1
|
Tesse G, Tolomeo A, De Filippis B, Giampietro L. Radiolabeled Probes from Derivatives of Natural Compounds Used in Nuclear Medicine. Molecules 2024; 29:4260. [PMID: 39275108 PMCID: PMC11396893 DOI: 10.3390/molecules29174260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
Natural compounds are important precursors for the synthesis of new drugs. The development of novel molecules that are useful for various diseases is the main goal of researchers, especially for the diagnosis and treatment of many diseases. Some pathologies need to be treated with radiopharmaceuticals, and, for this reason, radiopharmaceuticals that use the radiolabeling of natural derivates molecules are arousing more and more interest. Radiopharmaceuticals can be used for both diagnostic and therapeutic purposes depending on the radionuclide. β+- and gamma-emitting radionuclides are used for diagnostic use for PET or SPECT imaging techniques, while α- and β--emitting radionuclides are used for in metabolic radiotherapy. Based on these assumptions, the purpose of this review is to highlight the studies carried out in the last ten years, to search for potentially useful radiopharmaceuticals for nuclear medicine that use molecules of natural origin as lead structures. In this context, the main radiolabeled compounds containing natural products as scaffolds are analyzed, in particular curcumin, stilbene, chalcone, and benzofuran. Studies on structural and chemical modifications are emphasized in order to obtain a collection of potential radiopharmaceuticals that exploit the biological properties of molecules of natural origin. The radionuclides used to label these compounds are 68Ga, 44Sc, 18F, 64Cu, 99mTc, and 125I for diagnostic imaging.
Collapse
Affiliation(s)
- Giuseppe Tesse
- Radiopharma Division, ITEL Telecomunicazioni s.r.l., 70037 Ruvo di Puglia, BA, Italy
| | - Anna Tolomeo
- Radiopharma Division, ITEL Telecomunicazioni s.r.l., 70037 Ruvo di Puglia, BA, Italy
| | - Barbara De Filippis
- Department of Pharmacy, Università degli Studi G. d'Annunzio, 66100 Chieti, CH, Italy
| | - Letizia Giampietro
- Department of Pharmacy, Università degli Studi G. d'Annunzio, 66100 Chieti, CH, Italy
| |
Collapse
|
2
|
Khazaei Monfared Y, Heidari P, Klempner SJ, Mahmood U, Parikh AR, Hong TS, Strickland MR, Esfahani SA. DNA Damage by Radiopharmaceuticals and Mechanisms of Cellular Repair. Pharmaceutics 2023; 15:2761. [PMID: 38140100 PMCID: PMC10748326 DOI: 10.3390/pharmaceutics15122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
DNA is an organic molecule that is highly vulnerable to chemical alterations and breaks caused by both internal and external factors. Cells possess complex and advanced mechanisms, including DNA repair, damage tolerance, cell cycle checkpoints, and cell death pathways, which together minimize the potentially harmful effects of DNA damage. However, in cancer cells, the normal DNA damage tolerance and response processes are disrupted or deregulated. This results in increased mutagenesis and genomic instability within the cancer cells, a known driver of cancer progression and therapeutic resistance. On the other hand, the inherent instability of the genome in rapidly dividing cancer cells can be exploited as a tool to kill by imposing DNA damage with radiopharmaceuticals. As the field of targeted radiopharmaceutical therapy (RPT) is rapidly growing in oncology, it is crucial to have a deep understanding of the impact of systemic radiation delivery by radiopharmaceuticals on the DNA of tumors and healthy tissues. The distribution and activation of DNA damage and repair pathways caused by RPT can be different based on the characteristics of the radioisotope and molecular target. Here we provide a comprehensive discussion of the biological effects of RPTs, with the main focus on the role of varying radioisotopes in inducing direct and indirect DNA damage and activating DNA repair pathways.
Collapse
Affiliation(s)
- Yousef Khazaei Monfared
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| | - Pedram Heidari
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| | - Samuel J. Klempner
- Division of Hematology-Oncology, Department of Medicine, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.J.K.); (A.R.P.); (M.R.S.)
| | - Umar Mahmood
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| | - Aparna R. Parikh
- Division of Hematology-Oncology, Department of Medicine, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.J.K.); (A.R.P.); (M.R.S.)
| | - Theodore S. Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Matthew R. Strickland
- Division of Hematology-Oncology, Department of Medicine, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.J.K.); (A.R.P.); (M.R.S.)
| | - Shadi A. Esfahani
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| |
Collapse
|
3
|
Sproull M, Wilson E, Miller R, Camphausen K. The Future of Radioactive Medicine. Radiat Res 2023; 200:80-91. [PMID: 37141143 PMCID: PMC10466314 DOI: 10.1667/rade-23-00031.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/07/2023] [Indexed: 05/05/2023]
Abstract
The discovery of X rays in the late 19th century heralded the beginning of a new age in medicine, and the advent of channeling the power of radiation to diagnose and treat human disease. Radiation has been leveraged in medicine in a multitude of ways and is a critical element of cancer care including screening, diagnosis, surveillance, and interventional treatments. Modern radiotherapy techniques include a multitude of methodologies utilizing both externally and internally delivered radiation from a variety of approaches. This review provides a comprehensive overview of contemporary radiotherapy methodologies, the field of radiopharmaceuticals and theranostics, effects of low dose radiation and highlights the phenomena of fear of exposure to radiation and its impact in modern medicine.
Collapse
Affiliation(s)
- M. Sproull
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - E. Wilson
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - R.W. Miller
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - K. Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
4
|
Yao Mattisson I, Bäckström S, Ekengard E, Lekmeechai S, Liu YC, Paris J, Petoral R, Sydoff M, Hansen M, Axelsson O. Characterization and Efficacy of a Nanomedical Radiopharmaceutical for Cancer Treatment. ACS OMEGA 2023; 8:2357-2366. [PMID: 36687034 PMCID: PMC9850477 DOI: 10.1021/acsomega.2c06755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Although much progress has been made over the last decades, there is still a significant clinical need for novel therapies to manage cancer. Typical problems are that solid tumors are frequently inaccessible, aggressive, and metastatic. To contribute to solving some of these issues, we have developed a novel radioisotope-labeled 27 nm nanoparticle, 177Lu-SN201, to selectively target solid tumors via the enhanced permeability and retention effect, allowing irradiation intratumorally. We show that 177Lu-SN201 has robust stealth properties in vitro and anti-tumor efficacy in mouse mammary gland and colon carcinoma models. The possible clinical application is also addressed with single photon emission computed tomography imaging, which confirms uptake in the tumor, with an average activity of 19.4% injected dose per gram (ID/g). The properties of 177Lu-SN201 make it a promising new agent for radionuclide therapy with the potential to target several solid tumor types.
Collapse
Affiliation(s)
| | | | - Erik Ekengard
- Spago
Nanomedical, Scheelevägen
22, 223 63 Lund, Sweden
| | | | - Yi-Chi Liu
- Spago
Nanomedical, Scheelevägen
22, 223 63 Lund, Sweden
| | - Juraj Paris
- Spago
Nanomedical, Scheelevägen
22, 223 63 Lund, Sweden
| | | | - Marie Sydoff
- Lund
University Bioimaging Centre, Klinikgatan 32, 221
84 Lund, Sweden
| | - Mats Hansen
- Spago
Nanomedical, Scheelevägen
22, 223 63 Lund, Sweden
| | | |
Collapse
|
5
|
Salih S, Alkatheeri A, Alomaim W, Elliyanti A. Radiopharmaceutical Treatments for Cancer Therapy, Radionuclides Characteristics, Applications, and Challenges. Molecules 2022; 27:molecules27165231. [PMID: 36014472 PMCID: PMC9415873 DOI: 10.3390/molecules27165231] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Advances in the field of molecular biology have had an impact on biomedical applications, which provide greater hope for both imaging and therapeutics. Work has been intensified on the development of radionuclides and their application in radiopharmaceuticals (RPS) which will certainly influence and expand therapeutic approaches in the future treatment of patients. Alpha or beta particles and Auger electrons are used for therapy purposes, and each has advantages and disadvantages. The radionuclides labeled drug delivery system will deliver the particles to the specific targeting cell. Different radioligands can be chosen to uniquely target molecular receptors or intracellular components, making them suitable for personal patient-tailored therapy in modern cancer therapy management. Advances in nanotechnology have enabled nanoparticle drug delivery systems that can allow for specific multivalent attachment of targeted molecules of antibodies, peptides, or ligands to the surface of nanoparticles for therapy and imaging purposes. This review presents fundamental radionuclide properties with particular reference to tumor biology and receptor characteristic of radiopharmaceutical targeted therapy development.
Collapse
Affiliation(s)
- Suliman Salih
- Radiology and Medical Imaging Department, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates
- National Cancer Institute, University of Gezira, Wad Madani 2667, Sudan
| | - Ajnas Alkatheeri
- Radiology and Medical Imaging Department, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates
| | - Wijdan Alomaim
- Radiology and Medical Imaging Department, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates
| | - Aisyah Elliyanti
- Nuclear Medicine Division of Radiology Department, Faculty of Medicine, Universitas Andalas, Padang 25163, Indonesia
- Correspondence:
| |
Collapse
|
6
|
Kiess AP, Hobbs RF, Bednarz B, Knox SJ, Meredith R, Escorcia FE. ASTRO's Framework for Radiopharmaceutical Therapy Curriculum Development for Trainees. Int J Radiat Oncol Biol Phys 2022; 113:719-726. [PMID: 35367328 DOI: 10.1016/j.ijrobp.2022.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 10/18/2022]
Abstract
In 2017, the American Society for Radiation Oncology (ASTRO) board of directors prioritized radiopharmaceutical therapy (RPT) as a leading area for new therapeutic development, and the ASTRO RPT workgroup was created. Herein, the workgroup has developed a framework for RPT curriculum development upon which education leaders can build to integrate this modality into radiation oncology resident education. Through this effort, the workgroup aims to provide a guide to ensure robust training in an emerging therapeutic area within the context of existing radiation oncology training in radiation biology, medical physics, and clinical radiation oncology. The framework first determines the core RPT knowledge required to select patients, prescribe, safely administer, and manage related adverse events. Then, it defines the most important topics for preparing residents for clinical RPT planning and delivery. This framework is designed as a tool to supplement the current training that exists for radiation oncology residents. The final document was approved by the ASTRO board of directors in the fall of 2021.
Collapse
Affiliation(s)
- Ana P Kiess
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland.
| | - Robert F Hobbs
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Bryan Bednarz
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Susan J Knox
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, California
| | - Ruby Meredith
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Freddy E Escorcia
- Molecular Imaging Branch, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
7
|
Kumar C, Sharma R, Repaka KM, Pareri AU, Dash A. Camptothecin enhances 131I-rituximab-induced G1-arrest and apoptosis in Burkitt lymphoma cells. J Cancer Res Ther 2021; 17:943-950. [PMID: 34528546 DOI: 10.4103/jcrt.jcrt_1012_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Rituximab is a chimeric monoclonal antibody against CD20. It is an established immunotherapeutic agent for non-Hodgkin's lymphoma. Even though rituximab has been used in clinics for decades, only 50% of the patients respond to rituximab therapy. To enhance the in vitro effect of rituximab, it was labeled with Iodine-131 (131I) and combined effect of 131I-rituximab and camptothecin (CPT) was studied on a tumor cell line expressing CD20. Objective The aim is to study the magnitude of cell killing and the underlying mechanism responsible for enhancing in vitro therapeutic efficacy. Materials and Methods Rituximab was labeled with 131I by the iodogen method. Raji cells were pretreated with CPT (250 nM) for an hour followed by 131I-rituximab (0.37 and 3.7 MBq) and incubated for 24 h in a humidified atmosphere of CO2 incubator at 37°C. Subsequently, Raji cells were harvested and thoroughly washed to carry out studies of cellular toxicity, apoptosis, cell cycle, and mitogen-activated protein kinase (MAPK) pathways. Results Maximal inhibition of cell proliferation and enhancement of apoptotic cell death was observed in the cells treated with the combination of CPT and 131I-rituximab, compared to controls of CPT-treated and 131I-rituximab-treated cells. Raji cells undergo G1 arrest after 131I-rituximab treatment, which leads to apoptosis and was confirmed by the downregulation of bclxl protein. Expression of p38 was decreased while an increase in phosphorylation of p38 was observed in the combination treatment of CPT and 131I-rituximab. Conclusions It was concluded from the findings that CPT enhanced 131I-rituximab-induced apoptosis, G1 cell cycle arrest and p38 MAPK phosphorylation in Raji cells.
Collapse
Affiliation(s)
- Chandan Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Rohit Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Krishna Mohan Repaka
- Radiopharmaceutical Quality Control Program, Board of Radiation and Isotope Technology, Navi Mumbai, Maharashtra, India
| | | | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
8
|
Pareri AU, Koijam AS, Kumar C. Breaking the Silence of Tumor Response: Future Prospects of Targeted Radionuclide Therapy. Anticancer Agents Med Chem 2021; 22:1845-1858. [PMID: 34477531 DOI: 10.2174/1871520621666210903152354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023]
Abstract
Therapy-induced tumor resistance has always been a paramount hurdle in the clinical triumph of cancer therapy. Resistance acquired by tumor through interventions of chemotherapeutic drugs, ionizing radiation, and immunotherapy in the patientsis a severe drawback and major cause of recurrence of tumor and failure of therapeutic responses. To counter acquired resistance in tumor cells, several strategies are practiced such as chemotherapy regimens, immunotherapy, and immunoconjugates, but the outcome is very disappointing for the patients as well as clinicians. Radionuclide therapy using alpha or beta-emitting radionuclide as payload became state-of-the-art for cancer therapy. With the improvement in dosimetric studies, development of high-affinity target molecules, and design of several novel chelating agents which provide thermodynamically stable complexes in vivo, the scope of radionuclide therapy has increased by leaps and bounds. Additionally, radionuclide therapy along with the combination of chemotherapy is gaining importance in pre-clinics, which is quite encouraging. Thus, it opens an avenue for newer cancer therapy modalities where chemotherapy, radiation therapy, and immunotherapy are unable to break the silence of tumor response. This article describes, in brief, the causes of tumor resistance and discusses the potential of radionuclide therapy to enhance tumor response.
Collapse
Affiliation(s)
| | | | - Chandan Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Mumbai-400085, India
| |
Collapse
|
9
|
Nunes RF, Zuppani RMF, Coutinho AM, Barbosa FG, Sapienza MT, Marin JFG, Buchpiguel CA. General Concepts in Theranostics. PET Clin 2021; 16:313-326. [PMID: 34053576 DOI: 10.1016/j.cpet.2021.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Theranostics describes the pairing of diagnostic biomarkers and therapeutic agents with common specific targets. Nuclear medicine is the greatest theranostics protagonist, relying on radioactive tracers for imaging biologic phenomena and delivering ionizing radiation to the tissues that take up those tracers. The concept has gained importance with the growth of personalized medicine, allowing customized management for diseases, refining patient selection, better predicting responses, reducing toxicity, and estimating prognosis. This work provides an overview of the general concepts of the theranostics approach in nuclear medicine discussing its background, features, and future directions in imaging and therapy.
Collapse
Affiliation(s)
- Rafael F Nunes
- Department of Radiology, Hospital Sirio-Libanes, Sao Paulo, Brazil.
| | - Roberta M F Zuppani
- Department of Radiology and Oncology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Artur M Coutinho
- Department of Radiology, Hospital Sirio-Libanes, Sao Paulo, Brazil; Department of Radiology and Oncology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Felipe G Barbosa
- Department of Radiology, Hospital Sirio-Libanes, Sao Paulo, Brazil
| | - Marcelo T Sapienza
- Department of Radiology and Oncology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Jose Flavio G Marin
- Department of Radiology, Hospital Sirio-Libanes, Sao Paulo, Brazil; Department of Radiology and Oncology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Carlos A Buchpiguel
- Department of Radiology, Hospital Sirio-Libanes, Sao Paulo, Brazil; Department of Radiology and Oncology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
10
|
Swati, Chadha VD. Role of epigenetic mechanisms in propagating off-targeted effects following radiation based therapies - A review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108370. [PMID: 34083045 DOI: 10.1016/j.mrrev.2021.108370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022]
Abstract
Despite being an important diagnostic and treatment modality, ionizing radiation (IR) is also known to cause genotoxicity and multiple side effects leading to secondary carcinogenesis. While modern cancer radiation therapy has improved patient recovery and enhanced survival rates, the risk of radiation-related adverse effects has become a growing challenge. It is now well-accepted that IR-induced side effects are not exclusively restricted to exposed cells but also spread to distant 'bystander' cells and even to the unexposed progeny of the irradiated cells. These 'off-targeted' effects involve a plethora of molecular events depending on the type of radiation and tumor tissue background. While the mechanisms by which off-targeted effects arise remain obscure, emerging evidence based on the non-mendelian inheritance of various manifestations of them as well as their persistence for longer periods supports a contribution of epigenetic factors. This review focuses on the major epigenetic phenomena including DNA methylation, histone modifications, and small RNA mediated silencing and their versatile role in the manifestation of IR induced off-targeted effects. As short- and long-range communication vehicles respectively, the role of gap junctions and exosomes in spreading these epigenetic-alteration driven off-targeted effects is also discussed. Furthermore, this review emphasizes the possible therapeutic potentials of these epigenetic mechanisms and how beneficial outcomes could potentially be achieved by targeting various signaling molecules involved in these mechanisms.
Collapse
Affiliation(s)
- Swati
- Centre for Nuclear Medicine (U.I.E.A.S.T), South Campus, Panjab University, Sector 25, Chandigarh, 160014, India.
| | - Vijayta D Chadha
- Centre for Nuclear Medicine (U.I.E.A.S.T), South Campus, Panjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
11
|
Bao G, Tang M, Zhao J, Zhu X. Nanobody: a promising toolkit for molecular imaging and disease therapy. EJNMMI Res 2021; 11:6. [PMID: 33464410 PMCID: PMC7815856 DOI: 10.1186/s13550-021-00750-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Nanobodies are the recombinant variable domains of heavy-chain-only antibodies, with many unique properties such as small size, excellent solubility, superior stability, quick clearance from blood, and deep tissue penetration. As a result, nanobodies have become a promising tool for the diagnosis and therapy of diseases. As imaging tracers, nanobodies allow an early acquisition of high-quality images, provide a comprehensive evaluation of the disease, and subsequently enable a personalized precision therapy. As therapeutic agents, nanobodies enable a targeted therapy by lesion-specific delivery of drugs and effector domains, thereby improving the specificity and efficacy of the therapy. Up to date, a wide variety of nanobodies have been developed for a broad range of molecular targets and have played a significant role in patients with a broad spectrum of diseases. In this review, we aim to outline the current state-of-the-art research on the nanobodies for medical applications and then discuss the challenges and strategies for their further clinical translation.
Collapse
Affiliation(s)
- Guangfa Bao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Ming Tang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jun Zhao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
12
|
Rajan V, Pandey BN. Cytoproliferative effect of low dose alpha radiation in human lung cancer cells is associated with connexin 43, caveolin-1, and survivin pathway. Int J Radiat Biol 2021; 97:356-366. [PMID: 33416428 DOI: 10.1080/09553002.2021.1864044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE High LET including alpha radiation-based approaches have been proved as a promising mode for cancer therapy owing to their biophysical and radiobiological advantages compared to photon beams. Studies pertaining to effect of α-radiation on cancer cells are limited to cytotoxic high doses. MATERIALS AND METHODS In this study, human lung adenocarcinoma (A549) cells were α-irradiated using 241Am α-irradiator and effects of low dose of alpha radiation on these cells was studied under in vitro and in vivo conditions. RESULTS Clonogenic and other assays showed increased cellular proliferation at lower doses (1.36 and 6.8 cGy) but killing at higher doses (13.6-54.4 cGy). Further studies at low dose of alpha (1.36 cGy) showed increased TGF-β1 in the conditioned medium (CM) at early time point (24 h) but CM replacement did not affect the clonogenic survival. In these cells, increased phosphorylation of connexin 43 was correlated with decrease in gap-junction communication observed by dye transfer co-culture experiment. A decrease in caveolin-1 but increase in survivin expression was observed in low dose α-irradiated cells. An increase in cyclinD1 and decrease in Bcl-2, the target proteins of survivin, was observed in these cells. Low dose α-irradiated cancer cells transplanted in SCID mice showed significantly higher tumor volume, which was accompanied with an increased fraction of mitotic and PCNA/Ki67 positive cells in these tumor tissues. CONCLUSIONS Taken together, our results suggest an increase in proliferation and tumor volume at in vitro and in vivo levels, respectively, when A549 cells were irradiated with low dose of α-radiation. These findings may be relevant for a better understanding of radiobiological processes during high LET-based cancer radiotherapy.
Collapse
Affiliation(s)
- Vasumathy Rajan
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Badri Narain Pandey
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
13
|
Abstract
Radiopharmaceutical therapy or targeted radionuclide therapy (TRT) is a well-established class of cancer therapeutics that includes a growing number of FDA-approved drugs and a promising pipeline of experimental therapeutics. Radiobiology is fundamental to a mechanistic understanding of the therapeutic capacity of these agents and their potential toxicities. However, the field of radiobiology has historically focused on external beam radiation. Critical differences exist between TRT and external beam radiotherapy with respect to dosimetry, dose rate, linear energy transfer, duration of treatment delivery, fractionation, range, and target volume. These distinctions simultaneously make it difficult to extrapolate from the radiobiology of external beam radiation to that of TRT and pose considerable challenges for preclinical and clinical studies investigating TRT. Here, we discuss these challenges and explore the current understanding of the radiobiology of radiopharmaceuticals.
Collapse
Affiliation(s)
- Zachary S Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Andrew Z Wang
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC
| | - Susan J Knox
- Department of Radiation Oncology, Stanford University, Palo Alto, CA.
| |
Collapse
|
14
|
Asadian S, Mirzaei H, Kalantari BA, Davarpanah MR, Mohamadi M, Shpichka A, Nasehi L, Es HA, Timashev P, Najimi M, Gheibi N, Hassan M, Vosough M. β-radiating radionuclides in cancer treatment, novel insight into promising approach. Pharmacol Res 2020; 160:105070. [PMID: 32659429 DOI: 10.1016/j.phrs.2020.105070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
Abstract
Targeted radionuclide therapy, known as molecular radiotherapy is a novel therapeutic module in cancer medicine. β-radiating radionuclides have definite impact on target cells via interference in cell cycle and particular signalings that can lead to tumor regression with minimal off-target effects on the surrounding tissues. Radionuclides play a remarkable role not only in apoptosis induction and cell cycle arrest, but also in the amelioration of other characteristics of cancer cells. Recently, application of novel β-radiating radionuclides in cancer therapy has been emerged as a promising therapeutic modality. Several investigations are ongoing to understand the underlying molecular mechanisms of β-radiating elements in cancer medicine. Based on the radiation dose, exposure time and type of the β-radiating element, different results could be achieved in cancer cells. It has been shown that β-radiating radioisotopes block cancer cell proliferation by inducing apoptosis and cell cycle arrest. However, physical characteristics of the β-radiating element (half-life, tissue penetration range, and maximum energy) and treatment protocol determine whether tumor cells undergo cell cycle arrest, apoptosis or both and to which extent. In this review, we highlighted novel therapeutic effects of β-radiating radionuclides on cancer cells, particularly apoptosis induction and cell cycle arrest.
Collapse
Affiliation(s)
- Samieh Asadian
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | - Morteza Mohamadi
- Department of Physical Chemistry, Faculty of Science, University of Tehran, Tehran, Iran
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Leila Nasehi
- Department of Medical Laboratory Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, Russia; Department of Polymers and Composites, NN Semenov Institute of Chemical Physics, Moscow, Russia.
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
15
|
Goulet DR, Atkins WM. Considerations for the Design of Antibody-Based Therapeutics. J Pharm Sci 2020; 109:74-103. [PMID: 31173761 PMCID: PMC6891151 DOI: 10.1016/j.xphs.2019.05.031] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Antibody-based proteins have become an important class of biologic therapeutics, due in large part to the stability, specificity, and adaptability of the antibody framework. Indeed, antibodies not only have the inherent ability to bind both antigens and endogenous immune receptors but also have proven extremely amenable to protein engineering. Thus, several derivatives of the monoclonal antibody format, including bispecific antibodies, antibody-drug conjugates, and antibody fragments, have demonstrated efficacy for treating human disease, particularly in the fields of immunology and oncology. Reviewed here are considerations for the design of antibody-based therapeutics, including immunological context, therapeutic mechanisms, and engineering strategies. First, characteristics of antibodies are introduced, with emphasis on structural domains, functionally important receptors, isotypic and allotypic differences, and modifications such as glycosylation. Then, aspects of therapeutic antibody design are discussed, including identification of antigen-specific variable regions, choice of expression system, use of multispecific formats, and design of antibody derivatives based on fragmentation, oligomerization, or conjugation to other functional moieties. Finally, strategies to enhance antibody function through protein engineering are reviewed while highlighting the impact of fundamental biophysical properties on protein developability.
Collapse
Affiliation(s)
- Dennis R Goulet
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195.
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
16
|
Sapienza MT, Willegaignon J. Radionuclide therapy: current status and prospects for internal dosimetry in individualized therapeutic planning. Clinics (Sao Paulo) 2019; 74:e835. [PMID: 31365617 PMCID: PMC6644503 DOI: 10.6061/clinics/2019/e835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/04/2019] [Indexed: 11/29/2022] Open
Abstract
The efficacy and toxicity of radionuclide therapy are believed to be directly related to the radiation doses received by target tissues; however, nuclear medicine therapy continues to be based primarily on the administration of empirical activities to patients and less frequently on the use of internal dosimetry for individual therapeutic planning. This review aimed to critically describe the techniques and clinical evidence of dosimetry as a tool for therapeutic planning and the main limitations to its implementation in clinical practice. The present article is a nonsystematic review of voxel-based dosimetry. Clinical evidence pointing to a correlation between the radiation dose and therapeutic response in various diseases, such as thyroid carcinoma, neuroendocrine tumors and prostate cancer, is reviewed. Its limitations include technical aspects related to image acquisition and processing and the lack of randomized clinical trials demonstrating the impact of dosimetry on patient therapy. A more widespread use of dosimetry in therapeutic planning involves the development of user-friendly dosimetric protocols and confirmation that dose estimation implies good efficacy and low treatment-related toxicity.
Collapse
Affiliation(s)
- Marcelo Tatit Sapienza
- Radiologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, BR
- *Corresponding Author. E-mail:
| | - José Willegaignon
- Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding Author. E-mail:
| |
Collapse
|
17
|
Gholami YH, Willowson KP, Forwood NJ, Harvie R, Hardcastle N, Bromley R, Ryu H, Yuen S, Howell VM, Kuncic Z, Bailey DL. Comparison of radiobiological parameters for 90Y radionuclide therapy (RNT) and external beam radiotherapy (EBRT) in vitro. EJNMMI Phys 2018; 5:18. [PMID: 30175390 PMCID: PMC6119681 DOI: 10.1186/s40658-018-0217-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/07/2018] [Indexed: 12/02/2022] Open
Abstract
Background Dose rate variation is a critical factor affecting radionuclide therapy (RNT) efficacy. Relatively few studies to date have investigated the dose rate effect in RNT. Therefore, the aim of this study was to benchmark 90Y RNT (at different dose rates) against external beam radiotherapy (EBRT) in vitro and compare cell kill responses between the two irradiation processes. Results Three human colorectal carcinoma (CRC) cell lines (HT29, HCT116, SW48) were exposed to 90Y doses in the ranges 1–10.4 and 6.2–62.3 Gy with initial dose rates of 0.013–0.13 Gy/hr (low dose rate, LDR) and 0.077–0.77 Gy/hr (high dose rate, HDR), respectively. Results were compared to a 6-MV photon beam doses in the range from 1–9 Gy with constant dose rate of 277 Gy/hr. The cell survival parameters from the linear quadratic (LQ) model were determined. Additionally, Monte Carlo simulations were performed to calculate the average dose, dose rate and the number of hits in the cell nucleus. For the HT29 cell line, which was the most radioresistant, the α/β ratio was found to be ≈ 31 for HDR–90Y and ≈ 3.5 for EBRT. LDR–90Y resulting in insignificant cell death compared to HDR–90Y and EBRT. Simulation results also showed for LDR–90Y, for doses ≲ 3 Gy, the average number of hits per cell nucleus is ≲ 2 indicating insufficiently delivered lethal dose. For 90Y doses \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\gtrsim $\end{document}≳ 3 Gy the number of hits per nucleus decreases rapidly and falls below ≈ 2 after ≈ 5 days of incubation time. Therefore, our results demonstrate that LDR–90Y is radiobiologically less effective than EBRT. However, HDR–90Y at ≈ 56 Gy was found to be radiobiologically as effective as acute ≈ 8 Gy EBRT. Conclusion These results demonstrate that the efficacy of RNT is dependent on the initial dose rate at which radiation is delivered. Therefore, for a relatively long half-life radionuclide such as 90Y, a higher initial activity is required to achieve an outcome as effective as EBRT.
Collapse
Affiliation(s)
- Yaser H Gholami
- University of Sydney, School of Physics, Sydney, Australia.,University of Sydney, Discipline of Medical Radiation Science, Sydney, Australia
| | | | - Nicholas J Forwood
- Royal North Shore Hospital (RNSH), Department of Nuclear Medicine, Sydney, Australia
| | - Rozelle Harvie
- Bill Walsh Translational Cancer Research Laboratory, The Kolling Institute, Northern Sydney Local Health District, Sydney, Australia
| | - Nicholas Hardcastle
- Royal North Shore Hospital (RNSH), Department of Radiation Oncology, Sydney, Australia
| | - Regina Bromley
- Royal North Shore Hospital (RNSH), Department of Radiation Oncology, Sydney, Australia
| | - HyunJu Ryu
- Royal North Shore Hospital (RNSH), Department of Nuclear Medicine, Sydney, Australia
| | - Samuel Yuen
- Bill Walsh Translational Cancer Research Laboratory, The Kolling Institute, Northern Sydney Local Health District, Sydney, Australia
| | - Viive M Howell
- Bill Walsh Translational Cancer Research Laboratory, The Kolling Institute, Northern Sydney Local Health District, Sydney, Australia.,The University of Sydney Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Zdenka Kuncic
- University of Sydney, School of Physics, Sydney, Australia
| | - Dale L Bailey
- University of Sydney, School of Physics, Sydney, Australia. .,University of Sydney, Discipline of Medical Radiation Science, Sydney, Australia. .,Royal North Shore Hospital (RNSH), Department of Nuclear Medicine, Sydney, Australia.
| |
Collapse
|
18
|
Kumar C, Sharma R, Das T, Korde A, Sarma H, Banerjee S, Dash A. 177Lu-DOTMP induces G2/M cell cycle arrest and apoptosis in MG63 cell line. J Labelled Comp Radiopharm 2018; 61:837-846. [DOI: 10.1002/jlcr.3651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/16/2018] [Accepted: 05/29/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Chandan Kumar
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre; Mumbai India
| | - Rohit Sharma
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre; Mumbai India
| | - Tapas Das
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre; Mumbai India
| | - Aruna Korde
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre; Mumbai India
| | - Haladhar Sarma
- Radiation Biology & Health Sciences Division; Bhabha Atomic Research Centre; Mumbai India
| | - Sharmila Banerjee
- Radiation Medicine Centre; Bhabha Atomic Research Centre; Mumbai India
| | - Ashutosh Dash
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre; Mumbai India
| |
Collapse
|
19
|
Spetz J, Rudqvist N, Langen B, Parris TZ, Dalmo J, Schüler E, Wängberg B, Nilsson O, Helou K, Forssell-Aronsson E. Time-dependent transcriptional response of GOT1 human small intestine neuroendocrine tumor after 177Lu[Lu]-octreotate therapy. Nucl Med Biol 2018; 60:11-18. [PMID: 29502008 DOI: 10.1016/j.nucmedbio.2018.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Patients with neuroendocrine tumors expressing somatostatin receptors are often treated with 177Lu[Lu]-octreotate. Despite being highly effective in animal models, 177Lu[Lu]-octreotate-based therapies in the clinical setting can be optimized further. The aims of the study were to identify and elucidate possible optimization venues for 177Lu[Lu]-octreotate tumor therapy by characterizing transcriptional responses in the GOT1 small intestine neuroendocrine tumor model in nude mice. METHODS GOT1-bearing female BALB/c nude mice were intravenously injected with 15 MBq 177Lu[Lu]-octreotate (non-curative amount) or mock-treated with saline solution. Animals were killed 1, 3, 7 or 41 d after injection. Total RNA was extracted from the tumor samples and profiled using Illumina microarray expression analysis. Differentially expressed genes were identified (treated vs. control) and pathway analysis was performed. RESULTS Distribution of differentially expressed transcripts indicated a time-dependent treatment response in GOT1 tumors after 177Lu[Lu]-octreotate administration. Regulation of CDKN1A, BCAT1 and PAM at 1 d after injection was compatible with growth arrest as the initial response to treatment. Upregulation of APOE and BAX at 3 d, and ADORA2A, BNIP3, BNIP3L and HSPB1 at 41 d after injection suggests first activation and then inhibition of the intrinsic apoptotic pathway during tumor regression and regrowth, respectively. CONCLUSION Transcriptional analysis showed radiation-induced apoptosis as an early response after 177Lu[Lu]-octreotate administration, followed by pro-survival transcriptional changes in the tumor during the regrowth phase. Time-dependent changes in cell cycle and apoptosis-related processes suggest different time points after radionuclide therapy when tumor cells may be more susceptible to additional treatment, highlighting the importance of timing when administering multiple therapeutic agents.
Collapse
Affiliation(s)
- Johan Spetz
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Nils Rudqvist
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Johanna Dalmo
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Emil Schüler
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Bo Wängberg
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Ola Nilsson
- Department of Pathology, Institute of Biomedicine, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
20
|
Abstract
A number of newly emerging clinical techniques involve non-conventional patterns of radiation delivery which require an appreciation of the role played by radiation repair phenomena. This review outlines the main models of radiation repair, focussing on those which are of greatest clinical usefulness and which may be incorporated into biologically effective dose assessments. The need to account for the apparent "slowing-down" of repair rates observed in some normal tissues is also examined, along with a comparison of the relative merits of the formulations which can be used to account for such phenomena. Jack Fowler brought valuable insight to the understanding of radiation repair processes and this article includes reference to his important contributions in this area.
Collapse
Affiliation(s)
- Roger G Dale
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK
| |
Collapse
|
21
|
Cirrone GAP, Manti L, Margarone D, Petringa G, Giuffrida L, Minopoli A, Picciotto A, Russo G, Cammarata F, Pisciotta P, Perozziello FM, Romano F, Marchese V, Milluzzo G, Scuderi V, Cuttone G, Korn G. First experimental proof of Proton Boron Capture Therapy (PBCT) to enhance protontherapy effectiveness. Sci Rep 2018; 8:1141. [PMID: 29348437 PMCID: PMC5773549 DOI: 10.1038/s41598-018-19258-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 12/27/2017] [Indexed: 01/16/2023] Open
Abstract
Protontherapy is hadrontherapy's fastest-growing modality and a pillar in the battle against cancer. Hadrontherapy's superiority lies in its inverted depth-dose profile, hence tumour-confined irradiation. Protons, however, lack distinct radiobiological advantages over photons or electrons. Higher LET (Linear Energy Transfer) 12C-ions can overcome cancer radioresistance: DNA lesion complexity increases with LET, resulting in efficient cell killing, i.e. higher Relative Biological Effectiveness (RBE). However, economic and radiobiological issues hamper 12C-ion clinical amenability. Thus, enhancing proton RBE is desirable. To this end, we exploited the p + 11B → 3α reaction to generate high-LET alpha particles with a clinical proton beam. To maximize the reaction rate, we used sodium borocaptate (BSH) with natural boron content. Boron-Neutron Capture Therapy (BNCT) uses 10B-enriched BSH for neutron irradiation-triggered alpha particles. We recorded significantly increased cellular lethality and chromosome aberration complexity. A strategy combining protontherapy's ballistic precision with the higher RBE promised by BNCT and 12C-ion therapy is thus demonstrated.
Collapse
Affiliation(s)
- G A P Cirrone
- Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali dei Sud, via S. Sofia, 62, Catania, Italy.
| | - L Manti
- Physics Department, University of Naples Federico II, Naples, Italy
- INFN Naples Section, Complesso Universitario di Monte S. Angelo, Via Cintia, Naples, Italy
| | - D Margarone
- Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, Prague, 18221, Czech Republic
| | - G Petringa
- Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali dei Sud, via S. Sofia, 62, Catania, Italy
- Physics Department, University of Catania, via S. Sofia, 64, Catania, Italy
| | - L Giuffrida
- Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, Prague, 18221, Czech Republic
| | - A Minopoli
- Physics Department, University of Naples Federico II, Naples, Italy
| | - A Picciotto
- Fondazione Bruno Kessler, Micro-Nano Facility, Via Sommarive 18, 38123, Povo-Trento, Italy
| | - G Russo
- Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali dei Sud, via S. Sofia, 62, Catania, Italy
- Institute of Molecular Bioimaging and Physiology - National Research Council - (IBFM-CNR), Cefalù, (PA), Italy
| | - F Cammarata
- Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali dei Sud, via S. Sofia, 62, Catania, Italy
- Institute of Molecular Bioimaging and Physiology - National Research Council - (IBFM-CNR), Cefalù, (PA), Italy
| | - P Pisciotta
- Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali dei Sud, via S. Sofia, 62, Catania, Italy
- Physics Department, University of Catania, via S. Sofia, 64, Catania, Italy
| | - F M Perozziello
- Physics Department, University of Naples Federico II, Naples, Italy
- INFN Naples Section, Complesso Universitario di Monte S. Angelo, Via Cintia, Naples, Italy
| | - F Romano
- Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali dei Sud, via S. Sofia, 62, Catania, Italy
- National Physical Laboratory, Acoustic and Ionizing Radiation Division, Teddington, TW11 0LW, Middlesex, United Kingdom
| | - V Marchese
- Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali dei Sud, via S. Sofia, 62, Catania, Italy
| | - G Milluzzo
- Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali dei Sud, via S. Sofia, 62, Catania, Italy
- Physics Department, University of Catania, via S. Sofia, 64, Catania, Italy
| | - V Scuderi
- Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali dei Sud, via S. Sofia, 62, Catania, Italy
- Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, Prague, 18221, Czech Republic
| | - G Cuttone
- Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali dei Sud, via S. Sofia, 62, Catania, Italy
| | - G Korn
- Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, Prague, 18221, Czech Republic
| |
Collapse
|
22
|
Rathke H, Giesel FL, Flechsig P, Kopka K, Mier W, Hohenfellner M, Haberkorn U, Kratochwil C. Repeated 177Lu-Labeled PSMA-617 Radioligand Therapy Using Treatment Activities of Up to 9.3 GBq. J Nucl Med 2017; 59:459-465. [PMID: 28798031 DOI: 10.2967/jnumed.117.194209] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/12/2017] [Indexed: 01/09/2023] Open
Abstract
Current treatment protocols for 177Lu-labeled PSMA-617 therapies were cautiously derived from dosimetry data, but their practical appropriateness has not yet been proven clinically. We retrospectively report our clinical observations using 4 different treatment activities. Methods: Forty patients with advanced prostate cancer and positive uptake in prostate-specific membrane antigen (PSMA) imaging were treated with 4 GBq of 177Lu activity/80 nmol of precursor, 6 GBq of 177Lu activity/120 nmol of precursor, 7.4 GBq of 177Lu activity/150 nmol of precursor, or 9.3 GBq of 177Lu activity/150 nmol of precursor (10 patients per group) every 2 mo. Safety was checked every 2 wk by laboratory tests, the prostate-specific antigen response was checked every 4 wk, and other effects were assessed by anamnesis. Results: The initial prostate-specific antigen response showed no correlation with treatment activity. However, 2 of 10, 4 of 10, 4 of 10, and 7 of 10 patients receiving doses of 4, 6, 7.4, and 9.3 GBq, respectively, were in partial remission 8 wk after completing all 3 cycles. This finding would be in line with but-because of low patient numbers-would not prove a positive dose-response relationship. Acute hematologic toxicity was also not correlated with treatment activity, and no more than 1 patient per group had grade 3/4 toxicity. Nevertheless, in contrast to the findings for the other groups, the mean platelet count in the 9.3-GBq group decreased chronically over time. Conclusion: If patients with diffuse red marrow infiltration and extensive chemotherapeutic pretreatments are excluded, then treatment activities of up to 3 injections of 9.3 GBq of 177Lu-PSMA-617 every 2 mo are tolerated well. Further dose escalation should be conducted with care, as the highest dose seems to be close to the maximum tolerable dose.
Collapse
Affiliation(s)
- Hendrik Rathke
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Frederik L Giesel
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Paul Flechsig
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Klaus Kopka
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Walter Mier
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg, Heidelberg, Germany; and
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
23
|
Montel AM, Dos Santos RG, da Costa PR, Silveira-Lacerda EDP, Batista AA, Dos Santos WG. Neutron activation increases activity of ruthenium-based complexes and induces cell death in glioma cells independent of p53 tumor suppressor gene. Biometals 2017; 30:295-305. [PMID: 28258507 PMCID: PMC5352776 DOI: 10.1007/s10534-017-0006-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/21/2017] [Indexed: 12/15/2022]
Abstract
Novel metal complexes have received great attention in the last decades due to their potential anticancer activity. Notably, ruthenium-based complexes have emerged as good alternative to the currently used platinum-based drugs for cancer therapy, providing less toxicity and side effects to patients. Glioblastoma is an aggressive and invasive type of brain tumor and despite of advances is the field of neurooncology there is no effective treatment until now. Therefore, we sought to investigate the potential antiproliferative activity of phosphine-ruthenium-based complexes on human glioblastoma cell lines. Due to its octahedral structure as opposed to the square-planar geometry of platinum(II) compounds, ruthenium(II) complexes exhibit different structure-function relationship probably acting through a different mechanism from that of cisplatin beyond their ability to bind DNA. To better improve the pharmacological activity of metal complexes we hypothesized that neutron activation of ruthenium in the complexes would allow to decrease the effective concentration of the compound needed to kill tumor cells. Herein we report on the effect of unmodified and neutron activated phosphine ruthenium II complexes on glioblastoma cell lines carrying wild-type and mutated p53 tumor suppressor gene. Induction of apoptosis/authophagy as well as generation of reactive oxygen species were determined. The phosphine ruthenium II complexes tested were highly active against glioblastoma cell lines inducing cell death both through apoptosis and autophagy in a p53 independent fashion. Neutron activation of ruthenium compounds rendered them more active than their original counterparts suggesting a new strategy to improve the antitumor activity of these compounds.
Collapse
Affiliation(s)
- Aline Monezi Montel
- Laboratório de Genética Humana e Biologia Molecular, Unidade Acadêmica de Ciências da Saúde, Regional Jataí, Universidade Federal de Goiás, cidade Universitária-Campus Jatobá, BR 364, Km 195, n. 3800, Jataí, CEP 75801020, Brazil
| | | | | | | | | | - Wagner Gouvêa Dos Santos
- Laboratório de Genética Humana e Biologia Molecular, Unidade Acadêmica de Ciências da Saúde, Regional Jataí, Universidade Federal de Goiás, cidade Universitária-Campus Jatobá, BR 364, Km 195, n. 3800, Jataí, CEP 75801020, Brazil.
| |
Collapse
|
24
|
Zhao X, Cui JW, Hu JH, Gao SJ, Liu XL. Effects of low-dose radiation on adaptive response in colon cancer stem cells. Clin Transl Oncol 2017; 19:907-914. [DOI: 10.1007/s12094-017-1624-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/28/2017] [Indexed: 11/29/2022]
|
25
|
Hrubý M, Kučka J, Pánek J, Štěpánek P. Seven years of radionuclide laboratory at IMC - important achievements. Physiol Res 2016; 65:S191-S201. [PMID: 27762585 DOI: 10.33549/physiolres.933421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
For many important research topics in polymer science the use of radionuclides brings significant benefits concerning nanotechnology, polymer drug delivery systems, tissue engineering etc. This contribution describes important achievements of the radionuclide laboratory at Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic (IMC) in the area of polymers for biomedical applications. Particular emphasis will be given to water-soluble polymer carriers of radionuclides, thermoresponsive polymer radionuclide carriers, thermoresponsive polymers for local brachytherapy, polymer scaffolds modified with (radiolabeled) peptides and polymer copper chelators for the therapy of Wilson´s disease.
Collapse
Affiliation(s)
- M Hrubý
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | |
Collapse
|
26
|
Desai S, Srambikkal N, Yadav HD, Shetake N, Balla MMS, Kumar A, Ray P, Ghosh A, Pandey BN. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model. PLoS One 2016; 11:e0161662. [PMID: 27561007 PMCID: PMC4999205 DOI: 10.1371/journal.pone.0161662] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/09/2016] [Indexed: 12/21/2022] Open
Abstract
Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about the damaging RIBE in an in vivo tumor model, which may have significant implication in improvement of cancer radiotherapy.
Collapse
Affiliation(s)
- Sejal Desai
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Nishad Srambikkal
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Hansa D. Yadav
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Neena Shetake
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Murali M. S. Balla
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Amit Kumar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Pritha Ray
- Advanced Centre for Training, Research and Education of Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Anu Ghosh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - B. N. Pandey
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- * E-mail: ;
| |
Collapse
|