1
|
Majumder A. Targeting Homocysteine and Hydrogen Sulfide Balance as Future Therapeutics in Cancer Treatment. Antioxidants (Basel) 2023; 12:1520. [PMID: 37627515 PMCID: PMC10451792 DOI: 10.3390/antiox12081520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
A high level of homocysteine (Hcy) is associated with oxidative/ER stress, apoptosis, and impairment of angiogenesis, whereas hydrogen sulfide (H2S) has been found to reverse this condition. Recent studies have shown that cancer cells need to produce a high level of endogenous H2S to maintain cell proliferation, growth, viability, and migration. However, any novel mechanism that targets this balance of Hcy and H2S production has yet to be discovered or exploited. Cells require homocysteine metabolism via the methionine cycle for nucleotide synthesis, methylation, and reductive metabolism, and this pathway supports the high proliferative rate of cancer cells. Although the methionine cycle favors cancer cells for their survival and growth, this metabolism produces a massive amount of toxic Hcy that somehow cancer cells handle very well. Recently, research showed specific pathways important for balancing the antioxidative defense through H2S production in cancer cells. This review discusses the relationship between Hcy metabolism and the antiapoptotic, antioxidative, anti-inflammatory, and angiogenic effects of H2S in different cancer types. It also summarizes the historical understanding of targeting antioxidative defense systems, angiogenesis, and other protective mechanisms of cancer cells and the role of H2S production in the genesis, progression, and metastasis of cancer. This review defines a nexus of diet and precision medicine in targeting the delicate antioxidative system of cancer and explores possible future therapeutics that could exploit the Hcy and H2S balance.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Islam A, Shaukat Z, Hussain R, Gregory SL. One-Carbon and Polyamine Metabolism as Cancer Therapy Targets. Biomolecules 2022; 12:biom12121902. [PMID: 36551330 PMCID: PMC9775183 DOI: 10.3390/biom12121902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer metabolic reprogramming is essential for maintaining cancer cell survival and rapid replication. A common target of this metabolic reprogramming is one-carbon metabolism which is notable for its function in DNA synthesis, protein and DNA methylation, and antioxidant production. Polyamines are a key output of one-carbon metabolism with widespread effects on gene expression and signaling. As a result of these functions, one-carbon and polyamine metabolism have recently drawn a lot of interest for their part in cancer malignancy. Therapeutic inhibitors that target one-carbon and polyamine metabolism have thus been trialed as anticancer medications. The significance and future possibilities of one-carbon and polyamine metabolism as a target in cancer therapy are discussed in this review.
Collapse
Affiliation(s)
- Anowarul Islam
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Zeeshan Shaukat
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Rashid Hussain
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Stephen L. Gregory
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Correspondence: ; Tel.: +61-0466987583
| |
Collapse
|
3
|
Wang Z, Li K, Ouyang L, Iko H, Safi AJ, Gao S. Effects of methylenetetrahydrofolate reductase single-nucleotide polymorphisms on breast, cervical, ovarian, and endometrial cancer susceptibilities. Chronic Dis Transl Med 2021; 7:169-181. [PMID: 34505017 PMCID: PMC8413124 DOI: 10.1016/j.cdtm.2021.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Indexed: 12/24/2022] Open
Abstract
Background Recent studies identifying methylenetetrahydrofolate reductase (MTHFR) polymorphisms associated with breast cancer (BC), ovarian cancer (OC), cervical cancer, and endometrial cancer (EC) have reported conflicting results and been underpowered. To clarify the correlation between MTHFR mutations and these common female malignancies, we conducted a comprehensive meta-analysis incorporating all eligible publications. Methods Relevant reports published before January 20, 2020, were retrieved from PubMed, Embase, the Cochrane Library, and the China National Knowledge Infrastructure databases. The odds ratio and 95% confidence interval summaries for the MTHFR 677C/T and 1298A/C polymorphisms in BC, OC, cervical cancer, and EC were estimated. Results A total of 171 studies comprising 56,675 cancer cases and 67,559 controls were included. The results showed a markedly elevated risk of cancer susceptibility related to MTHFR 677C/T based on all genetic models. Similarly, we identified a significant correlation between 1298A/C mutation and cancer risk based on overall comparisons among all models, except the heterozygous model. Moreover, subgroup analysis by cancer type revealed a significantly increased risk of BC associated with 677C/T in the five models and of cervical cancer associated with 1298A/C in some models. Based on ethnicity, significant associations were observed between Asian, African, and mixed populations for 677C/T and the Asian population for 1298A/C. With regard to the sample type used for analysis, we detected a positive association between using blood as the DNA source and cancer risk for 677C/T in all genetic models and for 1298A/C in some genetic models. Further stratification of the results revealed that a notably increased risk was associated with the use of polymerase chain reaction-restriction fragment-length polymorphism or TaqMan as the genotyping method, as well as with the use of population-or hospital-based groups as the controls for 677C/T and 1298A/C, respectively. Conclusion This meta-analysis suggests that MTHFR 677C/T and 1298A/C polymorphisms correlate with the risk of common gynecological cancers, with these findings potentially applicable for overall comparisons of related data.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Kai Li
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Ling Ouyang
- Department of Obstetrics and Gynecology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Hidasa Iko
- Japan Shouko Co. Ltd, Nisikujo 3-5-4 Konohanaku Osakashi Osakafu Japan, 554-0012, Japan
| | | | - Shan Gao
- Department of Obstetrics and Gynecology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
4
|
Petrone I, Bernardo PS, dos Santos EC, Abdelhay E. MTHFR C677T and A1298C Polymorphisms in Breast Cancer, Gliomas and Gastric Cancer: A Review. Genes (Basel) 2021; 12:587. [PMID: 33920562 PMCID: PMC8073588 DOI: 10.3390/genes12040587] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Folate (vitamin B9) is found in some water-soluble foods or as a synthetic form of folic acid and is involved in many essential biochemical processes. Dietary folate is converted into tetrahydrofolate, a vital methyl donor for most methylation reactions, including DNA methylation. 5,10-methylene tetrahydrofolate reductase (MTHFR) is a critical enzyme in the folate metabolism pathway that converts 5,10-methylenetetrahydrofolate into 5-methyltetrahydrofolate, which produces a methyl donor for the remethylation of homocysteine to methionine. MTHFR polymorphisms result in reduced enzyme activity and altered levels of DNA methylation and synthesis. MTHFR polymorphisms have been linked to increased risks of several pathologies, including cancer. Breast cancer, gliomas and gastric cancer are highly heterogeneous and aggressive diseases associated with high mortality rates. The impact of MTHFR polymorphisms on these tumors remains controversial in the literature. This review discusses the relationship between the MTHFR C677T and A1298C polymorphisms and the increased risk of breast cancer, gliomas, and gastric cancer. Additionally, we highlight the relevance of ethnic and dietary aspects of population-based studies and histological stratification of highly heterogeneous tumors. Finally, this review discusses these aspects as potential factors responsible for the controversial literature concerning MTHFR polymorphisms.
Collapse
Affiliation(s)
- Igor Petrone
- Stem Cell Laboratory, Center for Bone Marrow Transplants, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil; (E.C.d.S.); (E.A.)
- Stricto Sensu Graduate Program in Oncology, INCA, Rio de Janeiro 20230-240, Brazil;
| | - Paula Sabbo Bernardo
- Stricto Sensu Graduate Program in Oncology, INCA, Rio de Janeiro 20230-240, Brazil;
- Laboratory of Cellular and Molecular Hemato-Oncology, Molecular Hemato-Oncology Program, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil
| | - Everton Cruz dos Santos
- Stem Cell Laboratory, Center for Bone Marrow Transplants, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil; (E.C.d.S.); (E.A.)
- Stricto Sensu Graduate Program in Oncology, INCA, Rio de Janeiro 20230-240, Brazil;
| | - Eliana Abdelhay
- Stem Cell Laboratory, Center for Bone Marrow Transplants, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil; (E.C.d.S.); (E.A.)
- Stricto Sensu Graduate Program in Oncology, INCA, Rio de Janeiro 20230-240, Brazil;
| |
Collapse
|
5
|
Floris M, Sanna D, Castiglia P, Putzu C, Sanna V, Pazzola A, De Miglio MR, Sanges F, Pira G, Azara A, Lampis E, Serra A, Carru C, Steri M, Costanza F, Bisail M, Muroni MR. MTHFR, XRCC1 and OGG1 genetic polymorphisms in breast cancer: a case-control study in a population from North Sardinia. BMC Cancer 2020; 20:234. [PMID: 32192442 PMCID: PMC7083022 DOI: 10.1186/s12885-020-06749-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Despite conflicting results, considerable evidence suggests the association between single nucleotide polymorphisms in MTHFR, XRCC1 and OGG1 genes and, risk of developing breast cancer. Here a case-control study is reported, including 135 breat cancer patients and 112 healthy women, all representative of Northern Sardinian population. METHODS Polymerase chain reaction/restriction fragment length polymorphism method was used to determine the genotypes of five polymorphisms: MTHFR C677T (rs1801133) and A1298C (rs1801131), XRCC1 Arg194Trp (rs1799782) and Arg399Gln (rs25487) and OGG1 Ser326Cys (rs1052133). Allelic, genotypic and haplotype association analyses with disease risk and clinicopathological parameters were performed. RESULTS A nominally significant association with breast cancer risk was observed for MTHFR C677T polymorphism heterozygous genotype in the codominant model (OR: 0.57, 95% CI: 0.32-1.00, p = 0.049) and for Cys/Cys genotype of the OGG1 Ser326Cys polymorphism in the recessive model (OR: 0.23, 95% CI: 0.05-1.11, p = 0.0465). No significant differences were found at genotype-level for A1298C polymorphism of the MTHFR gene and Arg194Trp and Arg399Gln of the XRCC1 gene. Furthermore, the OGG1 and XRCC1 rs25487 polymorphisms were nominally associated with PgR, Her2 status and with sporadic breast cancer, respectively. CONCLUSIONS Based on genetic characteristics of individuals included in this study, results suggest that MTHFR CT and OGG1 Cys/Cys genotypes have a protective effect that may have an influence on breast cancer risk in a representative Northern Sardinian population.
Collapse
Affiliation(s)
- Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Paolo Castiglia
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Carlo Putzu
- Division of Medical Oncology, AOU Sassari, Sassari, Italy
| | - Valeria Sanna
- Division of Medical Oncology, AOU Sassari, Sassari, Italy
| | | | - Maria Rosaria De Miglio
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Francesca Sanges
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giovanna Pira
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Antonio Azara
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Emanuele Lampis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | | | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Maristella Steri
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Monserrato, Cagliari, Italy
| | - Flavia Costanza
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Maria Rosaria Muroni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
6
|
Houghton SC, Eliassen AH, Zhang SM, Selhub J, Rosner BA, Willett WC, Hankinson SE. Plasma B-vitamins and one-carbon metabolites and the risk of breast cancer in younger women. Breast Cancer Res Treat 2019; 176:191-203. [PMID: 30955184 DOI: 10.1007/s10549-019-05223-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/01/2019] [Indexed: 01/28/2023]
Abstract
PURPOSE We examined the association of plasma B-vitamins and metabolites, and related genetic variants, with risk of breast cancer among predominantly premenopausal women. METHODS We conducted a nested case-control study within the Nurses' Health Study II. From blood samples collected in 1996-1999 and follow-up through 2007, plasma measures were available for 610 cases and 1207 controls. Unconditional multivariable logistic regression was used to estimate relative risks (RR) of breast cancer and 95% confidence intervals (CIs). We examined whether associations varied by methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase polymorphisms, breast cancer risk factors, or tumor characteristics. RESULTS Plasma vitamin B12 was associated with a 64% higher risk of breast cancer comparing the highest versus lowest quintile (95% CI 1.17-2.29, p-trend = 0.02). Plasma folate (comparable RR = 1.18, 95% CI 0.84-1.66), pyridoxal 5'-phosphate (RR = 1.18, 95% CI 0.85-1.64), homocysteine (RR = 0.93, 95% CI 0.67-1.28), cysteine (RR = 1.14, 95% CI 0.81-1.62), and cysteinylglycine (RR = 0.93, 95% CI 0.66-1.31) were not associated with overall breast cancer risk. Folate was significantly positively associated with invasive and estrogen receptor-positive/progesterone receptor-positive breast cancer, and this association was suggestively stronger for bloods collected post-fortification. Several nutrient/breast cancer associations varied across subgroups defined by age, smoking, alcohol, multivitamin use, and MTHFR status (p-interaction < 0.05). CONCLUSIONS Overall, plasma B-vitamins and metabolites were not associated with lower breast cancer risk. Plasma vitamin B-12 was positively associated with higher risk of overall breast cancer, and plasma folate was positively associated with risk of invasive breast cancer. Additionally, there may be associations in subgroups defined by related genetic variants, breast cancer risk factors, and tumor factors. Further studies in younger women and in the post-fortification era are needed to confirm these findings.
Collapse
Affiliation(s)
- Serena C Houghton
- Department of Biostatistics and Epidemiology, University of Massachusetts, 715 North Pleasant Street, Amherst, MA, 01003, USA.
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shumin M Zhang
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jacob Selhub
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Bernard A Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Walter C Willett
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Susan E Hankinson
- Department of Biostatistics and Epidemiology, University of Massachusetts, 715 North Pleasant Street, Amherst, MA, 01003, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Hasan T, Arora R, Bansal AK, Bhattacharya R, Sharma GS, Singh LR. Disturbed homocysteine metabolism is associated with cancer. Exp Mol Med 2019; 51:1-13. [PMID: 30804341 PMCID: PMC6389897 DOI: 10.1038/s12276-019-0216-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 11/30/2022] Open
Abstract
Hyperhomocysteinemia/Homocysteinuria is characterized by an increased level of toxic homocysteine in the plasma. The plasma concentration of homocysteine is 5–15 μmol/L in healthy individuals, while in hyperhomocysteinemic patients, it can be as high as 500 μmol/L. While increased homocysteine levels can cause symptoms such as osteoporosis and eye lens dislocation, high homocysteine levels are most closely associated with cardiovascular complications. Recent advances have shown that increased plasma Hcy is also a fundamental cause of neurodegenerative diseases (including Alzheimer’s disease, Parkinson’s disease, and dementia), diabetes, Down syndrome, and megaloblastic anemia, among others. In recent years, increased plasma homocysteine has also been shown to be closely related to cancer. In this review, we discuss the relation between elevated plasma Hcy levels and cancer, and we conclude that disturbed homocysteine metabolism is associated with cancer. Future clinical perspectives are also discussed. Cancer can be added to the wide range of diseases known to be associated with elevated blood levels of the small amino acid homocysteine. Abnormally high levels of this compound are already known to contribute to conditions including cardiovascular problems, neurodegenerative diseases, neural tube defects, Down’s syndrome, diabetes and megaloblastic anemia. This review, by Laishram R. Singh and colleagues at the University of Delhi, India, concludes that disturbed homocysteine metabolism is associated with many forms of human cancer. The authors discuss a range of genetic, epigenetic and environmental factors that may be involved in the cause and effect relationships between homocysteine metabolism and cancer. It is particularly interesting that low folate (vitamin B9) levels result in high homocysteine levels, and vice versa. Further research may yield insights leading to new forms of cancer treatment and diagnosis.
Collapse
Affiliation(s)
- Tauheed Hasan
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110 007, India
| | - Reetika Arora
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110 007, India
| | - Aniket Kumar Bansal
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110 007, India
| | - Reshmee Bhattacharya
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110 007, India
| | - Gurumayum Suraj Sharma
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110 007, India
| | | |
Collapse
|
8
|
Castiglia P, Sanna V, Azara A, De Miglio MR, Murgia L, Pira G, Sanges F, Fancellu A, Carru C, Bisail M, Muroni MR. Methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms in breast cancer: a Sardinian preliminary case-control study. Int J Med Sci 2019; 16:1089-1095. [PMID: 31523170 PMCID: PMC6743281 DOI: 10.7150/ijms.32162] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/12/2019] [Indexed: 02/05/2023] Open
Abstract
Two common polymorphisms in the MTHFR gene, C677T and A1298C, are associated with reduced enzyme activity and may be associated with breast cancer susceptibility. We performed a case-control study to investigate the association between the two SNPs in the MTHFR gene and risk of breast cancer. In total, 58 breast cancer patients and 58 unaffected controls were enrolled in the study. Polymerase chain reaction/restriction fragment length polymorphism technique (PCR-RFLP) was conducted to determine the genotypes. No significant differences were found in the genotypes of the two polymorphisms of the MTHFR gene between cases and controls. The OR and 95% CI for the 677CC, 677CT and 677TT genotypes were 1.00, 0.95 (0.39-2.31) and 0.87 (0.27-2.80), respectively; those of the 1298AA, 1298AC and 1298CC genotypes were 1.00, 0.59 (0.26-1.36) and 0.78 (1.32-4.66) respectively. Furthermore, it has been shown in patients with breast cancer a risk of presenting with an aggressive biophenotype about twice or three times higher in the presence of the C677T and A1298C polymorphisms, respectively. Finally, the A1298Cpolymorphism is significantly associated with increased recurrence risk of lymph node-positive breast cancer. Our study has not shown a significant association between MTHFR gene polymorphisms and breast cancer risk. However, it highlighted the key-role played by the presence of mutant alleles for both polymorphisms in increasing the risk of developing more aggressive phenotypes; moreover, specifically in A1298C, it might also lead to a higher risk of developing lymph node metastasis.
Collapse
Affiliation(s)
- Paolo Castiglia
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4 - 07100 Sassari, Italy
| | - Valeria Sanna
- Division of Medical Oncology, AOU Sassari, Via E. De Nicola - 07100 Sassari, Italy; Sassari, Italy
| | - Antonio Azara
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4 - 07100 Sassari, Italy
| | - Maria R De Miglio
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4 - 07100 Sassari, Italy
| | - Luciano Murgia
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4 - 07100 Sassari, Italy
| | - Giovanna Pira
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4 - 07100 Sassari, Italy
| | - Francesca Sanges
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4 - 07100 Sassari, Italy
| | - Alessandro Fancellu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4 - 07100 Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43 - 07100 Sassari, Italy
| | - Marco Bisail
- LILT, Sassari, Via Amendola, 40/L - 07100 Sassari, Italy
| | - Maria Rosaria Muroni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4 - 07100 Sassari, Italy
| |
Collapse
|
9
|
Bravatà V, Minafra L, Forte GI, Cammarata FP, Russo G, Di Maggio FM, Augello G, Lio D, Gilardi MC. Cytokine profile of breast cell lines after different radiation doses. Int J Radiat Biol 2017; 93:1217-1226. [PMID: 28763256 DOI: 10.1080/09553002.2017.1362504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Ionizing radiation (IR) treatment activates inflammatory processes causing the release of a great amount of molecules able to affect the cell survival. The aim of this study was to analyze the cytokine signature of conditioned medium produced by non-tumorigenic mammary epithelial cell line MCF10A, as well as MCF7 and MDA-MB-231 breast cancer cell lines, after single high doses of IR in order to understand their role in high radiation response. MATERIALS AND METHODS We performed a cytokine profile of irradiated conditioned media of MCF10A, MCF7 and MDA-MB-231 cell lines treated with 9 or 23 Gy, by Luminex and ELISA analyses. RESULTS Overall, our results show that both 9 Gy and 23 Gy of IR induce the release within the first 72 h of cytokines and growth factors potentially able to influence the tumor outcome, with a dose-independent and cell-line dependent signature. Moreover, our results show that the cell-senescence phenomenon does not correlate with the amount of 'senescence-associated secretory phenotype' (SASP) molecules released in media. Thus, additional mechanisms are probably involved in this process. CONCLUSIONS These data open the possibility to evaluate cytokine profile as useful marker in modulating the personalized radiotherapy in breast cancer care.
Collapse
Affiliation(s)
- Valentina Bravatà
- a Institute of Molecular Bioimaging and Physiology (IBFM)-CNR , Cefalù ( PA ), Italy.,b Department of Pathobiology and Medical Biotechnologies , University of Palermo , Palermo , Italy
| | - Luigi Minafra
- a Institute of Molecular Bioimaging and Physiology (IBFM)-CNR , Cefalù ( PA ), Italy
| | - Giusi Irma Forte
- a Institute of Molecular Bioimaging and Physiology (IBFM)-CNR , Cefalù ( PA ), Italy
| | | | - Giorgio Russo
- a Institute of Molecular Bioimaging and Physiology (IBFM)-CNR , Cefalù ( PA ), Italy
| | - Federica Maria Di Maggio
- b Department of Pathobiology and Medical Biotechnologies , University of Palermo , Palermo , Italy
| | - Giuseppa Augello
- c Institute of Biomedicine and Molecular Immunology 'A. Monroy' (IBIM)-CNR , Palermo , Italy
| | - Domenico Lio
- b Department of Pathobiology and Medical Biotechnologies , University of Palermo , Palermo , Italy
| | - Maria Carla Gilardi
- a Institute of Molecular Bioimaging and Physiology (IBFM)-CNR , Cefalù ( PA ), Italy.,d Department of Health Sciences , Tecnomed Foundation, University of Milano-Bicocca , Milan , Italy.,e Nuclear Medicine , San Raffaele Scientific Institute , Milan , Italy
| |
Collapse
|
10
|
Burdennyy AM, Loginov VI, Zavarykina TM, Braga EA, Kubatiev AA. The role of molecular genetic alterations in genes involved in folate and homocysteine metabolism in multifactorial diseases pathogenesis. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417040044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|