unique Combination of the Whole-Body Low Dose Radiotherapy with Inactivation of Two Immune Checkpoints and/or a Heat Shock Protein on the Transplantable Lung Cancer in Mice. Int J Mol Sci 2021; 22:6309. [PMID: 34208396 PMCID: PMC8231142 DOI: 10.3390/ijms22126309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/25/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) continues to be the leading cause of cancer death worldwide. Recently, targeting molecules whose functions are associated with tumorigenesis has become a game changing adjunct to standard anti-cancer therapy. As evidenced by the results of preclinical and clinical investigations, whole-body irradiations (WBI) with X-rays at less than 0.1-0.2 Gy per fraction can induce remissions of various neoplasms without inciting adverse side effects of conventional chemo- and radiotherapy. In the present study, a murine model of human NSCLC was employed to evaluate for the first time the anti-neoplastic efficacy of WBI combined with inactivation of CTLA-4, PD-1, and/or HSP90. The results indicate that WBI alone and in conjunction with the inhibition of the function of the cytotoxic T-lymphocyte antigen-4 (CTLA-4) and the programmed death-1 (PD-1) receptor immune checkpoints (ICs) and/or heat shock protein 90 (HSP90) markedly reduced tumorigenesis in mice implanted by three different routes with the syngeneic Lewis lung cancer cells and suppressed clonogenic potential of Lewis lung carcinoma (LLC1) cells in vitro. These results were associated with the relevant changes in the profile of pro- and anti-neoplastic immune cells recruited to the growing tumors and the circulating anti- and pro-inflammatory cytokines. In contrast, inhibition of the tested molecular targets used either separately or in combination with each other did not exert notable anti-neoplastic effects. Moreover, no significant synergistic effects were detected when the inhibitors were applied concurrently with WBI. The obtained results supplemented with further mechanistic explanations provided by future investigations will help design the effective strategies of treatment of lung and other cancers based on inactivation of the immune checkpoint and/or heat shock molecules combined with low-dose radiotherapy.
Collapse
Affiliation(s)
- Ewa M. Nowosielska
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland; (A.C.); (P.S.); (A.W.)
| | - Aneta Cheda
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland; (A.C.); (P.S.); (A.W.)
| | - Mateusz Pociegiel
- National Centre for Nuclear Research Radioisotope Centre POLATOM, 7A Soltana St., 05-400 Otwock, Poland;
| | - Lukasz Cheda
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 101 Żwirki i Wigury St., 02-089 Warsaw, Poland;
| | - Paweł Szymański
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland; (A.C.); (P.S.); (A.W.)
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego St., 90-151 Lodz, Poland
| | - Antoni Wiedlocha
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland; (A.C.); (P.S.); (A.W.)
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Centre for Cancer Reprograming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| |
Collapse
|
5
|
Effective Doses of Ionizing Radiation during Therapeutic Peat Mud Treatment from a Deposit in the Knyszyn Forest (Northeastern Poland). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186819. [PMID: 32962026 PMCID: PMC7559594 DOI: 10.3390/ijerph17186819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022]
Abstract
Radioactivity measurements of 61 therapeutic peat mud samples from the Podsokoldy deposits, near Suprasl, were performed using gamma spectrometry. The authors identified the presence of 13 isotopes with the arithmetic mean of activity (in Bq kg-1): 137Cs-7, 40K-24, 208Tl-1, 212Bi-3, 212Pb-2, 228Ac-2, 210Pb-33, 214Bi-11, 214Pb-11, 226Ra-53, 234Th-47. The effective dose obtained during treatment with 15 peat mud baths (lasting 30 min) was 0.078 μSv. Use of peat mud compresses in the same number and period of exposure to the entire body surface caused absorption of a dose of 0.153 μSv. The authors discuss the probability of tissue radiation from isotopes present in the peat mud. In light of radiobiological knowledge, the therapeutic effect of ionizing radiation during peat mud therapy appears to be very unlikely.
Collapse
|
6
|
Nowosielska EM, Cheda A, Zdanowski R, Lewicki S, Scott BR, Janiak MK. Effect of internal contamination with tritiated water on the neoplastic colonies in the lungs, innate anti-tumour reactions, cytokine profile, and haematopoietic system in radioresistant and radiosensitive mice. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:251-264. [PMID: 29626227 PMCID: PMC6060768 DOI: 10.1007/s00411-018-0739-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/21/2018] [Indexed: 05/14/2023]
Abstract
Tritium is a potentially significant source of internal radiation exposure which, at high levels, can be carcinogenic. We evaluated whether single intraperitoneal injection of BALB/c and C57BL/6 mice with tritiated water (HTO) leading to exposure to low (0.01 or 0.1 Gy) and intermediate (1.0 Gy) cumulative whole-body doses of β radiation is immunosuppressive, as judged by enhancement of artificial tumour metastases, functioning of NK lymphocytes and macrophages, circulating cytokine's levels, and numbers of bone marrow, spleen, and peripheral blood cells. We demonstrate that internal contamination of radiosensitive BALB/c and radioresistant C57BL/6 mice with HTO at all the absorbed doses tested did not affect the development of neoplastic colonies in the lungs caused by intravenous injection of syngeneic cancer cells. However, internal exposure of BALB/c and C57BL/6 mice to 0.1 and 0.01 Gy of β radiation, respectively, up-regulated cytotoxic activity of and IFN-γ synthesis in NK lymphocytes and boosted macrophage secretion of nitric oxide. Internal contamination with HTO did not affect the serum levels of pro- (IL-1β, IL-2, IL-6, TNF-α,) and anti-inflammatory (IL-1Ra, IL-4, IL-10) cytokines. In addition, exposure of mice of both strains to low and intermediate doses from the tritium-emitted β-particles did not result in any significant changes in the numbers of bone marrow, spleen, and peripheral blood cells. Overall, our data indicate that internal tritium contamination of both radiosensitive and radioresistant mice leading to low and intermediate absorbed β-radiation doses is not immunosuppressive but may enhance some but not all components of anticancer immunity.
Collapse
Affiliation(s)
- Ewa M Nowosielska
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland.
| | - Aneta Cheda
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland
| | - Robert Zdanowski
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland
| | - Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland
| | - Bobby R Scott
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, 87108, NM, USA
| | - Marek K Janiak
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland
| |
Collapse
|
7
|
Vaiserman A, Koliada A, Zabuga O, Socol Y. Health Impacts of Low-Dose Ionizing Radiation: Current Scientific Debates and Regulatory Issues. Dose Response 2018; 16:1559325818796331. [PMID: 30263019 PMCID: PMC6149023 DOI: 10.1177/1559325818796331] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022] Open
Abstract
Health impacts of low-dose ionizing radiation are significant in important fields such as X-ray imaging, radiation therapy, nuclear power, and others. However, all existing and potential applications are currently challenged by public concerns and regulatory restrictions. We aimed to assess the validity of the linear no-threshold (LNT) model of radiation damage, which is the basis of current regulation, and to assess the justification for this regulation. We have conducted an extensive search in PubMed. Special attention has been given to papers cited in comprehensive reviews of the United States (2006) and French (2005) Academies of Sciences and in the United Nations Scientific Committee on Atomic Radiation 2016 report. Epidemiological data provide essentially no evidence for detrimental health effects below 100 mSv, and several studies suggest beneficial (hormetic) effects. Equally significant, many studies with in vitro and in animal models demonstrate that several mechanisms initiated by low-dose radiation have beneficial effects. Overall, although probably not yet proven to be untrue, LNT has certainly not been proven to be true. At this point, taking into account the high price tag (in both economic and human terms) borne by the LNT-inspired regulation, there is little doubt that the present regulatory burden should be reduced.
Collapse
|
8
|
Ko Y, Jeong YH, Lee JA. Effects of Low- or Moderate-dose Whole Body-X-ray Radiation on the Immune System of C57BL/6 Mice. CLINICAL PEDIATRIC HEMATOLOGY-ONCOLOGY 2018. [DOI: 10.15264/cpho.2018.25.1.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Yunmi Ko
- Division of Radiological Science and Clinical Research, Korea Cancer Center Hospital, Seoul, Korea
- Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Yeon Ho Jeong
- Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Jun Ah Lee
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea
| |
Collapse
|
9
|
Wu Q, Allouch A, Martins I, Modjtahedi N, Deutsch E, Perfettini JL. Macrophage biology plays a central role during ionizing radiation-elicited tumor response. Biomed J 2017; 40:200-211. [PMID: 28918908 PMCID: PMC6136289 DOI: 10.1016/j.bj.2017.06.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/01/2017] [Accepted: 06/11/2017] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is one of the major therapeutic modalities for most solid tumors. The anti-tumor effect of radiation therapy consists of the direct tumor cell killing, as well as the modulation of tumor microenvironment and the activation of immune response against tumors. Radiation therapy has been shown to promote immunogenic cells death, activate dendritic cells and enhance tumor antigen presentation and anti-tumor T cell activation. Radiation therapy also programs innate immune cells such as macrophages that leads to either radiosensitization or radioresistance, according to different tumors and different radiation regimen studied. The mechanisms underlying radiation-induced macrophage activation remain largely elusive. Various molecular players such as NF-κB, MAPKs, p53, reactive oxygen species, inflammasomes have been involved in these processes. The skewing to a pro-inflammatory phenotype thus results in the activation of anti-tumor immune response and enhanced radiotherapy effect. Therefore, a comprehensive understanding of the mechanism of radiation-induced macrophage activation and its role in tumor response to radiation therapy is crucial for the development of new therapeutic strategies to enhance radiation therapy efficacy.
Collapse
Affiliation(s)
- Qiuji Wu
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France; Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Hubei, China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Hubei, China
| | - Awatef Allouch
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Isabelle Martins
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Nazanine Modjtahedi
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Eric Deutsch
- Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Jean-Luc Perfettini
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France.
| |
Collapse
|
10
|
Janiak MK, Wincenciak M, Cheda A, Nowosielska EM, Calabrese EJ. Cancer immunotherapy: how low-level ionizing radiation can play a key role. Cancer Immunol Immunother 2017; 66:819-832. [PMID: 28361232 PMCID: PMC5489643 DOI: 10.1007/s00262-017-1993-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/22/2017] [Indexed: 12/17/2022]
Abstract
The cancer immunoediting hypothesis assumes that the immune system guards the host against the incipient cancer, but also "edits" the immunogenicity of surviving neoplastic cells and supports remodeling of tumor microenvironment towards an immunosuppressive and pro-neoplastic state. Local irradiation of tumors during standard radiotherapy, by killing neoplastic cells and generating inflammation, stimulates anti-cancer immunity and/or partially reverses cancer-promoting immunosuppression. These effects are induced by moderate (0.1-2.0 Gy) or high (>2 Gy) doses of ionizing radiation which can also harm normal tissues, impede immune functions, and increase the risk of secondary neoplasms. In contrast, such complications do not occur with exposures to low doses (≤0.1 Gy for acute irradiation or ≤0.1 mGy/min dose rate for chronic exposures) of low-LET ionizing radiation. Furthermore, considerable evidence indicates that such low-level radiation (LLR) exposures retard the development of neoplasms in humans and experimental animals. Here, we review immunosuppressive mechanisms induced by growing tumors as well as immunomodulatory effects of LLR evidently or likely associated with cancer-inhibiting outcomes of such exposures. We also offer suggestions how LLR may restore and/or stimulate effective anti-tumor immunity during the more advanced stages of carcinogenesis. We postulate that, based on epidemiological and experimental data amassed over the last few decades, whole- or half-body irradiations with LLR should be systematically examined for its potential to be a viable immunotherapeutic treatment option for patients with systemic cancer.
Collapse
Affiliation(s)
- Marek K Janiak
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland.
| | - Marta Wincenciak
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland
| | - Aneta Cheda
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland
| | - Ewa M Nowosielska
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163, Warsaw, Poland
| | - Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
11
|
Zhao Y, Kong C, Chen X, Wang Z, Wan Z, Jia L, Liu Q, Wang Y, Li W, Cui J, Han F, Cai L. Repetitive exposure to low-dose X-irradiation attenuates testicular apoptosis in type 2 diabetic rats, likely via Akt-mediated Nrf2 activation. Mol Cell Endocrinol 2016; 422:203-210. [PMID: 26704079 PMCID: PMC5278883 DOI: 10.1016/j.mce.2015.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/29/2015] [Accepted: 12/14/2015] [Indexed: 11/22/2022]
Abstract
To determine whether repetitive exposure to low-dose radiation (LDR) attenuates type 2 diabetes (T2DM)-induced testicular apoptotic cell death in a T2DM rat model, we examined the effects of LDR exposure on diabetic and age-matched control rats. We found that testicular apoptosis and oxidative stress levels were significantly higher in T2DM rats than in control rats. In addition, glucose metabolism-related Akt and GSK-3β function was downregulated and Akt negative regulators PTP1B and TRB3 were upregulated in the T2DM group. Superoxide dismutase (SOD) activity and catalase content were also found to be decreased in T2DM rats. These effects were partially prevented or reversed by repetitive LDR exposure. Nrf2 and its downstream genes NQO1, SOD, and catalase were significantly upregulated by repetitive exposure to LDR, suggesting that the reduction of T2DM-induced testicular apoptosis due to repetitive LDR exposure likely involves enhancement of testicular Akt-mediated glucose metabolism and anti-oxidative defense mechanisms.
Collapse
Affiliation(s)
- Yuguang Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Chuipeng Kong
- The Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, China
| | - Xiao Chen
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhenyu Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhiqiang Wan
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Lin Jia
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Qiuju Liu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuehui Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Lu Cai
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China; Departments of Pediatrics, Radiation Oncology, Pharmacology, and Toxicology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
12
|
Modulation of inflammation by low and high doses of ionizing radiation: Implications for benign and malign diseases. Cancer Lett 2015; 368:230-7. [DOI: 10.1016/j.canlet.2015.04.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/31/2022]
|
13
|
Wang B, Li B, Dai Z, Ren S, Bai M, Wang Z, Li Z, Lin S, Wang Z, Huang N, Yang P, Liu M, Min W, Ma H. Low-dose splenic radiation inhibits liver tumor development of rats through functional changes in CD4+CD25+Treg cells. Int J Biochem Cell Biol 2014; 55:98-108. [PMID: 25168696 DOI: 10.1016/j.biocel.2014.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 07/27/2014] [Accepted: 08/17/2014] [Indexed: 02/07/2023]
Abstract
The increased number of CD4(+)CD25(+)Treg cells in tumor local and peripheral splenic tissues is related to the low immune function as well as to tumor recurrence and metastasis. Our pre-clinical studies showed that low-dose radiation (LDR) of the spleen in liver cancer patients significantly improves immune functions. However, the molecular mechanisms of such radiation remained ill defined. This study explores the role of CD4(+)CD25(+)Treg cells in radiation-induced immunomodulatory effects. Using the diethylnitrosamine (DEN)-induced rat liver tumor model and in vitro cell experiments, the percentage of CD4(+)CD25(+)Treg/CD4(+) cells in the blood and the expressions of Foxp3(+), IL-10, TGF-β, and cytotoxic T lymphocyte-associated antigen-4(CTLA-4) in spleen and liver tumors significantly decreased after LDR of the spleen in rats with liver cancer. The tumors became smaller than those in the non-radiated group, with both showing a parallel relation. Flow cytometry and MTT results revealed that LDR failed to inhibit CD4(+)CD25(+)Treg cell proliferation. Conversely, apoptosis was reduced and proliferation was stimulated. This process also changed CTLA-4 molecule expression on the surfaces of CD4(+)CD25(+)Treg cells and reduced their inhibitory function against CD4(+)CD25(-)T cell proliferation, and the suppression function of CD4(+)CD25(+)Treg cells was further weakened with the introduction of the CTLA-4 inhibitor. Findings demonstrate that the reduction of CTLA-4 expression on the CD4(+)CD25(+)Treg cell surface and the further inhibition of cell function may be considered as important regulators of LDR-induced immunomodulatory effects. This study provides experimental evidence to elucidate the immune enhancement induced by this process and presents a novel method for liver cancer immunotherapy.
Collapse
Affiliation(s)
- Baofeng Wang
- Department of Oncology, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Baohua Li
- Department of Surgery, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Zhijun Dai
- Department of Oncology, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Song Ren
- Department of Surgery, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Minghua Bai
- Department of Oncology, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Zhongwei Wang
- Department of Oncology, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Zongfang Li
- Department of Surgery, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Zhidong Wang
- Department of Surgery, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Na Huang
- Department of Surgery, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Pengtao Yang
- Department of Oncology, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Mengjie Liu
- Department of Oncology, The First Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Weili Min
- Department of Oncology, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Hongbing Ma
- Department of Oncology, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, Xi'an 710004, PR China.
| |
Collapse
|
14
|
Lee HW, Singh TD, Lee SW, Ha JH, Rehemtulla A, Ahn BC, Jeon YH, Lee J. Evaluation of therapeutic effects of natural killer (NK) cell-based immunotherapy in mice using in vivo apoptosis bioimaging with a caspase-3 sensor. FASEB J 2014; 28:2932-41. [PMID: 24736413 DOI: 10.1096/fj.13-243014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Natural killer (NK) cell-based immunotherapy is a promising strategy for cancer treatment, and caspase-3 is an important effector molecule in NK cell-mediated apoptosis in cancers. Here, we evaluated the antitumor effects of NK cell-based immunotherapy by serial noninvasive imaging of apoptosis using a caspase-3 sensor in mice with human glioma xenografts. Human glioma cells expressing both a caspase-3 sensor as a surrogate marker for caspase-3 activation and Renilla luciferase (Rluc) as a surrogate marker for cell viability were established and referred to as D54-CR cells. Human NK92 cells were used as effector cells. Treatment with NK92 cells resulted in a time- and effector number-dependent increase in bioluminescence imaging (BLI) activity of the caspase-3 sensor in D54-CR cells in vitro. Caspase-3 activation by NK92 treatment was blocked by Z-VAD treatment in D54-CR cells. Transfusion of NK92 cells induced an increase of the BLI signal by caspase-3 activation in a dose- and time-dependent manner in D54-CR tumor-bearing mice but not in PBS-treated mice. Accordingly, sequential BLI with the Rluc reporter gene revealed marked retardation of tumor growth in the NK92-treatment group but not in the PBS-treatment group. These data suggest that noninvasive imaging of apoptosis with a caspase-3 sensor can be used as an effective tool for evaluation of therapeutic efficacy as well as for optimization of NK cell-based immunotherapy.-Lee, H. W., Singh, T. D., Lee, S.-W., Ha, J.-H., Rehemtulla, A., Ahn, B.-C., Jeon, Y.-H., Lee, J. Evaluation of therapeutic effects of natural killer (NK) cell-based immunotherapy in mice using in vivo apoptosis bioimaging with a caspase-3 sensor.
Collapse
Affiliation(s)
| | | | | | - Jeoung-Hee Ha
- Department of Pharmacology, Kyungpook National University, Daegu, Korea; and
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
15
|
Enhancement of natural killer cell cytotoxicity by sodium/iodide symporter gene-mediated radioiodine pretreatment in breast cancer cells. PLoS One 2013; 8:e70194. [PMID: 23940545 PMCID: PMC3734030 DOI: 10.1371/journal.pone.0070194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/16/2013] [Indexed: 12/31/2022] Open
Abstract
A phase II study of NK cell therapy in treatment of patients with recurrent breast cancer has recently been reported. However, because of the complexities of tumor microenvironments, effective therapeutic effects have not been achieved in NK cell therapy. Radioiodine (I-131) therapy inhibits cancer growth by inducing the apoptosis and necrosis of cancer cells. Furthermore, it can modify cancer cell phenotypes and enhance the effect of immunotherapy against cancer cells. The present study showed that I-131 therapy can modulate microenvironment of breast cancer and improve the therapeutic effect by enhancing NK cell cytotoxicity to the tumor cells. The susceptibility of breast cancer cells to NK cell was increased by precedent I-131 treatment in vitro. Tumor burden in mice treated with I-131 plus NK cell was significantly lower than that in mice treated with NK cell or I-131 alone. The up-regulation of Fas, DR5 and MIC A/B on irradiated tumor cells could be the explanation for the enhancement of NK cell cytotoxicity to tumor cells. It can be applied to breast cancer patients with iodine avid metastatic lesions that are non-responsive to conventional treatments.
Collapse
|
16
|
Nowosielska EM, Cheda A, Wrembel-Wargocka J, Janiak MK. Effect of low doses of low-let radiation on the innate anti-tumor reactions in radioresistant and radiosensitive mice. Dose Response 2012; 10:500-15. [PMID: 23304101 PMCID: PMC3526324 DOI: 10.2203/dose-response.12-018.nowosielska] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BALB/c and C57BL/6 mice differ in their Th1/Th2 lymphocyte and M1/M2 macrophage phenotypes, radiosensitivity, and post-irradiation tumor incidence. In this study we evaluated the effects of repeated low-level exposures to X-rays on the development of artificial tumor colonies in the lungs of animals from the two strains and cytotoxic activities of natural killer (NK) cells and macrophages obtained from these mice. After ten daily irradiations of BALB/c or C57BL/6 mice with 0.01, 0.02, and 0.1 Gy X-rays NK cell-enriched splenocytes collected from the animals demonstrated significant and comparable up-regulation of their anti-tumor cytotoxic function. Likewise, peritoneal macrophages collected from the two irradiated strains of mice exhibited the similarly stimulated cytotoxicities against susceptible tumor cells and produced significantly more nitric oxide. These results were accompanied by the significantly reduced numbers of the neoplastic colonies induced in the lungs by intravenous injection of syngeneic tumor cells. The obtained results indicate that ten low-level irradiations with X-rays stimulate the generally similar anti-tumor reactions in BALB/c and C57BL/6 mice.
Collapse
Affiliation(s)
- Ewa M. Nowosielska
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland
| | - Aneta Cheda
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland
| | - Jolanta Wrembel-Wargocka
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland
| | - Marek K. Janiak
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland
| |
Collapse
|
17
|
Bruce VR, Belinsky SA, Gott K, Liu Y, March T, Scott B, Wilder J. Low-dose gamma-radiation inhibits benzo[a]pyrene-induced lung adenoma development in a/j mice. Dose Response 2012; 10:516-26. [PMID: 23304102 DOI: 10.2203/dose-response.12-040.bruce] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Low-dose ionizing radiation (LDR) may lead to suppression of smoking-related lung cancer. We examined the effects of a known cigarette smoke carcinogen Benzo[a]pyrene (B[a]P) alone or in combination with fractionated low-dose gamma radiation (60 - 600 mGy total dose) on the induction of lung neoplasms in the A/J mouse. Our results show that 600 mGy of gamma radiation delivered in six biweekly fractions of 100 mGy starting 1 month after B[a]P injection significantly inhibits the development of lung adenomas per animal induced by B[a]P. Our data also indicated that the six biweekly doses suppressed the occurrence of spontaneous hyperplastic foci in the lung, although this suppression failed to reach statistical significance when analyzed as average foci per lung possibly related to the small sample sizes used for the control and test groups.
Collapse
Affiliation(s)
- Veronica R Bruce
- University of New Mexico, Biomedical Sciences Graduate Program, Health Sciences Center, and Lovelace Respiratory Research Institute, Respiratory Immunology Program, Albuquerque, NM
| | | | | | | | | | | | | |
Collapse
|