1
|
Beinke C, Port M, Scherthan H. Postirradiation temperature influences DSB repair and dicentric chromosome formation-potential impact for dicentric chromosome analysis in interlaboratory comparisons. RADIATION PROTECTION DOSIMETRY 2023; 199:1485-1494. [PMID: 37721069 DOI: 10.1093/rpd/ncad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 09/19/2023]
Abstract
The objective was to investigate the influence of different pre-storage temperatures in the dicentric chromosome analysis (DCA) protocol (22°C vs. 37°C) by using γ-H2AX + 53BP1 foci as a marker for deoxyribonucleic acid (DNA) double-strand break (DSB) damage induction and repair and the formation of dicentric chromosomes as a result of mis-repair. Repair of γ-H2AX + 53BP1 DSB foci was absent in samples that were incubated for 2 h at 22°C after exposure of 0.5 and 1.2 Gy. When 0.5- and 1.2-Gy-exposed samples were incubated at 37°C for 2 h, there was an average decline of 31 and 52% of DSB foci, respectively. This indicated that DNA repair occurred. There was a 27% decrease in dicentric chromosome yield at 1.2 Gy and a 15% decrease at 3.5 Gy after post-irradiation incubation for 2 h at 37°C relative to the observed dicentric frequencies at 22°C. Recommended to re-phase: our data suggested that there were more open DSBs after a 2-h incubation at 22°C, which contributed to more mis-repair and dicentric formation from the start of culture. Our findings are corroborated by publications showing that lesion interaction based on enzymatic activity is suppressed below 21°C. As such temperature variations can be a source of variation in DCA during interlaboratory comparison studies, we propose to establish a common guide for the standardisation of pre-culture conditions in cytogenetic dosimetry proficiency testing.
Collapse
Affiliation(s)
- Christina Beinke
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Neuherbergstr.11, D-80937 Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Neuherbergstr.11, D-80937 Munich, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Neuherbergstr.11, D-80937 Munich, Germany
| |
Collapse
|
2
|
Cahill T, Chan S, Overton IM, Hardiman G. Transcriptome Profiling Reveals Enhanced Mitochondrial Activity as a Cold Adaptive Strategy to Hypothermia in Zebrafish Muscle. Cells 2023; 12:1366. [PMID: 37408201 PMCID: PMC10216211 DOI: 10.3390/cells12101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 07/07/2023] Open
Abstract
The utilisation of synthetic torpor for interplanetary travel once seemed farfetched. However, mounting evidence points to torpor-induced protective benefits from the main hazards of space travel, namely, exposure to radiation and microgravity. To determine the radio-protective effects of an induced torpor-like state we exploited the ectothermic nature of the Danio rerio (zebrafish) in reducing their body temperatures to replicate the hypothermic states seen during natural torpor. We also administered melatonin as a sedative to reduce physical activity. Zebrafish were then exposed to low-dose radiation (0.3 Gy) to simulate radiation exposure on long-term space missions. Transcriptomic analysis found that radiation exposure led to an upregulation of inflammatory and immune signatures and a differentiation and regeneration phenotype driven by STAT3 and MYOD1 transcription factors. In addition, DNA repair processes were downregulated in the muscle two days' post-irradiation. The effects of hypothermia led to an increase in mitochondrial translation including genes involved in oxidative phosphorylation and a downregulation of extracellular matrix and developmental genes. Upon radiation exposure, increases in endoplasmic reticulum stress genes were observed in a torpor+radiation group with downregulation of immune-related and ECM genes. Exposing hypothermic zebrafish to radiation also resulted in a downregulation of ECM and developmental genes however, immune/inflammatory related pathways were downregulated in contrast to that observed in the radiation only group. A cross-species comparison was performed with the muscle of hibernating Ursus arctos horribilis (brown bear) to define shared mechanisms of cold tolerance. Shared responses show an upregulation of protein translation and metabolism of amino acids, as well as a hypoxia response with the shared downregulation of glycolysis, ECM, and developmental genes.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Sherine Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- JLABS at the Children’s National Research and Innovation Campus, Washington, DC 20012, USA
| | - Ian M. Overton
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK;
| | - Gary Hardiman
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK;
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
3
|
Płódowska M, Krakowiak W, Węgierek-Ciuk A, Lankoff A, Szary K, Lis K, Wojcik A, Lisowska H. Hypothermia differentially modulates the formation and decay of NBS1, γH2AX and 53BP1 foci in U2OS cells exposed to gamma radiation. Sci Rep 2022; 12:5878. [PMID: 35393518 PMCID: PMC8989987 DOI: 10.1038/s41598-022-09829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
In studies on the mechanism of DNA damage response where ionizing radiation is used as the DNA damaging agent, cells are often exposed to ionizing radiation on melting ice (corresponding to 0.8 °C). The purpose of this procedure is to inhibit cellular processes i.e. DNA repair. Low temperature at exposure has been shown to act in a radioprotective manner at the level of cytogenetic damage, but its mechanisms of action are poorly understood. The aim of the study was to analyze the effect of hypothermia at the level of formation and decay of NBS1, γH2AX, and 53BP1 foci, micronuclei, survival, cell cycle progression and oxidative stress in U2OS cells. The results show that hypothermia alone induced oxidative stress and foci. When applied in combination with radiation but only during the exposure time, it potentiated the formation of γH2AX and 53BP1 but not of NBS1 foci. When applied during irradiation and subsequent repair time, 53BP1 and NBS1 foci formed and decayed, but the levels were markedly lower than when repair was carried out at 37 °C. The frequency of micronuclei was elevated in cells irradiated at 0.8 °C, but only when analysed 20 h after irradiation which is likely due to a reduced G2 cell cycle block. Hypothermia reduced cell survival, both with and without radiation exposure. The temperature effect should be considered when cooling cells on melting ice to inhibit DNA repair in the induction of DNA damage.
Collapse
Affiliation(s)
- Magdalena Płódowska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland.
| | - Wiktoria Krakowiak
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Aneta Węgierek-Ciuk
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Anna Lankoff
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland.,Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Karol Szary
- Department of Atomic Physics and Nanophysics, Institute of Physics, Jan Kochanowski University, Kielce, Poland
| | - Krzysztof Lis
- Department of Medical Physics, Holy Cross Cancer Center, Kielce, Poland
| | - Andrzej Wojcik
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland.,Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Halina Lisowska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
4
|
The Effect of Low Temperatures on Environmental Radiation Damage in Living Systems: Does Hypothermia Show Promise for Space Travel? Int J Mol Sci 2020; 21:ijms21176349. [PMID: 32882991 PMCID: PMC7504535 DOI: 10.3390/ijms21176349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022] Open
Abstract
Low-temperature treatments (i.e., hypothermia) may be one way of regulating environmental radiation damage in living systems. With this in mind, hibernation under hypothermic conditions has been proposed as a useful approach for long-term human space flight. However, the underlying mechanisms of hypothermia-induced radioresistance are as yet undetermined, and the conventional risk assessment of radiation exposure during hibernation remains insufficient for estimating the effects of chronic exposure to galactic cosmic rays (GCRs). To promote scientific discussions on the application of hibernation in space travel, this literature review provides an overview of the progress to date in the interdisciplinary research field of radiation biology and hypothermia and addresses possible issues related to hypothermic treatments as countermeasures against GCRs. At present, there are concerns about the potential effects of chronic radiation exposure on neurological disorders, carcinogenesis, ischemia heat failures, and infertility in astronauts; these require further study. These concerns may be resolved by comparing and integrating data gleaned from experimental and epidemiological studies.
Collapse
|
5
|
Combination of 5-Florouracil and polyphenol EGCG exerts suppressive effects on oral cancer cells exposed to radiation. Arch Oral Biol 2019; 101:8-12. [PMID: 30851692 DOI: 10.1016/j.archoralbio.2019.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/03/2019] [Accepted: 02/27/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Natural compounds such as epigallocatechin-3-gallate (EGCG) have previously shown chemotherapeutic properties with few side-effects. In our study, we evaluated the effects of combining EGCG with 5-fluorouracil (5-FU) and radiotherapy on oral squamous cell cancer. We evaluated whether the combination of lower doses of 5-FU with EGCG could be equally or more effective than the use of higher doses of 5-FU alone. METHODS Cell viability, migration and cell cycles were assayed in oral cancer cell lines treated with 5-FU, 5-FU + EGCG and radiation (0, 2.5 and 5 Gy). RESULTS This study found that the combination of EGCG with 5-FU reduced cell viability and migration distance compared to control samples and the same dose of 5-FU alone. Addition of EGCG increased the number of cells in the G2/M phase, while 5-FU arrested the cell cycle in phase S. Moreover, cell exposure to 5 Gy radiation decreased the effects of combining with EGCG. CONCLUSIONS In summary, the combination of EGCG and 5-FU reduced both cell viability and migration as well as altered the cell cycle to a greater extent than 5-FU alone.
Collapse
|
6
|
Hibernation and Radioprotection: Gene Expression in the Liver and Testicle of Rats Irradiated under Synthetic Torpor. Int J Mol Sci 2019; 20:ijms20020352. [PMID: 30654467 PMCID: PMC6359347 DOI: 10.3390/ijms20020352] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/23/2018] [Accepted: 01/11/2019] [Indexed: 01/02/2023] Open
Abstract
Hibernation has been proposed as a tool for human space travel. In recent years, a procedure to induce a metabolic state known as “synthetic torpor” in non-hibernating mammals was successfully developed. Synthetic torpor may not only be an efficient method to spare resources and reduce psychological problems in long-term exploratory-class missions, but may also represent a countermeasure against cosmic rays. Here we show the preliminary results from an experiment in rats exposed to ionizing radiation in normothermic conditions or synthetic torpor. Animals were irradiated with 3 Gy X-rays and organs were collected 4 h after exposure. Histological analysis of liver and testicle showed a reduced toxicity in animals irradiated in torpor compared to controls irradiated at normal temperature and metabolic activity. The expression of ataxia telangiectasia mutated (ATM) in the liver was significantly downregulated in the group of animal in synthetic torpor. In the testicle, more genes involved in the DNA damage signaling were downregulated during synthetic torpor. These data show for the first time that synthetic torpor is a radioprotector in non-hibernators, similarly to natural torpor in hibernating animals. Synthetic torpor can be an effective strategy to protect humans during long term space exploration of the solar system.
Collapse
|
7
|
Neužilová B, Ondrák L, Čuba V, Múčka V. Influence of the dose rate of gamma irradiation and some other conditions on the radiation protection of microbial cells by scavenging of OH radicals. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6185-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Depuydt J, Viaene T, Blondeel P, Roche N, Van den Broecke R, Thierens H, Vral A. DNA double strand breaks induced by low dose mammography X-rays in breast tissue: A pilot study. Oncol Lett 2018; 16:3394-3400. [PMID: 30127940 DOI: 10.3892/ol.2018.9024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/26/2018] [Indexed: 12/18/2022] Open
Abstract
Breast tissue is very sensitive to ionizing radiation due to the presence of reproductive hormones, including estrogen. In the present pilot study, the efficiency of mammography X-rays to induce DNA double strand breaks (DSB) in mammary epithelial cells was investigated. For this, freshly resected healthy breast tissue was irradiated with 30 kV mammography X-rays in the dose range 0-500 mGy (2, 4, 10, 20, 40, 100 and 500 mGy). Breast specimens were also irradiated with identical doses of 60Co γ-rays as a radiation quality standard. With the γH2AX-foci assay, the number of DNA DSB induced by radiation were quantified in the mammary epithelial cells present in breast tissue. Results indicated that foci induced by 30 kV X-rays and γ-rays followed a biphasic linear dose-response. For 30 kV X-rays, the slope in the low dose region (0-20 mGy) was 8.71 times steeper compared with the slope in the higher dose region (20-500 mGy). Furthermore, compared with γ-rays, 30 kV X-rays were also more effective in inducing γH2AX-foci. This resulted in a relative biological effectiveness (RBE) value of 1.82 in the low dose range. In the higher dose range, an RBE close to 1 was obtained. In conclusion, the results indicated the existence of a low dose hypersensitive response for DSB induction in the dose range representative for mammography screening, which is probably caused by the bystander effect. This could affect the radiation risk calculations for women participating in mammography screening.
Collapse
Affiliation(s)
- Julie Depuydt
- Department of Basic Medical Sciences, University of Ghent, 9000 Ghent, Belgium
| | - Tanguy Viaene
- Department of Basic Medical Sciences, University of Ghent, 9000 Ghent, Belgium
| | | | - Nathalie Roche
- Plastic Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| | | | - Hubert Thierens
- Department of Basic Medical Sciences, University of Ghent, 9000 Ghent, Belgium
| | - Anne Vral
- Department of Basic Medical Sciences, University of Ghent, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Lisowska H, Cheng L, Sollazzo A, Lundholm L, Wegierek-Ciuk A, Sommer S, Lankoff A, Wojcik A. Hypothermia modulates the DNA damage response to ionizing radiation in human peripheral blood lymphocytes. Int J Radiat Biol 2018; 94:551-557. [PMID: 29668347 DOI: 10.1080/09553002.2018.1466206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE Low temperature at exposure has been shown to act in a radioprotective manner at the level of cytogenetic damage. It was suggested to be due to an effective transformation of DNA damage to chromosomal damage at low temperature. The purpose of the study was to analyze the kinetics of aberration formation during the first hours after exposing human peripheral blood lymphocytes to ionizing radiation at 0.8 °C and 37 °C. MATERIALS AND METHODS To this end, we applied the technique of premature chromosome condensation. In addition, DNA damage response was analyzed by measuring the levels of phosphorylated DNA damage responsive proteins ATM, DNA-PK and p53 and mRNA levels of the radiation-responsive genes BBC3, FDXR, GADD45A, XPC, MDM2 and CDKN1A. RESULTS A consistently lower frequency of chromosomal breaks was observed in cells exposed at 0.8 °C as compared to 37 °C already after 30 minutes postexposure. This effect was accompanied by elevated levels of phosphorylated ATM and DNA-PK proteins and a reduced immediate level of phosphorylated p53 and of the responsive genes. CONCLUSIONS Low temperature at exposure appears to promote DNA repair leading to reduced transformation of DNA damage to chromosomal aberrations.
Collapse
Affiliation(s)
- Halina Lisowska
- a Department of Radiobiology and Immunology , Institute of Biology, Jan Kochanowski University , Kielce , Poland
| | - Lei Cheng
- b Centre for Radiation Protection Research, Department of Molecular Biosciences , The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Alice Sollazzo
- b Centre for Radiation Protection Research, Department of Molecular Biosciences , The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Lovisa Lundholm
- b Centre for Radiation Protection Research, Department of Molecular Biosciences , The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Aneta Wegierek-Ciuk
- a Department of Radiobiology and Immunology , Institute of Biology, Jan Kochanowski University , Kielce , Poland
| | - Sylwester Sommer
- c Institute of Nuclear Chemistry and Technology , Warsaw , Poland
| | - Anna Lankoff
- a Department of Radiobiology and Immunology , Institute of Biology, Jan Kochanowski University , Kielce , Poland.,c Institute of Nuclear Chemistry and Technology , Warsaw , Poland
| | - Andrzej Wojcik
- a Department of Radiobiology and Immunology , Institute of Biology, Jan Kochanowski University , Kielce , Poland.,b Centre for Radiation Protection Research, Department of Molecular Biosciences , The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| |
Collapse
|
10
|
Sabel M, Kalm M, Björk-Eriksson T, Lannering B, Blomgren K. Hypothermia after cranial irradiation protects neural progenitor cells in the subventricular zone but not in the hippocampus. Int J Radiat Biol 2017; 93:771-783. [PMID: 28452566 DOI: 10.1080/09553002.2017.1321810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE To explore if hypothermia can reduce the harmful effects of ionizing radiation on the neurogenic regions of the brain in young rats. MATERIALS AND METHODS Postnatal day 9 rats were randomized into two treatment groups, hypo- and normothermia, or a control group. Treatment groups were placed in chambers submerged in temperature-controlled water baths (30 °C and 36 °C) for 8 h, after receiving a single fraction of 8 Gy to the left hemisphere. Seven days' post-irradiation, we measured the sizes of the subventricular zone (SVZ) and the granule cell layer (GCL) of the hippocampus, and counted the number of proliferating (phospho-histone H3+) cells and microglia (Iba1 + cells). RESULTS Irradiation caused a 53% reduction in SVZ size in the normothermia group compared to controls, as well as a reduction of proliferating cell numbers by >50%. These effects were abrogated in the hypothermia group. Irradiation reduced the number of microglia in both treatment groups, but resulted in a lower cell density of Iba1 + cells in the SVZs of the hypothermia group. In the GCL, irradiation decreased both GCL size and the proliferating cell numbers, but with no difference between the treatment groups. The number of microglia in the GCL did not change. CONCLUSIONS Hypothermia immediately after irradiation protects the SVZ and its proliferative cell population but the GCL is not protected, one week post-irradiation.
Collapse
Affiliation(s)
- Magnus Sabel
- a Department of Pediatrics , Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden.,b Childhood Cancer Centre , Queen Silvia Children's Hospital , Gothenburg , Sweden
| | - Marie Kalm
- c Department of Pharmacology , Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Thomas Björk-Eriksson
- d Regional Cancer Centre west , Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Birgitta Lannering
- a Department of Pediatrics , Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden.,b Childhood Cancer Centre , Queen Silvia Children's Hospital , Gothenburg , Sweden
| | - Klas Blomgren
- e Department of Women's and Children's Health , Karolinska Institutet , Stockholm , Sweden.,f Department of Pediatric Oncology , Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|
11
|
Hrycushko BA, Chopra R, Sayre JW, Richardson JA, Folkert MR, Timmerman RD, Medin PM. Local Hypothermia as a Radioprotector of the Rectal Wall During Prostate Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys 2017; 98:75-82. [DOI: 10.1016/j.ijrobp.2017.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/09/2016] [Accepted: 01/02/2017] [Indexed: 11/16/2022]
|
12
|
Nakamura A, Monzen S, Takasugi Y, Wojcik A, Mariya Y. Application of cell sorting for enhancing the performance of the cytokinesis-block micronucleus assay. JOURNAL OF RADIATION RESEARCH 2016; 57:121-126. [PMID: 26826197 PMCID: PMC4795957 DOI: 10.1093/jrr/rrv103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/16/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
Among the numerous methods available to assess genotoxicity, the cytokinesis-block micronucleus (CBMN) assay is very popular due its relative simplicity and power to detect both clastogenic and aneugenic compounds. A problem with the CBMN assay is that all DNA damaging agents also inhibit the ability of cells to progress through mitosis, leading to a low number of binucleated cells (BNCs). One method to resolve this issue is to ensure a sufficient proportion of BNCs in the samples. In the current study, the applicability of a cell sorting system capable of isolating cell fractions containing abundant BNCs was investigated. Furthermore, to investigate the relationship between the cell division delay due to radiation exposure and the generation of BNCs and micronuclei (MN), we assessed a series of lag times between radiation exposure and addition of cytochalasin-B (Cyt-B). Cells from the human chronic myelogenous leukemia cell line K562 were exposed to X-rays (2 Gy and 4 Gy), and Cyt-B was subsequently added at 0, 6 and 12 h following irradiation. After treatment with Cyt-B for 24 h, the percentage of BNCs, the MN frequency and the cell cycle distribution were analyzed. In addition, cells displaying the DNA contents corresponding to BNCs were isolated and analyzed. The results indicate that applying the cell sorter to the CBMN assay increased the percentage of BNCs compared with the standard method. Thus, this technique is a promising way of enhancing the capacity of the CBMN assay.
Collapse
Affiliation(s)
- Ayumi Nakamura
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Satoru Monzen
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Yuki Takasugi
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Yasushi Mariya
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
13
|
Modulation of radiation-induced cytogenetic damage in human peripheral blood lymphocytes by hypothermia. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:96-100. [PMID: 26520378 DOI: 10.1016/j.mrgentox.2015.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 11/22/2022]
Abstract
PURPOSE Recent studies have shown that low temperature (hypothermia) at exposure can act in a radio-protective manner at the level of cytogenetic damage. The mechanisms of this phenomenon are not understood, but it was suggested to be due to hypothermia-induced perturbations of the cell cycle. The purpose of the present study was to detect whether a reduced frequency of micronuclei is observed in peripheral blood lymphocytes (PBL) irradiated at low temperature and harvested sequentially at 3 time points. Additionally, the level of apoptosis was estimated by microscopic analysis of the MN slides. MATERIALS AND METHODS Experiments were carried out with blood drawn from three donors at the Stockholm University and from three donors at the Jan Kochanowski University. Prior to irradiation, blood samples were incubated for 20min and irradiated at the respective temperature (0°C and 37°C) with gamma rays. Whole blood cultures were set up, cytochalasin B was added after 44h of irradiation and the samples were harvested after 72, 96 and 120h of incubation time. RESULTS AND CONCLUSIONS The frequency of micronuclei was markedly lower in PBL harvested at 72h, 96h and 120h following irradiation at 0°C as compared to 37°C. This indicates that the temperature effect observed in peripheral blood lymphocytes after irradiation is not related to a temporary perturbation of the cell cycle. Also, it is not due to selective elimination of damaged cells by apoptosis.
Collapse
|
14
|
Fotouhi A, Cornella N, Ramezani M, Wojcik A, Haghdoost S. Investigation of micronucleus induction in MTH1 knockdown cells exposed to UVA, UVB or UVC. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:161-5. [PMID: 26520386 DOI: 10.1016/j.mrgentox.2015.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 11/17/2022]
Abstract
The longer wave parts of UVR can increase the production of reactive oxygen species (ROS) which can oxidize nucleotides in the DNA or in the nucleotide pool leading to mutations. Oxidized bases in the DNA are repaired mainly by the DNA base excision repair system and incorporation of oxidized nucleotides into newly synthesized DNA can be prevented by the enzyme MTH1. Here we hypothesize that the formation of several oxidized base damages (from pool and DNA) in close proximity, would cause a high number of base excision repair events, leading to DNA double strand breaks (DSB) and therefore giving rise to cytogenetic damage. If this hypothesis is true, cells with low levels of MTH1 will show higher cytogenetic damage after the longer wave parts of UVR. We analyzed micronuclei induction (MN) as an endpoint for cytogenetic damage in the human lymphoblastoid cell line, TK6, with a normal and a reduced level of MTH1 exposed to UVR. The results indicate a higher level of micronuclei at all incubation times after exposure to the longer wave parts of UVR. There is no significant difference between wildtype and MTH1-knockdown TK6 cells, indicating that MTH1 has no protective role in UVR-induced cytogenetic damage. This indicates that DSBs induced by UV arise from damage forms by direct interaction of UV or ROS with the DNA rather than through oxidation of dNTP.
Collapse
Affiliation(s)
- Asal Fotouhi
- Center for Radiation Protection Research, Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Sweden
| | - Nicola Cornella
- Center for Radiation Protection Research, Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Sweden
| | - Mehrafarin Ramezani
- Center for Radiation Protection Research, Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Sweden
| | - Andrzej Wojcik
- Center for Radiation Protection Research, Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Sweden
| | - Siamak Haghdoost
- Center for Radiation Protection Research, Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Sweden.
| |
Collapse
|
15
|
Lisowska H, Brehwens K, Zölzer F, Wegierek-Ciuk A, Czub J, Lankoff A, Haghdoost S, Wojcik A. Effect of hypothermia on radiation-induced micronuclei and delay of cell cycle progression in TK6 cells. Int J Radiat Biol 2014; 90:318-24. [DOI: 10.3109/09553002.2014.887233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Pouliliou S, Koukourakis MI. Gamma histone 2AX (γ-H2AX)as a predictive tool in radiation oncology. Biomarkers 2014; 19:167-80. [DOI: 10.3109/1354750x.2014.898099] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Stamatia Pouliliou
- Department of Radiotherapy/Oncology, Radiobiology and Radiopathology Unit, Democritus University of Thrace
AlexandroupolisGreece
| | - Michael I. Koukourakis
- Department of Radiotherapy/Oncology, Radiobiology and Radiopathology Unit, Democritus University of Thrace
AlexandroupolisGreece
| |
Collapse
|
17
|
Brehwens K, Bajinskis A, Haghdoost S, Wojcik A. Micronucleus frequencies and clonogenic cell survival in TK6 cells exposed to changing dose rates under controlled temperature conditions. Int J Radiat Biol 2013; 90:241-7. [PMID: 24350915 DOI: 10.3109/09553002.2014.873831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE In most exposure scenarios the dose rate of exposure is not constant. Despite this, very little information exists on the possible biological effects of exposing cells to radiation under the conditions of a changing dose rate. The current study highlights interesting effects following exposure under these conditions. MATERIALS AND METHODS We constructed a new exposure facility that allows exposing cells inside an incubator and used it to irradiate human lymphoblastoid TK6 cells both after a moderate (0.48 Gy) and a high (1.1 Gy) dose, where the change in dose rate was, respectively, ≈ 17-fold (2.2-37 mGy/min) and ≈ 39-fold (2.7-106 mGy/min). Clonogenic survival and micronuclei (MN) induction were the chosen endpoints. RESULTS The obtained results confirm the outcome of our first study that TK6 cells exposed to a decreasing dose rate express more MN than cells exposed to an increasing or constant dose rate. The effect was not seen after the moderate dose of 0.48 Gy or detectable at the level of clonogenic cell survival. CONCLUSIONS We speculate that the high level of MN is probably related to a delayed elimination of damaged cells by interphase death, as opposed to mechanisms relating to DNA damage and repair.
Collapse
Affiliation(s)
- Karl Brehwens
- Centre for Radiation Protection Research, Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | | | | | | |
Collapse
|
18
|
Kam WWY, Lake V, Banos C, Davies J, Banati R. Apparent polyploidization after gamma irradiation: pitfalls in the use of quantitative polymerase chain reaction (qPCR) for the estimation of mitochondrial and nuclear DNA gene copy numbers. Int J Mol Sci 2013; 14:11544-59. [PMID: 23722662 PMCID: PMC3709747 DOI: 10.3390/ijms140611544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/18/2013] [Accepted: 05/16/2013] [Indexed: 12/12/2022] Open
Abstract
Quantitative polymerase chain reaction (qPCR) has been widely used to quantify changes in gene copy numbers after radiation exposure. Here, we show that gamma irradiation ranging from 10 to 100 Gy of cells and cell-free DNA samples significantly affects the measured qPCR yield, due to radiation-induced fragmentation of the DNA template and, therefore, introduces errors into the estimation of gene copy numbers. The radiation-induced DNA fragmentation and, thus, measured qPCR yield varies with temperature not only in living cells, but also in isolated DNA irradiated under cell-free conditions. In summary, the variability in measured qPCR yield from irradiated samples introduces a significant error into the estimation of both mitochondrial and nuclear gene copy numbers and may give spurious evidence for polyploidization.
Collapse
Affiliation(s)
- Winnie W. Y. Kam
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; E-Mails: (V.L.); (C.B.); (J.D.); (R.B.)
- Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Cumberland, Sydney, New South Wales 2141, Australia
- Author to whom correspondence should be addressed; E-Mail: or ; Tel.: +61-2-9717-7241; Fax: +61-2-9717-9262
| | - Vanessa Lake
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; E-Mails: (V.L.); (C.B.); (J.D.); (R.B.)
| | - Connie Banos
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; E-Mails: (V.L.); (C.B.); (J.D.); (R.B.)
| | - Justin Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; E-Mails: (V.L.); (C.B.); (J.D.); (R.B.)
- School of Physics, University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia
| | - Richard Banati
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; E-Mails: (V.L.); (C.B.); (J.D.); (R.B.)
- Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Cumberland, Sydney, New South Wales 2141, Australia
- National Imaging Facility at Brain and Mind Research Institute (BMRI), University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| |
Collapse
|
19
|
Lisowska H, Wegierek-Ciuk A, Banasik-Nowak A, Braziewicz J, Wojewodzka M, Wojcik A, Lankoff A. The dose-response relationship for dicentric chromosomes and γ-H2AX foci in human peripheral blood lymphocytes: Influence of temperature during exposure and intra- and inter-individual variability of donors. Int J Radiat Biol 2012; 89:191-9. [DOI: 10.3109/09553002.2013.741284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Wojcik A, Obe G, Lisowska H, Czub J, Nievaart V, Moss R, Huiskamp R, Sauerwein W. Chromosomal aberrations in peripheral blood lymphocytes exposed to a mixed beam of low energy neutrons and gamma radiation. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2012; 32:261-275. [PMID: 22809710 DOI: 10.1088/0952-4746/32/3/261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cells exposed to thermal neutrons are simultaneously damaged by radiations with high and low linear energy transfer (LET). A question relevant for the assessment of risk of exposure to a mixed beam is whether the biological effect of both radiation types is additive or synergistic. The aim of the present investigation was to calculate whether the high and low LET components of a thermal neutron field interact when damaging cells. Human peripheral blood lymphocytes were exposed to neutrons from the HB11 beam at the Institute for Energy and Transport, Petten, Netherlands, in a 37 °C water phantom at varying depths, where the mix of high and low LET beam components differs. Chromosomal aberrations were analysed and the relative biological effectiveness (RBE) values as well as the expected contributions of protons and photons to the aberration yield were calculated based on a dose response of aberrations in lymphocytes exposed to (60)Co gamma radiation. The RBE for 10 dicentrics per 100 cells was 3 for mixed beam and 7.2 for protons. For 20 dicentrics per 100 cells the respective values were 2.4 and 5.8. Within the limitations of the experimental setup the results indicate that for this endpoint there is no synergism between the high and low LET radiations.
Collapse
Affiliation(s)
- A Wojcik
- CRPR, GMT Department, Stockholm University, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|