1
|
Su DB, Zhao ZX, Yin DC, Ye YJ. Promising application of pulsed electromagnetic fields on tissue repair and regeneration. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 187:36-50. [PMID: 38280492 DOI: 10.1016/j.pbiomolbio.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Tissue repair and regeneration is a vital biological process in organisms, which is influenced by various internal mechanisms and microenvironments. Pulsed electromagnetic fields (PEMFs) are becoming a potential medical technology due to its advantages of effectiveness and non-invasiveness. Numerous studies have demonstrated that PEMFs can stimulate stem cell proliferation and differentiation, regulate inflammatory reactions, accelerate wound healing, which is of great significance for tissue regeneration and repair, providing a solid basis for enlarging its clinical application. However, some important issues such as optimal parameter system and potential deep mechanisms remain to be resolved due to PEMFs window effect and biological complexity. Thus, it is of great importance to comprehensively summarizing and analyzing the literature related to the biological effects of PEMFs in tissue regeneration and repair. This review expounded the biological effects of PEMFs on stem cells, inflammation response, wound healing and musculoskeletal disorders in order to improve the application value of PEMFs in medicine. It is believed that with the continuous exploration of biological effects of PEMFs, it will be applied increasingly widely to tissue repair and other diseases.
Collapse
Affiliation(s)
- Dan-Bo Su
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zi-Xu Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ya-Jing Ye
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
2
|
Zhao H, Liu C, Liu Y, Ding Q, Wang T, Li H, Wu H, Ma T. Harnessing electromagnetic fields to assist bone tissue engineering. Stem Cell Res Ther 2023; 14:7. [PMID: 36631880 PMCID: PMC9835389 DOI: 10.1186/s13287-022-03217-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
Bone tissue engineering (BTE) emerged as one of the exceptional means for bone defects owing to it providing mechanical supports to guide bone tissue regeneration. Great advances have been made to facilitate the success of BTE in regenerating bone within defects. The use of externally applied fields has been regarded as an alternative strategy for BTE. Electromagnetic fields (EMFs), known as a simple and non-invasive therapy, can remotely provide electric and magnetic stimulation to cells and biomaterials, thus applying EMFs to assist BTE would be a promising strategy for bone regeneration. When combined with BTE, EMFs improve cell adhesion to the material surface by promoting protein adsorption. Additionally, EMFs have positive effects on mesenchymal stem cells and show capabilities of pro-angiogenesis and macrophage polarization manipulation. These advantages of EMFs indicate that it is perfectly suitable for representing the adjuvant treatment of BTE. We also summarize studies concerning combinations of EMFs and diverse biomaterial types. The strategy of combining EMFs and BTE receives encouraging outcomes and holds a promising future for effectively treating bone defects.
Collapse
Affiliation(s)
- Hongqi Zhao
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Chaoxu Liu
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Yang Liu
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Qing Ding
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Tianqi Wang
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Hao Li
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Tian Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
3
|
Scarano A, Sbarbati A, Amore R, Iorio EL, Ferraro G, Lorusso F, Amuso D. A New Treatment for Stretch Marks and Skin Ptosis with Electromagnetic Fields and Negative Pressure: A Clinical and Histological Study. J Cutan Aesthet Surg 2021; 14:222-228. [PMID: 34566367 PMCID: PMC8423202 DOI: 10.4103/jcas.jcas_122_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: Stretch marks (SM) are nowadays the most common aesthetic pathology of the body; in the XX century, it mainly affected pregnant women, while today it also affects teenagers during puberty, boys and girls without distinction. The aim of this study was to evaluate possible variations in the histological structure of the skin—in terms of quality/quantity of the extracellular matrix and of the collagen and elastic fibers—following the electromagnetic fields and negative pressure (V-EMF) treatment as regards hypotonia and SMs. Materials and Methods: For the current study, 60 women, aged between 25 and 45, were examined. All of them presented deep, white or pearly white colored SMs having had them for between 12 and 25 years. These were documented, asking patients their level of satisfaction, through pictures and biopsies. All patients underwent a cycle of 6 or 8 weekly sessions; everyone was highly satisfied with the results obtained. Results: Biopsies proved that the tissue was reorganized and restored to the original volume, characterized by the production of new, high-quality collagen and elastin molecules, by the reorganization of the basement membrane and by the correct positioning of the melanocytes. No side effects were observed during the treatments. This synergy stands as the most suitable treatment of striae rubra and alba. Conclusion: V-EMF enhances the keratinocyte migration base, melanocytes, and promotes neoangiogenesis with the result of improvement in the SM.
Collapse
Affiliation(s)
- Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Andrea Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, School of Medicine, Verona, Italy
| | | | - Eugenio L Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Giuseppe Ferraro
- Department of Plastic, Reconstructive and Aesthetic Surgery, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University "G.D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Domenico Amuso
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
4
|
Yuan FY, Zhang MX, Shi YH, Li MH, Ou JY, Bai WF, Zhang MS. Bone marrow stromal cells-derived exosomes target DAB2IP to induce microglial cell autophagy, a new strategy for neural stem cell transplantation in brain injury. Exp Ther Med 2020; 20:2752-2764. [PMID: 32765770 PMCID: PMC7401953 DOI: 10.3892/etm.2020.9008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Bone marrow stromal cells (MSCs) are a useful source of stem cells for the treatment of various brain injury diseases due to their abundant supply and fewer ethical problems compared with transplant treatment. However, the clinical application of MSCs is limited due to allograft rejection and immunosuppression in the process of MSCs transplantation. According to previous studies, microglial cell autophagy occurs following co-culture with MSCs. In the present study, exosomes were obtained from MSCs and subsequently characterized using transmission electron microscopy, atomic force microscopy and dynamic light scattering particle size analysis. The type of microRNAs (miRs) found in the exosomes was then analyzed via gene chip. The results demonstrated that microglial cell autophagy could be induced by exosomes. This mechanism was therefore investigated further via reverse transcription-quantitative PCR, western blotting and luciferase assays. These results demonstrated that exosomes from MSCs could induce microglial cell autophagy through the miR-32-mediated regulation of disabled homolog 2-interacting protein, thus providing a theoretical basis for the clinical application of miRs in MSCs.
Collapse
Affiliation(s)
- Feng-Ying Yuan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Department of Rehabilitation Medicine The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510600, P.R. China
| | - Ming-Xing Zhang
- Department of Rehabilitation Medicine The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510600, P.R. China
| | - Yi-Hua Shi
- Department of Rehabilitation Medicine The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510600, P.R. China
| | - Mei-Hui Li
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital, Guangzhou, Guangdong 510120, P.R. China
| | - Jia-Yuan Ou
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital, Guangzhou, Guangdong 510120, P.R. China
| | - Wen-Fang Bai
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital, Guangzhou, Guangdong 510120, P.R. China.,Academy of Medical Sciences, Guangdong Provincial Institute of Geriatrics, Guangzhou, Guangdong 510080, P.R. China
| | - Ming-Sheng Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
5
|
Li X, Ye Y, Liu X, Bai L, Zhao P, Bai W, Zhang M. Low-frequency electromagnetic fields promote hair follicles regeneration by injection a mixture of epidermal stem cells and dermal papilla cells. Electromagn Biol Med 2020; 39:251-256. [PMID: 32727226 DOI: 10.1080/15368378.2020.1793165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The bioeffects of low-frequency electromagnetic fields (EMF) on a bio-engineered hair follicle generation had not been fully elucidated. This present study was designed to evaluat the therapeutically effective of low frequency EMF on hair follicles regeneration. In this experiment, epidermal stem cells (ESCs) and dermal papilla (DP) cells were isolated and culture-expanded. Then the mixture containing of ESCs and DP cells was implanted into the epidermal layer or corium layer of nude mice. Those mice were divided at random into the control group and EMF group, 7 days or 14 days later, the skin specimens were harvested to assess for hair regeneration or a bio-engineered skin formation using H&E staining. After injection of the mixture into the epidermal layer of nude mice for 14 days, H&E staining showed that the new hair formed the correct structure comprising hair matrix, hair shaft, and inner root sheath, outer root sheath, and DP. Comparing to the control, the hair follicles erupted at a higher density in the EMF group. When the mixture was implanted into the corium layer for 7 days, comparing with the characteristics of new hair follicles in the control group, H&E staining also showed the mixture induced to form 4 ~ 6 epidermal layers with a higher density of hair follicle like-structures in the bioengineered epithelial layers after EMF exposure. Our results suggested that the injection of a mixture of ESCs and DP cells in combination with EMF exposure facilitated the induction of hair follicle regeneration and a bioengineered skin formation with hair follicle-like structures.
Collapse
Affiliation(s)
- Xinping Li
- Department of Physical Medicine and Rehabilitation, Guangdong Geriatric Institute, Guangdong Academy of Medical Sciences & Guangdong Provincial People's Hospital , Guangzhou, China
| | - Yan Ye
- Department of Physical Medicine and Rehabilitation, The Second People' Hospital of Foshan , Foshan, China
| | - Xiaohan Liu
- Department of Physical Medicine and Rehabilitation, The Fifth Affiliated Hospital of Sun Yat-sen University , Zhuhai, China
| | - Liming Bai
- Department of Physical Medicine and Rehabilitation, Guangdong Geriatric Institute, Guangdong Academy of Medical Sciences & Guangdong Provincial People's Hospital , Guangzhou, China
| | - Pin Zhao
- Huayin Laboratory, Southern Medical University , Guangzhou, China
| | - Wenfang Bai
- Department of Physical Medicine and Rehabilitation, Guangdong Geriatric Institute, Guangdong Academy of Medical Sciences & Guangdong Provincial People's Hospital , Guangzhou, China
| | - Mingsheng Zhang
- Department of Physical Medicine and Rehabilitation, Guangdong Geriatric Institute, Guangdong Academy of Medical Sciences & Guangdong Provincial People's Hospital , Guangzhou, China
| |
Collapse
|
6
|
Naghibzadeh M, Gholampour S, Naghibzadeh M, Sadeghian-Nodoushan F, Nikukar H. The effect of electromagnetic field on decreasing and increasing of the growth and proliferation rate of dermal fibroblast cell. Dermatol Ther 2020; 33:e13803. [PMID: 32526050 DOI: 10.1111/dth.13803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/06/2020] [Accepted: 06/06/2020] [Indexed: 11/29/2022]
Abstract
Maintaining the health of dermal fibroblast cells and controlling their growth and proliferation would directly affect the health of skin tissues. The present study encompassed three control and three experimental specimens, which were different in terms of the duration of exposure to electromagnetic field (EMF) and intensity. With a decrease in intensity from 2 to 1 mT during 24, 48, and 72 h after exposing the cells to EMF, the frequency of the sample fibroblast cells increased by 60.3%, 144.9%, and 90.1%, respectively. With an increase in intensity from 3 to 4 mT during 48 and 72 h of exposure to EMF, the frequencies of the sample fibroblast cells decreased by 6.8% and 86.7%, respectively. It seems to be possible to achieve the most desirable condition to help the restoration of wounds and skin lesions through decreasing the exposure intensity from 2 to 0.5 mT and increasing EMF exposure time from 24 to 72 h simultaneously and non-invasively. The most desirable approach to improve the treatment of skin cancers non-invasively is to increase the intensity from 3 to 5 mT and to enhance EMF exposure time from 48 to 72 h.
Collapse
Affiliation(s)
- Mehran Naghibzadeh
- Department of Biomedical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Seifollah Gholampour
- Department of Biomedical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Naghibzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Sadeghian-Nodoushan
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Nikukar
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
7
|
Li X, Wang X, Bai L, Zhao P, Zhang M. Exposure to 50 Hz electromagnetic fields enhances hair follicle regrowth in C57BL/6 mice. Exp Biol Med (Maywood) 2019; 244:389-394. [PMID: 30823849 DOI: 10.1177/1535370219834639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
IMPACT STATEMENT In this study, our experiments confirmed that 50 Hz EMF affected hair follicle regrowth, and 50 Hz EMF enhanced K15+ stem cells proliferation in the hair bulb and follicular outer root sheath of hair follicles. Those results indicated that 50 Hz EMF may be beneficial for functional healing of hair loss.
Collapse
Affiliation(s)
- Xinping Li
- 1 Department of Physical Medicine and Rehabilitation, Guangdong Geriatric Institute, Guangdong Academy of Medical Sciences and Guangdong Provincial People's Hospital, Guangzhou 510080, China
- *These authors contributed equally to this work
| | - Xin Wang
- 2 Binzhou Medical University Hospital, Shandong 256603, China
- 3 The First Clinical College of Jinan University, Guangzhou 510632, China
- *These authors contributed equally to this work
| | - Liming Bai
- 1 Department of Physical Medicine and Rehabilitation, Guangdong Geriatric Institute, Guangdong Academy of Medical Sciences and Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Pin Zhao
- 4 Southern Medical University Huayin laboratory, Guangzhou 510515, China
| | - Mingsheng Zhang
- 1 Department of Physical Medicine and Rehabilitation, Guangdong Geriatric Institute, Guangdong Academy of Medical Sciences and Guangdong Provincial People's Hospital, Guangzhou 510080, China
- 3 The First Clinical College of Jinan University, Guangzhou 510632, China
| |
Collapse
|
8
|
Fathi E, Farahzadi R. Zinc Sulphate Mediates the Stimulation of Cell Proliferation of Rat Adipose Tissue-Derived Mesenchymal Stem Cells Under High Intensity of EMF Exposure. Biol Trace Elem Res 2018; 184:529-535. [PMID: 29189996 DOI: 10.1007/s12011-017-1199-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
Unlike the role of mesenchymal stem cells (MSCs) in regenerative medicine, their application in cell therapy can be complicated by factors such as a reduction in the proliferation potential, senescent tendency of MSCs to expand, and an age-dependent decline in their number and functions. It was shown that there is an association between exposure to electromagnetic fields (EMFs) and response to stress, cell proliferation, aging, and cell death. Furthermore, the zinc ion, as an essential trace element, was reported to be involved in the regulation of the growth and cell proliferation. In this report, ratadipose tissue-derived mesenchymal stem cells (rADSCs) were randomly divided into four groups-group I (control without any ZnSO4 and EMF); group II (ZnSO4 treatment without EMF exposed); group III (EMF exposed without ZnSO4); and group ІV (EMF exposed with ZnSO4)-to evaluate whether 0.14 μg/ml Zinc sulfate (ZnSO4) could affect cell proliferation of rADSCs under extremely low frequency-electromagnetic field (ELF-EMF). The methyl thiazoltetrazolium (MTT) method was used to determine the cell proliferation of rADSCs following exposure to ELF-EMF in the presence of ZnSO4. The immunocytochemistry method as well as flow-cytometry was used to identify the cell surface markers. Next, oil red O, alizarin red, toluidine blue, and cresyl violet staining was done to evaluate the adipogenic, osteogenic, chondrogenic, and neurogenic differentiation of rADSCs as the pluripotent capacity of rADSCs, respectively. The results showed that an exposure to ELF-EMF caused a decrease in the proliferation of rADSCs. However, the ZnSO4 supplementation significantly increased the cell proliferation of ELF-EMF-exposed rADSCs. In addition, in the presence of 0.14 μg/ml ZnSO4, rADSCs appeared to be growing faster than the control group and ZnSO4 significantly decreased the doubling time of ELF-EMF-exposed rADSCs. It seems that ZnSO4 would be a good element to induce the cell proliferation of ELF-EMF-exposed rADSCs.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran.
| |
Collapse
|
9
|
Bai WF, Xu WC, Zhu HX, Huang H, Wu B, Zhang MS. Efficacy of 50 Hz electromagnetic fields on human epidermal stem cell transplantation seeded in collagen sponge scaffolds for wound healing in a murine model. Bioelectromagnetics 2017; 38:204-212. [PMID: 28106913 DOI: 10.1002/bem.22029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/03/2016] [Indexed: 11/11/2022]
Abstract
To explore the possible efficacy of electromagnetic fields (EMF) for skin tissue engineering, effects of EMF exposure on epidermal stem cells (ESC) seeded in collagen sponge scaffolds for wound healing in a murine model were investigated. The wound models of a full-thickness defect established with 36 7 ∼ 8-week-old nude mice were randomly divided into three groups: a control group, an ESC-only group, and an ESC with EMF exposure group (frequency of 50 Hz, magnetic induction of 5 mT, 60 min per day for 20 days). ESC were separated from human foreskin and cultured in vitro, and then transplanted with collagen sponge scaffolds as a delivery vehicle to wounds of the ESC-only group, and ESC with EMF exposure group was exposed to EMF after ESC transplantation. Effects of EMF on morphological changes and expression of β1 integrin in regenerated skins were observed. Wound healing rates and healing times were collected to evaluate the efficacy of repairment. Results showed that human ESC were successfully transplanted to nude mice, which facilitated the formation of intact skin on nude mice. In contrast to other groups, the wound healing of ESC with EMF exposure group was the fastest (P < 0.05), the structure of regenerated skins was more mature, and it contained more continuity in the number of viable cell layers and rich hair follicles' structure. These results suggest that the use of 50 Hz EMF as a non-invasive treatment can accelerate wound healing of ESC transplantation, and restore structural integrity of regenerated skin. Bioelectromagnetics. 38:204-212,2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wen-Fang Bai
- Jinan University, Guangzhou, China.,Department of Rehabilitation Medicine, Institute of Geriatric Medicine, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| | - Wei-Cheng Xu
- Department of Rehabilitation Medicine, Institute of Geriatric Medicine, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| | - Hong-Xiang Zhu
- Department of Rehabilitation Medicine, Institute of Geriatric Medicine, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| | - Hong Huang
- School of Information, University of South Florida, Tampa, Florida
| | - Bo Wu
- Department of Rehabilitation Medicine, Institute of Geriatric Medicine, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| | - Ming-Sheng Zhang
- Department of Rehabilitation Medicine, Institute of Geriatric Medicine, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| |
Collapse
|
10
|
Maziarz A, Kocan B, Bester M, Budzik S, Cholewa M, Ochiya T, Banas A. How electromagnetic fields can influence adult stem cells: positive and negative impacts. Stem Cell Res Ther 2016; 7:54. [PMID: 27086866 PMCID: PMC4834823 DOI: 10.1186/s13287-016-0312-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The electromagnetic field (EMF) has a great impact on our body. It has been successfully used in physiotherapy for the treatment of bone disorders and osteoarthritis, as well as for cartilage regeneration or pain reduction. Recently, EMFs have also been applied in in vitro experiments on cell/stem cell cultures. Stem cells reside in almost all tissues within the human body, where they exhibit various potential. These cells are of great importance because they control homeostasis, regeneration, and healing. Nevertheless, stem cells when become cancer stem cells, may influence the pathological condition. In this article we review the current knowledge on the effects of EMFs on human adult stem cell biology, such as proliferation, the cell cycle, or differentiation. We present the characteristics of the EMFs used in miscellaneous assays. Most research has so far been performed during osteogenic and chondrogenic differentiation of mesenchymal stem cells. It has been demonstrated that the effects of EMF stimulation depend on the intensity and frequency of the EMF and the time of exposure to it. However, other factors may affect these processes, such as growth factors, reactive oxygen species, and so forth. Exploration of this research area may enhance the development of EMF-based technologies used in medical applications and thereby improve stem cell-based therapy and tissue engineering.
Collapse
Affiliation(s)
- Aleksandra Maziarz
- Laboratory of Stem Cells' Biology, Department of Immunology, Chair of Molecular Medicine, Faculty of Medicine, University of Rzeszow, ul. Kopisto 2a, 35-310, Rzeszow, Poland.,Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, ul. Warzywna 1a, 35-310, Rzeszow, Poland
| | - Beata Kocan
- Laboratory of Stem Cells' Biology, Department of Immunology, Chair of Molecular Medicine, Faculty of Medicine, University of Rzeszow, ul. Kopisto 2a, 35-310, Rzeszow, Poland.,Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, ul. Warzywna 1a, 35-310, Rzeszow, Poland
| | - Mariusz Bester
- Department of Biophysics, Faculty of Mathematics and Natural Sciences, University of Rzeszow, ul. Pigonia 1, 35-310, Rzeszow, Poland
| | - Sylwia Budzik
- Department of Biophysics, Faculty of Mathematics and Natural Sciences, University of Rzeszow, ul. Pigonia 1, 35-310, Rzeszow, Poland
| | - Marian Cholewa
- Department of Biophysics, Faculty of Mathematics and Natural Sciences, University of Rzeszow, ul. Pigonia 1, 35-310, Rzeszow, Poland
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan
| | - Agnieszka Banas
- Laboratory of Stem Cells' Biology, Department of Immunology, Chair of Molecular Medicine, Faculty of Medicine, University of Rzeszow, ul. Kopisto 2a, 35-310, Rzeszow, Poland. .,Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, ul. Warzywna 1a, 35-310, Rzeszow, Poland.
| |
Collapse
|
11
|
Bai WF, Xu WC, Feng Y, Huang H, Li XP, Deng CY, Zhang MS. Fifty-Hertz electromagnetic fields facilitate the induction of rat bone mesenchymal stromal cells to differentiate into functional neurons. Cytotherapy 2013; 15:961-70. [DOI: 10.1016/j.jcyt.2013.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/08/2013] [Indexed: 12/21/2022]
|