1
|
Li K, Wang M, Wang R, Wang X, Jiao H, Zhao J, Zhou Y, Li H, Lin H. Hydrogen Sulfide Regulates Glucose Uptake in Skeletal Muscles via S-Sulfhydration of AMPK in Muscle Fiber Type-Dependent Way. J Nutr 2023; 153:2878-2892. [PMID: 37611831 DOI: 10.1016/j.tjnut.2023.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND The effect of hydrogen sulfide (H2S) on glucose homeostasis remains to be elucidated, especially in the state of insulin resistance. OBJECTIVES In the present study, we aimed to investigate H2S-regulated glucose uptake in the M. pectoralis major (PM) muscle (which mainly consists of fast-twitch glycolytic fibers) and M. biceps femoris (BF) muscle (which mainly consists of slow-twitch oxidative fibers) of the chicken, a potential model of insulin resistance. METHODS Chicks were subjected to intraperitoneal injection of sodium hydrosulfide (NaHS, 50 μmol/kg body mass/day) twice a day to explore glucose homeostasis. In vitro, myoblasts from PM and BF muscles were used to detect glucose uptake and utilization. Effects of AMP-activated protein kinase (AMPK) phosphorylation, AMPK S-sulfhydration, and mitogen-activated protein kinase (MAPK) pathway induction by NaHS were detected. RESULTS NaHS enhanced glucose uptake and utilization in chicks (P < 0.05). In myoblasts from PM muscle, NaHS (100 μM) increased glucose uptake by activating AMPK S-sulfhydration, AMPK phosphorylation, and the AMPK/p38 MAPK pathway (P < 0.05). However, NaHS decreased glucose uptake in myoblasts from BF muscle by suppressing the p38 MAPK pathway (P < 0.05). Moreover, NaHS increased S-sulfhydration and, in turn, the phosphorylation of AMPK (P < 0.05). CONCLUSIONS This study reveals the role of H2S in enhancing glucose uptake and utilization in chicks. The results suggest that NaHS is involved in glucose uptake in skeletal muscle in a fiber type-dependent way. The AMPK/p38 pathway and protein S-sulfhydration promote glucose uptake in fast-twitch glycolytic muscle fibers, which provides a muscle fiber-specific potential therapeutic target to ameliorate glucose metabolism.
Collapse
Affiliation(s)
- Kelin Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Minghui Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Ruxia Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Hongchao Jiao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Jingpeng Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
2
|
Expression patterns of AMPK and genes associated with lipid metabolism in newly hatched chicks during the metabolic perturbation of fasting and refeeding. Poult Sci 2022; 101:102231. [PMID: 36334428 PMCID: PMC9630794 DOI: 10.1016/j.psj.2022.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022] Open
Abstract
Fasting–refeeding perturbation has been extensively used to reveal specific genes and metabolic pathways that control energy metabolism in chickens. In this study, 200 chickens were randomly assigned to 2 groups after hatching: the control group (C, fed ad libitum) and the fasting–refeeding group (T, water ad libitum). The chicks in Group T were fasted for 72 h, and then fed for another 48 h. Liver, hypothalamus, and adipose samples were collected at 0 (F0), 24 (F24), 48 (F48), and 72 h (F72) after fasting and 4 (FR4), 12 (FR12), 24 (FR24), and 48 h (FR48) after refeeding, respectively. Results showed that Group T had a significantly higher number of liver vacuoles (P < 0.05 or P < 0.01) and a significantly lower gray value of Sudan IIIstained sections (P < 0.05 or P < 0.01) than Group C at F48–FR48. In addition, compared with the Group C, fasting and refeeding reduced the expression of stearoyl CoA desaturase (SCD) mRNA (P < 0.05 or P < 0.01) in the liver and adipose tissues, the expression of glucocorticoid receptor (GR) mRNA (P < 0.05 or P < 0.01) in the liver, adipose, and hypothalamus tissues, and the expression of fatty acid synthase (FAS) mRNA (P < 0.05 or P < 0.01) in the liver at F24–FR24. Moreover, relative to those in Group C, fasting and refeeding increased the mRNA expression levels of adenosine monophosphate-activated protein kinase (AMPK) α, AMPKβ, and AMPKγ in the hypothalamus (P < 0.05 or P < 0.01) at F24–FR24. In conclusion, fasting and refeeding increased the fat content of the liver, and the expression of lipolytic genes in the hypothalamus (e.g., AMPKα, AMPKβ, and AMPKγ) but decreased the expression of fat synthesis genes in the liver (e.g., SCD, GR, and FAS), adipose (SCD and GR), and hypothalamus (GR).
Collapse
|
3
|
Dai J, Wang H, Liao Y, Tan L, Sun Y, Song C, Liu W, Ding C, Luo T, Qiu X. Non-Targeted Metabolomic Analysis of Chicken Kidneys in Response to Coronavirus IBV Infection Under Stress Induced by Dexamethasone. Front Cell Infect Microbiol 2022; 12:945865. [PMID: 35909955 PMCID: PMC9335950 DOI: 10.3389/fcimb.2022.945865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Stress in poultry can lead to changes in body metabolism and immunity, which can increase susceptibility to infectious diseases. However, knowledge regarding chicken responses to viral infection under stress is limited. Dexamethasone (Dex) is a synthetic glucocorticoid similar to that secreted by animals under stress conditions, and has been widely used to induce stress in chickens. Herein, we established a stress model in 7-day-old chickens injected with Dex to elucidate the effects of stress on IBV replication in the kidneys. The metabolic changes, immune status and growth of the chickens under stress conditions were comprehensively evaluated. Furthermore, the metabolic profile, weight gain, viral load, serum cholesterol levels, cytokines and peripheral blood lymphocyte ratio were compared in chickens treated with Dex and infected with IBV. An LC-MS/MS-based metabolomics method was used to examine differentially enriched metabolites in the kidneys. A total of 113 metabolites whose abundance was altered after Dex treatment were identified, most of which were lipids and lipid-like molecules. The principal metabolic alterations in chicken kidneys caused by IBV infection included fatty acid, valine, leucine and isoleucine metabolism. Dex treatment before and after IBV infection mainly affected the host’s tryptophan, phenylalanine, amino sugar and nucleotide sugar metabolism. In addition, Dex led to up-regulation of serum cholesterol levels and renal viral load in chickens, and to the inhibition of weight gain, peripheral blood lymphocytes and IL-6 production. We also confirmed that the exogenous cholesterol in DF-1 cells promoted the replication of IBV. However, whether the increase in viral load in kidney tissue is associated with the up-regulation of cholesterol levels induced by Dex must be demonstrated in future experiments. In conclusion, chick growth and immune function were significantly inhibited by Dex. Host cholesterol metabolism and the response to IBV infection are regulated by Dex. This study provides valuable insights into the molecular regulatory mechanisms in poultry stress, and should support further research on the intrinsic link between cholesterol metabolism and IBV replication under stress conditions.
Collapse
Affiliation(s)
- Jun Dai
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Tingrong Luo
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- *Correspondence: Xusheng Qiu, ; Tingrong Luo,
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Xusheng Qiu, ; Tingrong Luo,
| |
Collapse
|
4
|
Advantages and drawbacks of dexamethasone in glioblastoma multiforme. Crit Rev Oncol Hematol 2022; 172:103625. [PMID: 35158070 DOI: 10.1016/j.critrevonc.2022.103625] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
The most widespread, malignant, and deadliest type of glial tumor is glioblastoma multiforme (GBM). Despite radiation, chemotherapy, and radical surgery, the median survival of afflicted individuals is about 12 months. Unfortunately, existing therapeutic interventions are abysmal. Dexamethasone (Dex), a synthetic glucocorticoid, has been used for many years to treat brain edema and inflammation caused by GBM. Several investigations have recently shown that Dex also exerts antitumoral effects against GBM. On the other hand, more recent disputed findings have questioned the long-held dogma of Dex treatment for GBM. Unfortunately, steroids are associated with various undesirable side effects, including severe immunosuppression and metabolic changes like hyperglycemia, which may impair the survival of GBM patients. Current ideas and concerns about Dex's effects on GBM cerebral edema, cell proliferation, migration, and its clinical outcomes were investigated in this study.
Collapse
|
5
|
Angiopoietin-like protein 4 regulates breast muscle lipid metabolism in broilers. Poult Sci 2021; 100:101159. [PMID: 34077847 PMCID: PMC8181176 DOI: 10.1016/j.psj.2021.101159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/20/2020] [Accepted: 03/02/2021] [Indexed: 12/30/2022] Open
Abstract
The objective of this study was to determine the effects of angiopoietin-like protein 4 (ANGPTL4) on breast muscle lipid metabolism in broilers. In experiment 1, 36 thirty-five-day-old male Arbor Acres broilers were randomly allocated into 6 treatment groups with 6 birds in a completely randomized design. The broilers were subjected to intravenous injection of His-SUMO-ANGPTL4 at the dose of 0 (injection of normal saline [NS]), 20, 100, 500, 2,500, or 12,500 ng/kg BW, respectively. The results showed that broilers at 30 min after His-SUMO-ANGPTL4 at the level of 12,500 ng/kg BW intravenous injection had higher (P < 0.05) concentrations of triglyceride and non-esterified fatty acid in the serum, higher (P < 0.05) adipose triglyceride lipase and carnitine palmitoyltransferase 1 mRNA expression in the breast muscle, but lower (P < 0.05) lipoprotein lipase (LPL) mRNA expression in the breast muscle. In experiment 2, 18 thirty-five-day-old male Arbor Acres broilers were randomly allocated into 3 treatment groups with 6 birds in a completely randomized design. The broilers were subjected to intravenous injection of NS, His-SUMO, or His-SUMO-ANGPTL4 (12,500 ng/kg BW) in order to rule out the effect of His-SUMO tag. It's confirmed that ANGPTL4 could increase (P < 0.05) concentrations of triglyceride and non-esterified fatty acid in the serum, enhance (P < 0.05) adipose triglyceride lipase mRNA expression in the breast muscle, and decrease (P < 0.05) LPL mRNA expression in the breast muscle. In experiment 3 and 4, co-culture experiments of chicken primary myoblasts and NS, His-SUMO, or His-SUMO-ANGPTL4 (250 pg/mL, physiological dose) were set up to monitor the cytotoxicity of ANGPTL4 and the changes of lipid metabolism-related genes expression. It was found that cell viability was not affected but LPL mRNA expression in chicken primary myoblasts was highly reduced (P < 0.05) by ANGPTL4. In conclusion, ANGPTL4 could promote lipodieresis and inhibit LPL in the breast muscle of broilers.
Collapse
|
6
|
High-Dose Dexamethasone Manipulates the Tumor Microenvironment and Internal Metabolic Pathways in Anti-Tumor Progression. Int J Mol Sci 2020; 21:ijms21051846. [PMID: 32156004 PMCID: PMC7084511 DOI: 10.3390/ijms21051846] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022] Open
Abstract
High-dose dexamethasone (DEX) is used to treat chemotherapy-induced nausea and vomiting or to control immunotherapy-related autoimmune diseases in clinical practice. However, the underlying mechanisms of high-dose DEX in tumor progression remain unaddressed. Therefore, we explored the effects of high-dose DEX on tumor progression and the potential mechanisms of its anti-tumor function using immunohistochemistry, histological examination, real-time quantitative PCR (qPCR), and Western blotting. Tumor volume, blood vessel invasion, and levels of the cell proliferation markers Ki67 and c-Myc and the anti-apoptotic marker Bcl2 decreased in response to high-dose DEX. However, the cell apoptosis marker cleaved caspase 3 increased significantly in mice treated with 50 mg/kg DEX compared with controls. Some genes associated with immune responses were significantly downregulated following treatment with 50 mg/kg DEX e.g., Cxcl9, Cxcl10, Cd3e, Gzmb, Ifng, Foxp3, S100a9, Arg1, and Mrc1. In contrast, the M1-like tumor-associated macrophages (TAMs) activation marker Nos2 was shown to be increased. Moreover, the expression of peroxisome proliferator-activated receptors α and γ (Pparα and Pparg, respectively) was shown to be significantly upregulated in livers or tumors treated with DEX. However, high-dose DEX treatment decreased the expression of glucose and lipid metabolic pathway-related genes such as glycolysis-associated genes (Glut1, Hk2, Pgk1, Idh3a), triglyceride (TG) synthesis genes (Gpam, Agpat2, Dgat1), exogenous free fatty acid (FFA) uptake-related genes (Fabp1, Slc27a4, and CD36), and fatty acid oxidation (FAO) genes (Acadm, Acaa1, Cpt1a, Pnpla2). In addition, increased serum glucose and decreased serum TG and non-esterified fatty acid (NEFA) were observed in DEX treated-xenografted tumor mice. These findings indicate that high-dose DEX-inhibited tumor progression is a complicated process, not only activated by M1-like TAMs, but also decreased by the uptake and consumption of glucose and lipids that block the raw material and energy supply of cancer cells. Activated M1-like TAMs and inefficient glucose and lipid metabolism delayed tumor cell growth and promoted apoptosis. These findings have important implications for the application of DEX combined with drugs that target key metabolism pathways for tumor therapy in clinical practice.
Collapse
|
7
|
Song X, Jiao H, Zhao J, Wang X, Lin H. Dexamethasone and insulin stimulate ghrelin secretion of broilers in a different way. Gen Comp Endocrinol 2018; 268:14-21. [PMID: 30016627 DOI: 10.1016/j.ygcen.2018.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 12/27/2022]
Abstract
Ghrelin is one of the most important appetite regulating peptides, involved in the regulation of energy homeostasis. The role of ghrelin on the appetite and fat metabolism in chickens is different from that of ghrelin in mammals. Glucocorticoids and insulin are important hormones and work differently in energy regulation of body. In this study, the effects of dexamethasone (DEX, 2.0 mg/kg BW), subcutaneous insulin injection (40 µg/kg BW), and glucose load on ghrelin secretion and expression were determined in broilers. DEX treatment increased circulating ghrelin concentration in broiler fed with either a low-energy diet (11.05 MJ/kg of metabolizable energy) or a high-energy diet (14.44 MJ/kg of metabolizable energy). The expression levels of ghrelin were increased while both ghrelin and its receptor GHS-R1a expression levels were stimulated by DEX. A single subcutaneous insulin injection (40 µg/kg BW) or oral glucose infusion (2 g/kg BW) rise circulating ghrelin level. Ghrelin expression in the proventriculus was increased by insulin treatment but unchanged by glucose load. DEX had no detectable influence on ghrelin and GHS-R1a expression in the hypohtalamus, whereas insulin suppressed their expression. In conclusion, both insulin and glucocorticoid stimulate ghrelin secretion in chickens, in contrast to mammals. Glucocorticoids evoke peripheral ghrelin/GHS-R1a system while insulin increases peripheral ghrelin expression and suppress the activation of central ghrelin/GHS-R1a system. The result suggests that ghrelin involved in the modulating network of energy homeostasis in concert with glucocorticoids and insulin.
Collapse
Affiliation(s)
- Xixi Song
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, PR China
| | - Hongchao Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, PR China
| | - Jingpeng Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, PR China
| | - Xiaojuan Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, PR China
| | - Hai Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, PR China.
| |
Collapse
|
8
|
Zhao X, Ding X, Yang Z, Shen Y, Zhang S, Shi S. Effects of Clostridium butyricum on breast muscle lipid metabolism of broilers. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1453758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xu Zhao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, China
| | - Xiao Ding
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai-an, Shandong, China
| | - Zaibin Yang
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai-an, Shandong, China
| | - Yiru Shen
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, China
| | - Shan Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, China
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, China
| |
Collapse
|
9
|
Scanes CG. Biology of stress in poultry with emphasis on glucocorticoids and the heterophil to lymphocyte ratio. Poult Sci 2016; 95:2208-15. [DOI: 10.3382/ps/pew137] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2016] [Indexed: 12/11/2022] Open
|
10
|
Liu L, Xu S, Wang X, Jiao H, Zhao J, Lin H. Effect of dexamethasone on hypothalamic expression of appetite-related genes in chickens under different diet and feeding conditions. J Anim Sci Biotechnol 2016; 7:23. [PMID: 27073616 PMCID: PMC4828879 DOI: 10.1186/s40104-016-0084-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 03/28/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Glucocorticoids (GCs) are involved in the control of appetite in birds and mammals. The effect of GCs on feed intake in birds depends on their dietary energy level. But the regulation mechanism of GCs on appetite is still unclear in chickens facing to different energy level. An experiment was conducted to investigate the effect of dexamethasone (DEX) on hypothalamic expression of appetite-related peptides in chickens fed high/low fat diet and under fasting/feeding condition. RESULTS An interaction between DEX injection and dietary energy level was found on hypothalamic corticotropin-releasing hormone (CRH) gene expression in fasted chickens (P < 0.05). The chickens, given a DEX injection and a low fat diet treatment, had the highest CRH mRNA levels than any of the fasted chickens given treatments (P < 0.05). Under fasting conditions, the DEX treatment significantly increased hypothalamic neuropeptide Y (NPY) and GC receptors mRNA levels (P < 0.05). Under re-feeding conditions, DEX treatment significantly decreased hypothalamic expression levels of NPY and agouti-related peptide (AgRP) but significantly increased the level of hypothalamic CRH expression (P < 0.05). CONCLUSION A regulatory network formed by NPY, AgRP and CRH is associated with the appetite-control by GCs. The result suggests that the regulation of GCs on orexigenic neuropeptides expression is dependent at least partially on dietary energy level and feeding state.
Collapse
Affiliation(s)
- Lei Liu
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018 China
| | - Shaohua Xu
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018 China
| | - Xiaojuan Wang
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018 China
| | - Hongchao Jiao
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018 China
| | - Jingpeng Zhao
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018 China
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018 China
| |
Collapse
|
11
|
Wang X, Jia Q, Xiao J, Jiao H, Lin H. Glucocorticoids retard skeletal muscle development and myoblast protein synthesis through a mechanistic target of rapamycin (mTOR)-signaling pathway in broilers (Gallus gallus domesticus). Stress 2015; 18:686-98. [PMID: 26371871 DOI: 10.3109/10253890.2015.1083551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids exert a well-known catabolic protein action on skeletal muscle. The mechanistic target of rapamycin (mTOR) signaling pathway acts as a central regulator of protein metabolism. Whether glucocorticoids regulate protein synthesis through the mTOR pathway in skeletal muscle of chickens remains unknown. This study was performed to characterize the effect of glucocorticoids on the mTOR pathway in skeletal muscle development in chickens, and on protein synthesis in cultured embryonic myoblasts. Male 29-d-old chickens were given a dexamethasone injection (2 mg/kg) twice per day for 4 d (n = 16). Chicken embryonic myoblasts were exposed to dexamethasone for 24 h (100 µmol/L, n = 4 cultures). The interaction between dexamethasone and leucine was also investigated. ANOVA and Duncan's multiple test were used to analyze the effects of the dexamethasone and leucine treatments. The results showed that dexamethasone decreased body weight gain, body weight, and feed efficiency. Protein synthesis was inhibited by in vitro dexamethasone exposure. Phosphorylation of mTOR and ribosomal protein S6 protein kinase (p70S6K) were inhibited by dexamethasone, suggesting the mTOR pathway may be involved in dexamethasone-regulated muscle protein synthesis. Phosphorylation of AMP-activated protein kinase (AMPK) was not altered in vitro but was reduced in vivo by dexamethasone. These results imply that the mTOR and AMPK pathways are both involved in retarding muscle development and protein synthesis by glucocorticoids, but the mTOR pathway is a critical point linking glucocorticoid and protein synthesis. Leucine, at least partially, inhibited the effects of dexamethasone on protein synthesis via the mTOR pathway.
Collapse
Affiliation(s)
- Xiaojuan Wang
- a Department of Animal Science , Shandong Agricultural University , Taian , Shandong , PR China
| | - Qing Jia
- a Department of Animal Science , Shandong Agricultural University , Taian , Shandong , PR China
| | - Jingjing Xiao
- a Department of Animal Science , Shandong Agricultural University , Taian , Shandong , PR China
| | - Hongchao Jiao
- a Department of Animal Science , Shandong Agricultural University , Taian , Shandong , PR China
| | - Hai Lin
- a Department of Animal Science , Shandong Agricultural University , Taian , Shandong , PR China
| |
Collapse
|
12
|
ZhiQing Z, XinXing W, Jingbo G, Rui Z, Xiujie G, Yun Z, Lei W, Xue L, LingJia Q. Effects of HIP in protection of HSP70 for stress-induced cardiomyocytes injury and its glucorticoid receptor pathway. Cell Stress Chaperones 2014; 19:865-75. [PMID: 24789270 PMCID: PMC4389846 DOI: 10.1007/s12192-014-0510-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 01/16/2023] Open
Abstract
Moderate levels of stress can be beneficial to health, while stress overload can cause injury or contribute to diseases. Despite a number of studies of adaptation or stress damage, the mechanisms of adaptation and stress damage remain far from clear. The effect and mechanisms of adaptation on cardiomyocytes damage caused by stress overload are discussed in this study. Data showed that mild repeated stress mitigated stress overload-induced cardiomyocyte injury both in an animal model of restraint stress and in H9C2 cells with GC (glucocorticoid) treatment. HSP70, HIP expression and interaction between HSP70 and HIP increased during adaptation induced by mild stress both in animals and H9C2 cells. Overexpression or inhibition of HSP70 in H9C2 cells with pCDNA-3.1-Hsp70 or KNK437 (HSP70 inhibitor) showed that HSP70 can protect H9C2 cells from GC-induced cell damage. A luciferase assay showed that Hsp70 plays its protective role through inhibition of GR transcription activity dependent on the interaction with HIP. These results indicated that HSP70 may promote adaptation with its interacting protein HIP, and increased levels of HSP70 and its interacting protein HIP during adaptation may play a protective role on stress-overload-induced cardiomyocyte injury.
Collapse
MESH Headings
- Adaptation, Physiological
- Animals
- Benzhydryl Compounds/pharmacology
- Cell Line
- Disease Models, Animal
- Glucocorticoids/toxicity
- HSP70 Heat-Shock Proteins/antagonists & inhibitors
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Heart Diseases/genetics
- Heart Diseases/metabolism
- Heart Diseases/pathology
- Heart Diseases/prevention & control
- Hydrocortisone/blood
- Male
- Molecular Chaperones/genetics
- Molecular Chaperones/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Pyrrolidinones/pharmacology
- RNA Interference
- Rats, Wistar
- Receptors, Glucocorticoid/agonists
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Restraint, Physical
- Signal Transduction/drug effects
- Stress, Psychological/complications
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Stress, Psychological/pathology
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Zhang ZhiQing
- />Institute of Health & Environmental Medicine, Tianjin, 300050 People’s Republic of China
| | - Wang XinXing
- />Institute of Basic Medical Sciences, Beijing, 100850 People’s Republic of China
| | - Gong Jingbo
- />Institute of Basic Medical Sciences, Beijing, 100850 People’s Republic of China
| | - Zhan Rui
- />Institute of Basic Medical Sciences, Beijing, 100850 People’s Republic of China
| | - Gao Xiujie
- />Institute of Health & Environmental Medicine, Tianjin, 300050 People’s Republic of China
| | - Zhao Yun
- />Institute of Basic Medical Sciences, Beijing, 100850 People’s Republic of China
| | - Wu Lei
- />Institute of Health & Environmental Medicine, Tianjin, 300050 People’s Republic of China
| | - Leng Xue
- />Institute of Medical Equipment, Tianjin, 300161 People’s Republic of China
| | - Qian LingJia
- />Institute of Basic Medical Sciences, Beijing, 100850 People’s Republic of China
| |
Collapse
|
13
|
Duan TT, Tan JW, Yuan Q, Cao J, Zhou QX, Xu L. Acute ketamine induces hippocampal synaptic depression and spatial memory impairment through dopamine D1/D5 receptors. Psychopharmacology (Berl) 2013; 228:451-61. [PMID: 23494232 DOI: 10.1007/s00213-013-3048-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/25/2013] [Indexed: 01/01/2023]
Abstract
RATIONALE Subanesthetic doses of ketamine have been reported to induce psychotic states that may mimic positive and negative symptoms as well as cognitive and memory deficits similar to those observed in schizophrenia. The cognitive and memory deficits are persistent, and their underlying cellular mechanisms remain unclear. OBJECTIVES We sought to investigate the roles of dopamine D1/D5 receptors and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in hippocampal synaptic transmission and spatial memory impairment induced by ketamine. METHODS We examined the effects of subanesthetic ketamine on hippocampal synaptic transmission in freely moving rats. Spatial memory was tested with the Morris water maze. Pretreatment with the D1/D5 receptors antagonist SCH23390 or the AMPA receptors endocytosis interfering peptide Tat-GluR23Y was conducted to examine their capacities to reverse ketamine-induced electrophysiological and behavioral alterations. A series of behavioral observations, including locomotion, prepulse inhibition, and social interaction, were also conducted after ketamine treatment. RESULTS Ketamine induced synaptic depression lasting at least 4 h at hippocampal Schaffer collateral-CA1 synapses in freely moving rats and long-term spatial memory impairment. Both the effects were blocked by either SCH23390 or Tat-GluR23Y. Ketamine also elicited transient behavioral changes lasting less than 90 min, such as hyperlocomotion and prepulse inhibition deficits. These changes were ameliorated by SCH23390 but not by Tat-GluR23Y. Rats treated with ketamine showed social withdrawal that was also attenuated by either SCH23390 or Tat-GluR23Y. CONCLUSIONS Our results indicate that hippocampal synaptic depression is involved in ketamine-induced memory impairment, and this is modulated by D1/D5 receptors activation and AMPA receptors endocytosis.
Collapse
MESH Headings
- Anesthetics, Dissociative/administration & dosage
- Anesthetics, Dissociative/adverse effects
- Animals
- Benzazepines/pharmacology
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/physiopathology
- Dose-Response Relationship, Drug
- Ketamine/administration & dosage
- Ketamine/adverse effects
- Male
- Maze Learning/drug effects
- Memory Disorders/chemically induced
- Memory Disorders/metabolism
- Memory Disorders/physiopathology
- Memory Disorders/psychology
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D5/antagonists & inhibitors
- Receptors, Dopamine D5/metabolism
- Spatial Behavior/drug effects
- Synaptic Transmission/drug effects
Collapse
Affiliation(s)
- Ting-Ting Duan
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | | | | | | | | | | |
Collapse
|
14
|
Castillero E, Alamdari N, Aversa Z, Gurav A, Hasselgren PO. PPARβ/δ regulates glucocorticoid- and sepsis-induced FOXO1 activation and muscle wasting. PLoS One 2013; 8:e59726. [PMID: 23555761 PMCID: PMC3605288 DOI: 10.1371/journal.pone.0059726] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 02/17/2013] [Indexed: 01/01/2023] Open
Abstract
FOXO1 is involved in glucocorticoid- and sepsis-induced muscle wasting, in part reflecting regulation of atrogin-1 and MuRF1. Mechanisms influencing FOXO1 expression in muscle wasting are poorly understood. We hypothesized that the transcription factor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) upregulates muscle FOXO1 expression and activity with a downstream upregulation of atrogin-1 and MuRF1 expression during sepsis and glucocorticoid treatment and that inhibition of PPARβ/δ activity can prevent muscle wasting. We found that activation of PPARβ/δ in cultured myotubes increased FOXO1 activity, atrogin-1 and MuRF1 expression, protein degradation and myotube atrophy. Treatment of myotubes with dexamethasone increased PPARβ/δ expression and activity. Dexamethasone-induced FOXO1 activation and atrogin-1 and MuRF1 expression, protein degradation, and myotube atrophy were inhibited by PPARβ/δ blocker or siRNA. Importantly, muscle wasting induced in rats by dexamethasone or sepsis was prevented by treatment with a PPARβ/δ inhibitor. The present results suggest that PPARβ/δ regulates FOXO1 activation in glucocorticoid- and sepsis-induced muscle wasting and that treatment with a PPARβ/δ inhibitor may ameliorate loss of muscle mass in these conditions.
Collapse
Affiliation(s)
- Estibaliz Castillero
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nima Alamdari
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zaira Aversa
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aniket Gurav
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Per-Olof Hasselgren
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Wang XJ, Song ZG, Jiao HC, Lin H. Skeletal muscle fatty acids shift from oxidation to storage upon dexamethasone treatment in chickens. Gen Comp Endocrinol 2012; 179:319-30. [PMID: 23036730 DOI: 10.1016/j.ygcen.2012.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/10/2012] [Accepted: 09/17/2012] [Indexed: 11/30/2022]
Abstract
The effect of an exogenous glucocorticoid on the lipid metabolism and fatty acid pattern of skeletal muscle in broiler chickens (Gallus gallus domesticus) was investigated in vivo and in vitro. Male Arbor Acres chickens were subjected to dexamethasone (DEX) treatment for 3days. We found that DEX retarded body growth, facilitated lipid accumulation in adipose and skeletal muscle tissues, and elevated the thigh monounsaturated fatty acids (MUFA) to saturated fatty acids (SFA) ratio at fasted state. DEX-treated chickens exhibited increased stearoyl-CoA desaturase-1 (SCD1) activity and decreased carnitine palmitoyltransferase-1 (CPT1) activity in the thigh muscle under fasting conditions and in primary cultured myoblasts. Phosphorylation of AMP-activated protein kinase alpha at Thr172 did not occur in vivo but was increased in vitro by DEX. In cells exposed to DEX, fatty acid transport protein-1 mRNA expression and fatty acid storage were enhanced while fatty acid oxidation was repressed. In conclusion, in oxidative muscle of fasted chickens, DEX stimulated uptake of myocellular fatty acids which was stored with the modified MUFA to SFA ratio in a process that maybe involved SCD1 activation. The altered fatty acid composition together with the inactivation of CPT1 showed an increased tendency towards fatty acid accumulation as opposed to oxidation. These findings provide important insight concerning the influence of glucocorticoids on lipid metabolism.
Collapse
Affiliation(s)
- X J Wang
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | | | | | | |
Collapse
|
16
|
Effects of fatty acid treatments on the dexamethasone-induced intramuscular lipid accumulation in chickens. PLoS One 2012; 7:e36663. [PMID: 22623960 PMCID: PMC3356436 DOI: 10.1371/journal.pone.0036663] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 04/04/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Glucocorticoid has an important effect on lipid metabolism in muscles, and the type of fatty acid likely affects mitochondrial utilization. Therefore, we hypothesize that the different fatty acid types treatment may affect the glucocorticoid induction of intramuscular lipid accumulation. METHODOLOGY/PRINCIPAL FINDINGS The effect of dexamethasone (DEX) on fatty acid metabolism and storage in skeletal muscle of broiler chickens (Gallus gallus domesticus) was investigated with and without fatty acid treatments. Male Arbor Acres chickens (31 d old) were treated with either palmitic acid (PA) or oleic acid (OA) for 7 days, followed by DEX administration for 3 days (35-37 d old). The DEX-induced lipid uptake and oxidation imbalance, which was estimated by increased fatty acid transport protein 1 (FATP1) expression and decreased carnitine palmitoyl transferase 1 activity, contributed to skeletal muscle lipid accumulation. More sensitive than glycolytic muscle, the oxidative muscle in DEX-treated chickens showed a decrease in the AMP to ATP ratio, a decrease in AMP-activated protein kinase (AMPK) alpha phosphorylation and its activity, as well as an increase in the phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal p70S6 kinase, without Akt activation. DEX-stimulated lipid deposition was augmented by PA, but alleviated by OA, in response to pathways that were regulated differently, including AMPK, mTOR and FATP1. CONCLUSIONS DEX-induced intramuscular lipid accumulation was aggravated by SFA but alleviated by unsaturated fatty acid. The suppressed AMPK and augmented mTOR signaling pathways were involved in glucocortcoid-mediated enhanced intramuscular fat accumulation.
Collapse
|