1
|
Krishnan D, Babu S, Raju R, Veettil MV, Prasad TSK, Abhinand CS. Epstein-Barr Virus: Human Interactome Reveals New Molecular Insights into Viral Pathogenesis for Potential Therapeutics and Antiviral Drug Discovery. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:32-44. [PMID: 38190109 DOI: 10.1089/omi.2023.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Host-virus Protein-Protein Interactions (PPIs) play pivotal roles in biological processes crucial for viral pathogenesis and by extension, inform antiviral drug discovery and therapeutics innovations. Despite efforts to develop the Epstein-Barr virus (EBV)-host PPI network, there remain significant knowledge gaps and a limited number of interacting human proteins deciphered. Furthermore, understanding the dynamics of the EBV-host PPI network in the distinct lytic and latent viral stages remains elusive. In this study, we report a comprehensive map of the EBV-human protein interactions, encompassing 1752 human and 61 EBV proteins by integrating data from the public repository HPIDB (v3.0) as well as curated high-throughput proteomic data from the literature. To address the stage-specific nature of EBV infection, we generated two detailed subset networks representing the latent and lytic stages, comprising 747 and 481 human proteins, respectively. Functional and pathway enrichment analysis of these subsets uncovered the profound impact of EBV proteins on cancer. The identification of highly connected proteins and the characterization of intrinsically disordered and cancer-related proteins provide valuable insights into potential therapeutic targets. Moreover, the exploration of drug-protein interactions revealed notable associations between hub proteins and anticancer drugs, offering novel perspectives for controlling EBV pathogenesis. This study represents, to the best of our knowledge, the first comprehensive investigation of the two distinct stages of EBV infection using high-throughput datasets. This makes a contribution to our understanding of EBV-host interactions and provides a foundation for future drug discovery and therapeutic interventions.
Collapse
Affiliation(s)
- Deepak Krishnan
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, India
| | - Sreeranjini Babu
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | | | | | - Chandran S Abhinand
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
2
|
Mikhailov VF, Saleeva DV, Shulenina LV, Raeva NF, Rozhdestvensky LM, Zasukhina GD. The Сonnection between the Growth Dynamics of Transplanted Lewis Carcinoma in Mice and Changes in the Activity of Genes and Noncoding RNAs after Low-Dose Irradiation. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022120135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
3
|
Shin E, Lee S, Kang H, Kim J, Kim K, Youn H, Jin YW, Seo S, Youn B. Organ-Specific Effects of Low Dose Radiation Exposure: A Comprehensive Review. Front Genet 2020; 11:566244. [PMID: 33133150 PMCID: PMC7565684 DOI: 10.3389/fgene.2020.566244] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Ionizing radiation (IR) is a high-energy radiation whose biological effects depend on the irradiation doses. Low-dose radiation (LDR) is delivered during medical diagnoses or by an exposure to radioactive elements and has been linked to the occurrence of chronic diseases, such as leukemia and cardiovascular diseases. Though epidemiological research is indispensable for predicting and dealing with LDR-induced abnormalities in individuals exposed to LDR, little is known about epidemiological markers of LDR exposure. Moreover, difference in the LDR-induced molecular events in each organ has been an obstacle to a thorough investigation of the LDR effects and a validation of the experimental results in in vivo models. In this review, we summarized the recent reports on LDR-induced risk of organ-specifically arranged the alterations for a comprehensive understanding of the biological effects of LDR. We suggested that LDR basically caused the accumulation of DNA damages, controlled systemic immune systems, induced oxidative damages on peripheral organs, and even benefited the viability in some organs. Furthermore, we concluded that understanding of organ-specific responses and the biological markers involved in the responses is needed to investigate the precise biological effects of LDR.
Collapse
Affiliation(s)
- Eunguk Shin
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Jeongha Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Kyeongmin Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Young Woo Jin
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, South Korea
| | - Songwon Seo
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, South Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea.,Department of Biological Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
4
|
Tharmalingam S, Sreetharan S, Brooks AL, Boreham DR. Re-evaluation of the linear no-threshold (LNT) model using new paradigms and modern molecular studies. Chem Biol Interact 2019; 301:54-67. [PMID: 30763548 DOI: 10.1016/j.cbi.2018.11.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
The linear no-threshold (LNT) model is currently used to estimate low dose radiation (LDR) induced health risks. This model lacks safety thresholds and postulates that health risks caused by ionizing radiation is directly proportional to dose. Therefore even the smallest radiation dose has the potential to cause an increase in cancer risk. Advances in LDR biology and cell molecular techniques demonstrate that the LNT model does not appropriately reflect the biology or the health effects at the low dose range. The main pitfall of the LNT model is due to the extrapolation of mutation and DNA damage studies that were conducted at high radiation doses delivered at a high dose-rate. These studies formed the basis of several outdated paradigms that are either incorrect or do not hold for LDR doses. Thus, the goal of this review is to summarize the modern cellular and molecular literature in LDR biology and provide new paradigms that better represent the biological effects in the low dose range. We demonstrate that LDR activates a variety of cellular defense mechanisms including DNA repair systems, programmed cell death (apoptosis), cell cycle arrest, senescence, adaptive memory, bystander effects, epigenetics, immune stimulation, and tumor suppression. The evidence presented in this review reveals that there are minimal health risks (cancer) with LDR exposure, and that a dose higher than some threshold value is necessary to achieve the harmful effects classically observed with high doses of radiation. Knowledge gained from this review can help the radiation protection community in making informed decisions regarding radiation policy and limits.
Collapse
Affiliation(s)
- Sujeenthar Tharmalingam
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.
| | - Shayenthiran Sreetharan
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street W, Hamilton ON, L8S 4K1, Canada
| | - Antone L Brooks
- Environmental Science, Washington State University, Richland, WA, USA
| | - Douglas R Boreham
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada; Bruce Power, Tiverton, ON(3), UK.
| |
Collapse
|
5
|
Low-dose ionizing radiation exposure represses the cell cycle and protein synthesis pathways in in vitro human primary keratinocytes and U937 cell lines. PLoS One 2018; 13:e0199117. [PMID: 29912936 PMCID: PMC6005503 DOI: 10.1371/journal.pone.0199117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 06/03/2018] [Indexed: 01/21/2023] Open
Abstract
The effects of the high-dose ionizing radiation used in radiotherapy have been thoroughly demonstrated in vitro and in vivo. However, the effects of low-dose ionizing radiation (LDIR) such as computed tomography-guided biopsies and X-ray fluoroscopy on skin cells remain controversial. This study investigated the molecular effects of LDIR on the human primary keratinocytes (HPKs) and U937 cells, monocytes-like cell lines. These cells were exposed to 0.1 Gray (Gy) X-ray as LDIR. The modulation of transcription was assessed using a cDNA array, and the protein expression after LDIR exposure was investigated using isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis at 24 hours. These effects were confirmed by immunoblotting analysis. The direct effects of LDIR on the U937 cells and HPKs and the bystander effects of irradiated HPKs on U937 cells were also investigated. LDIR downregulated c-Myc in both U937 cells and HPKs, and upregulated the p21WAF1/CIP1 protein expression in U937 cells along with the activation of TGFβ and protein phosphatase 2A (PP2A). In HPKs, LDIR downregulated the mTOR signaling with repression of S6 and 4EBP1 activation. Similar changes were observed as bystander effects of LDIR. Our findings suggest that LDIR inhibits protein synthesis and induces the cytokines activation associated with inflammation via direct and bystander effects, which might recapitulate the effects of LDIR in inflammated skin structures.
Collapse
|
6
|
Sokolov M, Neumann R. Changes in gene expression as one of the key mechanisms involved in radiation-induced bystander effect. Biomed Rep 2018; 9:99-111. [PMID: 30013775 PMCID: PMC6036822 DOI: 10.3892/br.2018.1110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/21/2018] [Indexed: 12/22/2022] Open
Abstract
The radiation-induced bystander effect (RIBE) refers to the manifestation of responses by non-targeted/non-hit cells or tissues situated in proximity to cells and tissues directly exposed to ionizing radiation (IR). The RIBE is elicited by agents and factors released by IR-hit cells. The growing body of data suggests that the underlying mechanisms of the RIBE are multifaceted depending both on the biological (characteristics of directly IR-exposed cells, bystander cells, intercellular milieu) and the physical (dose, rate and type of IR, time after exposure) factors/parameters. Although the exact identity of bystander signal(s) is yet to be identified, the published data indicate changes in gene expression for multiple types of RNA (mRNA, microRNA, mitochondrial RNA, long non-coding RNA, small nucleolar RNA) as being one of the major responses of cells and tissues in the context of the RIBE. Gene expression profiles demonstrate a high degree of variability between distinct bystander cell and tissue types. These alterations could independently, or in a signaling cascade, result in the manifestation of readily observable endpoints, including changes in viability and genomic instability. Here, the relevant publications on the gene candidates and signaling pathways involved in the RIBE are reviewed, and a framework for future studies, both in vitro and in vivo, on the genetic aspect of the RIBE is provided.
Collapse
Affiliation(s)
- Mykyta Sokolov
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald Neumann
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Update on glycerol-3-phosphate acyltransferases: the roles in the development of insulin resistance. Nutr Diabetes 2018; 8:34. [PMID: 29799006 PMCID: PMC5968029 DOI: 10.1038/s41387-018-0045-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 01/16/2023] Open
Abstract
Glycerol-3-phosphate acyltransferase (GPAT) is the rate-limiting enzyme in the de novo pathway of glycerolipid synthesis. It catalyzes the conversion of glycerol-3-phosphate and long-chain acyl-CoA to lysophosphatidic acid. In mammals, four isoforms of GPATs have been identified based on subcellular localization, substrate preferences, and NEM sensitivity, and they have been classified into two groups, one including GPAT1 and GPAT2, which are localized in the mitochondrial outer membrane, and the other including GPAT3 and GPAT4, which are localized in the endoplasmic reticulum membrane. GPATs play a pivotal role in the regulation of triglyceride and phospholipid synthesis. Through gain-of-function and loss-of-function experiments, it has been confirmed that GPATs play a critical role in the development of obesity, hepatic steatosis, and insulin resistance. In line with this, the role of GPATs in metabolism was supported by studies using a GPAT inhibitor, FSG67. Additionally, the functional characteristics of GPATs and the relation between three isoforms (GPAT1, 3, and 4) and insulin resistance has been described in this review.
Collapse
|
8
|
Tharmalingam S, Sreetharan S, Kulesza AV, Boreham DR, Tai TC. Low-Dose Ionizing Radiation Exposure, Oxidative Stress and Epigenetic Programing of Health and Disease. Radiat Res 2017; 188:525-538. [PMID: 28753061 DOI: 10.1667/rr14587.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionizing radiation exposure from medical diagnostic imaging has greatly increased over the last few decades. Approximately 80% of patients who undergo medical imaging are exposed to low-dose ionizing radiation (LDIR). Although there is widespread consensus regarding the harmful effects of high doses of radiation, the biological effects of low-linear energy transfer (LET) LDIR is not well understood. LDIR is known to promote oxidative stress, however, these levels may not be large enough to result in genomic mutations. There is emerging evidence that oxidative stress causes heritable modifications via epigenetic mechanisms (DNA methylation, histone modification, noncoding RNA regulation). These epigenetic modifications result in permanent cellular transformations without altering the underlying DNA nucleotide sequence. This review summarizes the major concepts in the field of epigenetics with a focus on the effects of low-LET LDIR (<100 mGy) and oxidative stress on epigenetic gene modification. In this review, we show evidence that suggests that LDIR-induced oxidative stress provides a mechanistic link between LDIR and epigenetic gene regulation. We also discuss the potential implication of LDIR exposure during pregnancy where intrauterine fetal development is highly susceptible to oxidative stress-induced epigenetic programing.
Collapse
Affiliation(s)
| | | | - Adomas V Kulesza
- b Department of Biology, McMaster University, Hamilton, Canada, L8S 4K1
| | - Douglas R Boreham
- a Northern Ontario School of Medicine, Laurentian University, Sudbury, Canada, P3E 2C6.,c Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Canada, L8S 4K1
| | - T C Tai
- a Northern Ontario School of Medicine, Laurentian University, Sudbury, Canada, P3E 2C6
| |
Collapse
|
9
|
Chen Z, Luo J, Sun S, Cao D, Shi H, Loor JJ. miR-148a and miR-17-5p synergistically regulate milk TAG synthesis via PPARGC1A and PPARA in goat mammary epithelial cells. RNA Biol 2017; 14:326-338. [PMID: 28095188 DOI: 10.1080/15476286.2016.1276149] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MicroRNA (miRNA) are a class of '18-25' nt RNA molecules which regulate gene expression and play an important role in several biologic processes including fatty acid metabolism. Here we used S-Poly (T) and high-throughput sequencing to evaluate the expression of miRNA and mRNA during early-lactation and in the non-lactating ("dry") period in goat mammary gland tissue. Results indicated that miR-148a, miR-17-5p, PPARGC1A and PPARA are highly expressed in the goat mammary gland in early-lactation and non-lactating periods. Utilizing a Luciferase reporter assay and Western Blot, PPARA, an important regulator of fatty acid oxidation, and PGC1a (PPARGC1A), a major regulator of fat metabolism, were demonstrated to be targets of miR-148a and miR-17-5p in goat mammary epithelial cells (GMECs). It was also revealed that miR-148a expression can regulate PPARA, and miR-17-5p represses PPARGC1A in GMECs. Furthermore, the overexpression of miR-148a and miR-17-5p promoted triacylglycerol (TAG) synthesis while the knockdown of miR-148a and miR-17-5p impaired TAG synthesis in GMEC. These findings underscore the importance of miR-148a and miR-17-5p as key components in the regulation of TAG synthesis. In addition, miR-148a cooperates with miR-17-5p to regulate fatty acid metabolism by repressing PPARGC1A and PPARA in GMECs. Further studies on the functional role of miRNAs in lipid metabolism of ruminant mammary cells seem warranted.
Collapse
Affiliation(s)
- Zhi Chen
- a Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , P.R. China
| | - Jun Luo
- a Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , P.R. China
| | - Shuang Sun
- a Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , P.R. China
| | - Duoyao Cao
- a Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , P.R. China
| | - Huaiping Shi
- a Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , P.R. China
| | - Juan J Loor
- b Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences , University of Illinois , Urbana , IL , USA
| |
Collapse
|
10
|
Gonzalez-Baro MR, Coleman RA. Mitochondrial acyltransferases and glycerophospholipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:49-55. [PMID: 27377347 DOI: 10.1016/j.bbalip.2016.06.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/23/2016] [Accepted: 06/28/2016] [Indexed: 12/14/2022]
Abstract
Our understanding of the synthesis and remodeling of mitochondrial phospholipids remains incomplete. Two isoforms of glycerol-3-phosphate acyltransferase (GPAT1 and 2) and two isoforms of acylglycerol-3-phosphate acyltransferase (AGPAT4 and 5) are located on the outer mitochondrial membrane, suggesting that both lysophosphatidic acid and phosphatidic acid are synthesized in situ for de novo glycerolipid biosynthesis. However, it is believed that the phosphatidic acid substrate for cardiolipin and phosphatidylethanolamine biosynthesis is produced at the endoplasmic reticulum whereas the phosphatidic acid synthesized in the mitochondria must be transferred to the endoplasmic reticulum before it undergoes additional steps to form the mature phospholipids that are trafficked back to the mitochondria. It is unclear whether mitochondrial phospholipids are remodeled by mitochondrial acyltransferases or whether lysophospholipids must return to the endoplasmic reticulum or to the mitochondrial associated membrane for reesterification. In this review we will focus on the few glycerolipid acyltransferases that are known to be mitochondrial. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- Maria R Gonzalez-Baro
- Instituto de Investigaciones Bioquımicas de La Plata, CONICET, Facultad de Ciencias Medicas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|