1
|
Cai W, Rong D, Ding J, Zhang X, Wang Y, Fang Y, Xiao J, Yang S, Wang H. Activation of the PERK/eIF2α axis is a pivotal prerequisite of taxanes to cancer cell apoptosis and renders synergism to overcome paclitaxel resistance in breast cancer cells. Cancer Cell Int 2024; 24:249. [PMID: 39020371 PMCID: PMC11256575 DOI: 10.1186/s12935-024-03443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Microtubule polymerization is usually considered as the upstream of apoptotic cell death induced by taxanes, but recently published studies provide more insights into the mechanisms responsible for the antineoplastic effect of taxanes. In this study, we figure out the role of the stress-related PERK/eIF2α axis in tumor cell death upon taxane treatment along with paclitaxel resistance. METHODS Utilizing immunoblot assay, the activation status of PERK-eIF2α signaling was detected in a panel of cancer cell lines after the treatment of taxanes. The causal role of PERK-eIF2α signaling in the cancer cell apoptosis induced by taxanes was examined via pharmacological and genetic inhibitions of PERK. The relationship between microtubule polymerization and PERK-eIF2α activation was explored by immunofluorescent and immunoblotting assays. Eventaually, the combined therapeutic effect of paclitaxel (PTX) and CCT020312, a PERK agonist, was investigated in PTX-resistant breast cancer cells in vitro and in vivo. RESULTS PERK-eIF2α axis was dramatically activated by taxanes in several cancer cell types. Pharmacological or genetic inhibition of PERK efficiently impaired taxane-induced apoptotic cell death, independent of the cellular microtubule polymerization status. Moreover, PTX was able to activate the PERK/eIF2α axis in a very low concentration without triggering microtubule polymerization. In PTX-resistant breast cancer cells, the PERK/eIF2α axis was attenuated in comparison with the PTX-sensitive counterparts. Reactivation of the PERK/eIF2α axis in the PTX-resistant breast cancer cells with PERK agonist sensitized them to PTX in vitro. Combination treatment of the xenografted PTX-resistant breast tumors with PERK agonist and PTX validated the synergic effect of PTX and PERK activation in vivo. CONCLUSION Activation of the PERK/eIF2α axis is a pivotal prerequisite of taxanes to initiate cancer cell apoptosis, which is independent of the well-known microtubule polymerization-dependent manner. Simultaneous activation of PERK-eIF2α signaling would be a promising therapeutic strategy to overcome PTX resistance in breast cancer or other cancers.
Collapse
Affiliation(s)
- Wanhua Cai
- Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Dade Rong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Jiayu Ding
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Xiaomei Zhang
- Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China
| | - Yuwei Wang
- Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China
- School of Medicine, Xizang Minzu University, No.6 Wenhui Donglu, Xianyang, 712082, China
| | - Ying Fang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Jing Xiao
- Department of Clinical Laboratory, Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China.
| | - Shulan Yang
- Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China.
- School of Medicine, Xizang Minzu University, No.6 Wenhui Donglu, Xianyang, 712082, China.
- Clinical Medical Research Centre for Plateau Gastroenterological Disease of Xizang Autonomous Region, Xizang Minzu University, Xianyang 712082, China.
| |
Collapse
|
2
|
Jin Y, Wang L, Jin C, Zhang N, Shimizu S, Xiao W, Guo C, Liu X, Si H. A Novel Inhibitor of Poly( ADP- Ribose) Polymerase-1 Inhibits Proliferation of a BRCA-Deficient Breast Cancer Cell Line via the DNA Damage- Activated cGAS-STING Pathway. Chem Res Toxicol 2024; 37:561-570. [PMID: 38534178 DOI: 10.1021/acs.chemrestox.3c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Loss-of-function mutations in the Breast Cancer Susceptibility Gene (BRCA1 and BRCA2) are often detected in patients with breast cancer. Poly(ADP-ribose) polymerase-1 (PARP1) plays a key role in the repair of DNA strand breaks, and PARP inhibitors have been shown to induce highly selective killing of BRCA1/2-deficient tumor cells, a mechanism termed synthetic lethality. In our previous study, a novel PARP1 inhibitor─(E)-2-(2,3-dibromo-4,5-dimethoxybenzylidene)-N-(4-fluorophenyl) hydrazine-1-carbothioamide (4F-DDC)─was synthesized, which significantly inhibited PARP1 activity with an IC50 value of 82 ± 9 nM. The current study aimed to explore the mechanism(s) underlying the antitumor activity of 4F-DDC under in vivo and in vitro conditions. 4F-DDC was found to selectively inhibit the proliferation of BRCA mutant cells, with highly potent effects on HCC-1937 (BRCA1-/-) cells. Furthermore, 4F-DDC was found to induce apoptosis and G2/M cell cycle arrest in HCC-1937 cells. Interestingly, immunofluorescence and Western blot results showed that 4F-DDC induced DNA double strand breaks and further activated the cGAS-STING pathway in HCC-1937 cells. In vivo analysis results revealed that 4F-DDC inhibited the growth of HCC-1937-derived tumor xenografts, possibly via the induction of DNA damage and activation of the cGAS-STING pathway. In summary, the current study provides a new perspective on the antitumor mechanism of PARP inhibitors and showcases the therapeutic potential of 4F-DDC in the treatment of breast cancer.
Collapse
Affiliation(s)
- Yonglong Jin
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Lijie Wang
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chengxue Jin
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Na Zhang
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shosei Shimizu
- Department of Radiotherapy, Yizhou Tumor Hospital, Zhuozhou 072750, China
- Department of Radiotherapy, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Wenjing Xiao
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chuanlong Guo
- Department of Pharmacy, Qingdao University of Science and Technology, Qingdao 266041, China
| | - Xiguang Liu
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hongzong Si
- School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
3
|
Medina-Rivera M, Phelps S, Sridharan M, Becker J, Lamb N, Kumar C, Sutton M, Bielinsky A, Balakrishnan L, Surtees J. Elevated MSH2 MSH3 expression interferes with DNA metabolism in vivo. Nucleic Acids Res 2023; 51:12185-12206. [PMID: 37930834 PMCID: PMC10711559 DOI: 10.1093/nar/gkad934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
The Msh2-Msh3 mismatch repair (MMR) complex in Saccharomyces cerevisiae recognizes and directs repair of insertion/deletion loops (IDLs) up to ∼17 nucleotides. Msh2-Msh3 also recognizes and binds distinct looped and branched DNA structures with varying affinities, thereby contributing to genome stability outside post-replicative MMR through homologous recombination, double-strand break repair (DSBR) and the DNA damage response. In contrast, Msh2-Msh3 promotes genome instability through trinucleotide repeat (TNR) expansions, presumably by binding structures that form from single-stranded (ss) TNR sequences. We previously demonstrated that Msh2-Msh3 binding to 5' ssDNA flap structures interfered with Rad27 (Fen1 in humans)-mediated Okazaki fragment maturation (OFM) in vitro. Here we demonstrate that elevated Msh2-Msh3 levels interfere with DNA replication and base excision repair in vivo. Elevated Msh2-Msh3 also induced a cell cycle arrest that was dependent on RAD9 and ELG1 and led to PCNA modification. These phenotypes also required Msh2-Msh3 ATPase activity and downstream MMR proteins, indicating an active mechanism that is not simply a result of Msh2-Msh3 DNA-binding activity. This study provides new mechanistic details regarding how excess Msh2-Msh3 can disrupt DNA replication and repair and highlights the role of Msh2-Msh3 protein abundance in Msh2-Msh3-mediated genomic instability.
Collapse
Affiliation(s)
- Melisa Medina-Rivera
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Samantha Phelps
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Madhumita Sridharan
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jordan Becker
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Natalie A Lamb
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Charanya Kumar
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Mark D Sutton
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Anja Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lata Balakrishnan
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jennifer A Surtees
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| |
Collapse
|
4
|
Aghajanshakeri S, Ataee R, Karami M, Aghajanshakeri S, Shokrzadeh M. Cytomodulatory characteristics of Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) against cypermethrin on skin fibroblast cells (HFF-1). Toxicology 2023; 499:153655. [PMID: 37871686 DOI: 10.1016/j.tox.2023.153655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The hematopoietic factor granulocyte macrophage-colony stimulating factor (GM-CSF) has been identified via its capacity to promote bone marrow progenitors' development and differentiation into granulocytes and macrophages. Extensive pre-clinical research has established its promise as a critical therapeutic target in an assortment of inflammatory and autoimmune disorders. Despite the broad literature on GM-CSF as hematopoietic of stem cells, the cyto/geno protective aspects remain unknown. This study aimed to assess the cyto/geno protective possessions of GM-CSF on cypermethrin-induced cellular toxicity on HFF-1 cells as an in vitro model. In pre-treatment culture, cells were exposed to various GM-CSF concentrations (5, 10, 20, and 40 ng/mL) with cypermethrin at IC50 (5.13 ng/mL). Cytotoxicity, apoptotic rates, and genotoxicity were measured using the MTT, Annexin V-FITC/PI staining via flow-cytometry, and the comet assay. Cypermethrin at 5.13 ng/mL revealed cytotoxicity, apoptosis, oxidative stress, and genotoxicity while highlighting GM-CSF's protective properties on HFF-1. GM-CSF markedly attenuated cypermethrin-induced apoptotic cell death (early and late apoptotic rates). GM-CSF considerably regulated oxidative stress and genotoxicity by reducing the ROS and LPO levels, maintaining the status of GSH and activity of SOD, and suppressing genotoxicity in the comet assay parameters. Therefore, GM-CSF could be promising as an antioxidant, anti-apoptotic, genoprotective and cytomodulating agent.
Collapse
Affiliation(s)
- Shaghayegh Aghajanshakeri
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Ramin Ataee
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Karami
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahin Aghajanshakeri
- Biological Oncology Department, Orchid Pharmed, CinnaGen Pharmaceutical Company, Tehran, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
5
|
Wang H, Wang H, Guan J, Guan W, Liu Z. Lead induces mouse skin fibroblast apoptosis by disrupting intracellular homeostasis. Sci Rep 2023; 13:9670. [PMID: 37316700 DOI: 10.1038/s41598-023-36835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/10/2023] [Indexed: 06/16/2023] Open
Abstract
Lead (Pb) is a critical industrial and environmental contaminant that can cause pathophysiological changes in several cellular and organ systems and their processes, including cell proliferation, differentiation, apoptosis, and survival. The skin is readily exposed to and damaged by Pb, but the mechanisms through which Pb damages cells are not fully understood. We examined the apoptotic properties of Pb in mouse skin fibroblast (MSF) in vitro. Treatment of fibroblasts with 40, 80, and 160 μM Pb for 24 h revealed morphological alterations, DNA damage, enhanced caspase-3, -8, and -9 activities, and apoptotic cell population. Furthermore, apoptosis was dosage (0-160 μM) and time (12-48 h) dependent. Concentrations of intracellular calcium (Ca2+) and reactive oxygen species were increased, and the mitochondrial membrane potential was decreased in exposed cells. Cell cycle arrest was evident at the G0/G1 phase. The Bax, Fas, caspase-3 and -8, and p53 transcript levels were increased, whereas Bcl-2 gene expression was decreased. Based on our analysis, Pb triggers MSF apoptosis bydisrupting intracellular homeostasis. Our findings enrich the knowledge about the mechanistic function of Pb-induced cytotoxicity on human skin fibroblasts and could potentially guide future Pb health risk assessments.
Collapse
Affiliation(s)
- Hui Wang
- Jinzhou Medical University, Jinzhou, 121001, China
- Meat Processing and Safety Control Engineering Technology Research Center of Liaoning Province, Jinzhou, 121001, China
| | - Huinuan Wang
- Jinzhou Medical University, Jinzhou, 121001, China
| | - Jiawen Guan
- Jinzhou Medical University, Jinzhou, 121001, China
- Meat Processing and Safety Control Engineering Technology Research Center of Liaoning Province, Jinzhou, 121001, China
| | - Weijun Guan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Zheng Liu
- Jinzhou Medical University, Jinzhou, 121001, China.
- Meat Processing and Safety Control Engineering Technology Research Center of Liaoning Province, Jinzhou, 121001, China.
| |
Collapse
|
6
|
Dong W, Chen W, Zou H, Shen Z, Yu D, Chen W, Jiang H, Yan X, Yu Z. Ginsenoside Rb1 Prevents Oxidative Stress-Induced Apoptosis and Mitochondrial Dysfunction in Muscle Stem Cells via NF- κB Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9159101. [PMID: 36466088 PMCID: PMC9715322 DOI: 10.1155/2022/9159101] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 07/22/2023]
Abstract
Sarcopenia, featured by the progressive loss of skeletal muscle function and mass, is associated with the impaired function of muscle stem cells (MuSCs) caused by increasing oxidative stress in senescent skeletal muscle tissue during aging. Intact function of MuSCs maintains the regenerative potential as well as the homeostasis of skeletal muscle tissues during aging. Ginsenoside Rb1, a natural compound from ginseng, exhibited the effects of antioxidation and against apoptosis. However, its effects of restoring MuSC function during aging and improving age-related sarcopenia remained unknown. In this study, we investigated the role of Rb1 in improving MuSC function and inhibiting apoptosis by reducing oxidative stress levels. We found that Rb1 inhibited the accumulation of reactive oxygen species (ROS) and protected the cells from oxidative stress to attenuate the H2O2-induced cytotoxicity. Rb1 also blocked oxidative stress-induced apoptosis by inhibiting the activation of caspase-3/9, which antagonized the decrease in mitochondrial content and the increase in mitochondrial abnormalities caused by oxidative stress via promoting the protein expression of genes involved in mitochondrial biogenesis. Mechanistically, it was proven that Rb1 exerted its antioxidant effects and avoided the apoptosis of myoblasts by targeting the core regulator of the nuclear factor-kappa B (NF-κB) signal pathway. Therefore, these findings suggest that Rb1 may have a beneficial role in the prevention and treatment of MuSC exhaustion-related diseases like sarcopenia.
Collapse
Affiliation(s)
- Wenxi Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenhao Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongbo Zou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gastrointestinal Surgery, People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Zile Shen
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dingye Yu
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Weizhe Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haojie Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xialin Yan
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Colorectal Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Wlodkowic D, Jansen M. High-throughput screening paradigms in ecotoxicity testing: Emerging prospects and ongoing challenges. CHEMOSPHERE 2022; 307:135929. [PMID: 35944679 DOI: 10.1016/j.chemosphere.2022.135929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The rapidly increasing number of new production chemicals coupled with stringent implementation of global chemical management programs necessities a paradigm shift towards boarder uses of low-cost and high-throughput ecotoxicity testing strategies as well as deeper understanding of cellular and sub-cellular mechanisms of ecotoxicity that can be used in effective risk assessment. The latter will require automated acquisition of biological data, new capabilities for big data analysis as well as computational simulations capable of translating new data into in vivo relevance. However, very few efforts have been so far devoted into the development of automated bioanalytical systems in ecotoxicology. This is in stark contrast to standardized and high-throughput chemical screening and prioritization routines found in modern drug discovery pipelines. As a result, the high-throughput and high-content data acquisition in ecotoxicology is still in its infancy with limited examples focused on cell-free and cell-based assays. In this work we outline recent developments and emerging prospects of high-throughput bioanalytical approaches in ecotoxicology that reach beyond in vitro biotests. We discuss future importance of automated quantitative data acquisition for cell-free, cell-based as well as developments in phytotoxicity and in vivo biotests utilizing small aquatic model organisms. We also discuss recent innovations such as organs-on-a-chip technologies and existing challenges for emerging high-throughput ecotoxicity testing strategies. Lastly, we provide seminal examples of the small number of successful high-throughput implementations that have been employed in prioritization of chemicals and accelerated environmental risk assessment.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC, 3083, Australia.
| | - Marcus Jansen
- LemnaTec GmbH, Nerscheider Weg 170, 52076, Aachen, Germany
| |
Collapse
|
8
|
Song Y, Zhao J, Qiao T, Li L, Shi D, Sun Y, Shen W, Sun X. Maternal ochratoxin A exposure impairs meiosis progression and primordial follicle formation of F1 offspring. Food Chem Toxicol 2022; 168:113386. [PMID: 36007852 DOI: 10.1016/j.fct.2022.113386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Ochratoxin A (OTA), a mycotoxin produced by Aspergillus and Penicillium fungi, widely contaminates feed, food and their raw materials. OTA has been proved to have hepatotoxicity and nephrotoxicity. Its reproductive toxicity needs to be further explored. We found that OTA inhibited the progression of meiosis, keeping more germ cells at leptotene and zygotene. Furthermore, OTA impaired primordial follicle formation, keeping more germ cells in cysts. Increased γH2AX suggested that DNA damage occurred both at the stages of meiosis and primordial follicle formation. The expression of RAD51 increased with the concentration of OTA at the stage of meiosis, while decreased later, suggesting the activated DNA repair induced by DNA damage then inhibited by persistent and excessive stress of DNA damage, which further induced apoptosis. DEGs caused by OTA were also mainly enriched in DNA damage and repair through RNA-seq analysis. Higher level of reactive oxygen species (ROS) and increased degree of oxidative damage marker 8-OHdG were both found in the ovaries exposed to OTA. We concluded that maternal OTA exposure affected meiosis progression and primordial follicle formation via oxidative damage and DNA repair. Clarification of the mechanism of OTA will contribute to the development of more effective detoxification strategies.
Collapse
Affiliation(s)
- Yue Song
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jinxin Zhao
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tian Qiao
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dachuan Shi
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Yonghong Sun
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Xiaofeng Sun
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
9
|
Kundura L, Gimenez S, Cezar R, André S, Younas M, Lin YL, Portales P, Lozano C, Boulle C, Reynes J, Thierry V, Mettling C, Pasero P, Muller L, Lefrant JY, Roger C, Claret PG, Duvnjak S, Loubet P, Sotto A, Tran TA, Estaquier J, Corbeau P. Angiotensin II induces reactive oxygen species, DNA damage, and T cell apoptosis in severe COVID-19. J Allergy Clin Immunol 2022; 150:594-603.e2. [PMID: 35841981 PMCID: PMC9278992 DOI: 10.1016/j.jaci.2022.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/24/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
Background Lymphopenia is predictive of survival in patients with coronavirus disease 2019 (COVID-19). Objective The aim of this study was to understand the cause of the lymphocyte count drop in severe forms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Methods Monocytic production of reactive oxygen species (ROSs) and T-cell apoptosis were measured by flow cytometry, DNA damage in PBMCs was measured by immunofluorescence, and angiotensin II (AngII) was measured by ELISA in patients infected with SARS-CoV-2 at admission to an intensive care unit (ICU) (n = 29) or not admitted to an ICU (n = 29) and in age- and sex-matched healthy controls. Results We showed that the monocytes of certain patients with COVID-19 spontaneously released ROSs able to induce DNA damage and apoptosis in neighboring cells. Of note, high ROS production was predictive of death in ICU patients. Accordingly, in most patients, we observed the presence of DNA damage in up to 50% of their PBMCs and T-cell apoptosis. Moreover, the intensity of this DNA damage was linked to lymphopenia. SARS-CoV-2 is known to induce the internalization of its receptor, angiotensin-converting enzyme 2, which is a protease capable of catabolizing AngII. Accordingly, in certain patients with COVID-19 we observed high plasma levels of AngII. When looking for the stimulus responsible for their monocytic ROS production, we revealed that AngII triggers ROS production by monocytes via angiotensin receptor I. ROSs released by AngII-activated monocytes induced DNA damage and apoptosis in neighboring lymphocytes. Conclusion We conclude that T-cell apoptosis provoked via DNA damage due to the release of monocytic ROSs could play a major role in COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Lucy Kundura
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France
| | - Sandrine Gimenez
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France
| | - Renaud Cezar
- Immunology Department, Nîmes University Hospital; Nîmes, France
| | - Sonia André
- INSERM U1124, Université de Paris; Paris, France
| | - Mehwish Younas
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France
| | - Yea-Lih Lin
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France
| | - Pierre Portales
- Immunology Department, Montpellier University Hospital; Montpellier, France
| | - Claire Lozano
- Immunology Department, Montpellier University Hospital; Montpellier, France
| | - Charlotte Boulle
- Infectious diseases Department, Montpellier University Hospital; Montpellier, France
| | - Jacques Reynes
- Infectious diseases Department, Montpellier University Hospital; Montpellier, France
| | - Vincent Thierry
- Immunology Department, Montpellier University Hospital; Montpellier, France
| | - Clément Mettling
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France
| | - Philippe Pasero
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France
| | - Laurent Muller
- Surgical Intensive Care Department, Nîmes University Hospital; Nîmes, France
| | - Jean-Yves Lefrant
- Surgical Intensive Care Department, Nîmes University Hospital; Nîmes, France
| | - Claire Roger
- Surgical Intensive Care Department, Nîmes University Hospital; Nîmes, France
| | - Pierre-Géraud Claret
- Medical and Surgical Emergency Department, Nîmes University Hospital; Nîmes, France
| | - Sandra Duvnjak
- Gerontology Department, Nîmes University Hospital; Nîmes, France
| | - Paul Loubet
- Infectious diseases Department, Nîmes University Hospital; Nîmes, France
| | - Albert Sotto
- Infectious diseases Department, Nîmes University Hospital; Nîmes, France
| | - Tu-Anh Tran
- Pediatrics Department, Nîmes University Hospital; Nîmes, France
| | - Jérôme Estaquier
- INSERM U1124, Université de Paris; Paris, France; Laval University Research Center; Quebec City, Quebec, Canada
| | - Pierre Corbeau
- Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France; Immunology Department, Nîmes University Hospital; Nîmes, France
| |
Collapse
|
10
|
GM-CSF Protects Macrophages from DNA Damage by Inducing Differentiation. Cells 2022; 11:cells11060935. [PMID: 35326386 PMCID: PMC8946476 DOI: 10.3390/cells11060935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
At inflammatory loci, pro-inflammatory activation of macrophages produces large amounts of reactive oxygen species (ROS) that induce DNA breaks and apoptosis. Given that M-CSF and GM-CSF induce two different pathways in macrophages, one for proliferation and the other for survival, in this study we wanted to determine if these growth factors are able to protect against the DNA damage produced during macrophage activation. In macrophages treated with DNA-damaging agents we found that GM-CSF protects better against DNA damage than M-CSF. Treatment with GM-CSF resulted in faster recovery of DNA damage than treatment with M-CSF. The number of apoptotic cells induced after DNA damage was higher in the presence of M-CSF. Protection against DNA damage by GM-CSF is not related to its higher capacity to induce proliferation. GM-CSF induces differentiation markers such as CD11c and MHCII, as well as the pro-survival Bcl-2A1 protein, which make macrophages more resistant to DNA damage.
Collapse
|
11
|
Qin HM, Herrera D, Liu DF, Chen CQ, Nersesyan A, Mišík M, Knasmueller S. Genotoxic properties of materials used for endoprostheses: Experimental and human data. Food Chem Toxicol 2020; 145:111707. [PMID: 32889016 DOI: 10.1016/j.fct.2020.111707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/13/2020] [Accepted: 08/22/2020] [Indexed: 12/28/2022]
Abstract
Approximately 2 million endoprostheses are implanted annually and metal ions as well as particles are released into the body from the materials which are used. This review describes the results of studies concerning genotoxic damage caused by artificial joints. DNA damage leads to various adverse long-term health effects in humans including cancer. Experiments with mammalian cells showed that metal ions and particles from orthopedic materials cause DNA damage. Induction of chromosomal aberrations (CA) was found in several in vitro experiments and in studies with rodents with metals from orthopedic materials. Human studies focused mainly on induction of CA (7 studies). Only few investigations (4) concerned sister chromatid exchanges, oxidative DNA damage (2) and micronucleus formation (1). CA are a reliable biomarker for increased cancer risks in humans) and were increased in all studies in patients with artificial joints. No firm conclusion can be drawn at present if the effects in humans are due to oxidative stress and if dissolved metal ions or release particles play a role. Our findings indicate that patients with artificial joints may have increased cancer risks due to damage of the genetic material. Future studies should be performed to identify safe materials and to study the molecular mechanisms in detail.
Collapse
Affiliation(s)
- Hong-Min Qin
- Hip Surgery of Orthopedic Hospital, Affiliated Hospital of Panzhihua University, Panzhihua, 617000, Sichuan Province, China
| | - Denise Herrera
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, 1090, Borschkegasse 8A, Vienna, Austria
| | - Dian-Feng Liu
- Hip Surgery of Orthopedic Hospital, Affiliated Hospital of Panzhihua University, Panzhihua, 617000, Sichuan Province, China
| | - Chao-Qian Chen
- Hip Surgery of Orthopedic Hospital, Affiliated Hospital of Panzhihua University, Panzhihua, 617000, Sichuan Province, China
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, 1090, Borschkegasse 8A, Vienna, Austria
| | - Miroslav Mišík
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, 1090, Borschkegasse 8A, Vienna, Austria
| | - Siegfried Knasmueller
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, 1090, Borschkegasse 8A, Vienna, Austria.
| |
Collapse
|
12
|
Zhao H, Huang X, Halicka HD, Darzynkiewicz Z. Detection of Histone H2AX Phosphorylation on Ser-139 as an Indicator of DNA Damage. ACTA ACUST UNITED AC 2020; 89:e55. [PMID: 31237414 DOI: 10.1002/cpcy.55] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This unit describes immunocytochemical detection of histone H2AX phosphorylated on Ser-139 (γH2AX) to reveal DNA damage, particularly when the damage involves the presence of DNA double-strand breaks (DSBs). These breaks often result from DNA damage induced by ionizing radiation or by treatment with anticancer drugs such as DNA topoisomerase inhibitors. Furthermore, DSBs are generated in the course of DNA fragmentation during apoptosis. The unit presents strategies to distinguish radiation- or drug-induced DNA breaks from those intrinsically formed in untreated cells or associated with apoptosis. The protocol describes immunocytochemical detection of γH2AX combined with measurement of DNA content to identify cells that have DNA damage and concurrently to assess their cell-cycle phase. The detection is based on indirect immunofluorescence using FITC- or Alexa Fluor 488-labeled antibody, with DNA counterstained with propidium iodide and cellular RNA removed with RNase A. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Hong Zhao
- Brander Cancer Research Institute, Department of Pathology, New York Medical College, Valhalla, New York
| | - Xuan Huang
- Brander Cancer Research Institute, Department of Pathology, New York Medical College, Valhalla, New York
| | - H Dorota Halicka
- Brander Cancer Research Institute, Department of Pathology, New York Medical College, Valhalla, New York
| | - Zbigniew Darzynkiewicz
- Brander Cancer Research Institute, Department of Pathology, New York Medical College, Valhalla, New York
| |
Collapse
|
13
|
Regulation of Nrf2 and NF-κB during lead toxicity in bovine granulosa cells. Cell Tissue Res 2020; 380:643-655. [PMID: 32185525 DOI: 10.1007/s00441-020-03177-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
Lead (Pb), one of the pervasive and protracted environmental heavy metals, is believed to affect the female reproductive system in many species. The Nrf2 and NF-κB are the two key transcriptional factors regulating cellular redox status and response against stress and inflammation respectively, showing an interaction between each other. The aim of this study is to investigate the effect of Pb on bovine granulosa cells (GCs) and its association with the regulation of Nrf2 and NF-κB pathways. For this, bovine GCs were cultured in vitro and exposed to different doses of Pb for 2 h. Cellular response to Pb insult was investigated 24 h post treatment. Results showed that exposure of GCs to Pb-induced ROS accumulation and protein carbonylation. Additionally, GCs exhibited reduction in cell viability and decrease in the expression of cell proliferation marker genes (CCND2 and PCNA). This was accompanied by cell cycle arrest at G0/G1 phase. Moreover, Pb downregulated both Nrf2 and NF-κB and their downstream genes. Lead increased the expression of endoplasmic reticulum (ER) stress marker genes (GRP78 and CHOP) and the proapoptotic gene (caspase-3) while the antiapoptotic gene (BCL-2) was reduced. Our findings suggest that Pb-driven oxidative stress affected GCs proliferation, enhances ER stress, induces cell cycle arrest and mediates apoptosis probably via disruption of Nrf2/NF-κB cross-talk. However, further functional analysis is required to explain different aspects of Nrf2 and NF-κB interactions under metal challenge.
Collapse
|
14
|
Kang T, Ge M, Wang R, Tan Z, Zhang X, Zhu C, Liu H, Chen S. Arsenic sulfide induces RAG1-dependent DNA damage for cell killing by inhibiting NFATc3 in gastric cancer cells. J Exp Clin Cancer Res 2019; 38:487. [PMID: 31822296 PMCID: PMC6902349 DOI: 10.1186/s13046-019-1471-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022] Open
Abstract
Background Arsenic sulfide was found to have potential anti-cancer activities, especially in gastric cancer. However, the underlying mechanism need to be further explored. This study was aimed to investigate the mechanism of arsenic compounds on gastric cancer. Methods Gastric cancer cell lines were infected with lentiviral vector carrying shNFATc3 and/or treated with arsenic sulfide. MTT assay were performed to assess cell growth. Flow cytometer assays were used to detect cell cycle and reactive oxygen species (ROS) level of gastric cancer cells. Western blot was carried out to detect nuclear factor of activated T-cells, cytoplasmic 3 (NFATc3), cell cycle markers, DNA damage pathway protein expression as well as other protein expression in gastric cancer cell lines. The expression of recombination activating gene 1 (RAG1) in gastric cancer cell lines was determined by RNA-sequencing analyses and Real-Time qPCR. The effect of NFATc3 on RAG1 were determined by CHIP-qPCR assay. The effect of arsenic sulfide on AGS cells was evaluated in vivo. Results We show that arsenic sulfide as well as knockdown of NFATc3 resulted in increased double-strand DNA damage in gastric cancer cells by increasing the expression of RAG1, an endonuclease essential for immunoglobulin V(D) J recombination. Overexpression of NFATc3 blocked the expression of RAG1 expression and DNA damage induced by arsenic sulfide. Arsenic sulfide induced cellular oxidative stress to redistribute NFATc3, thereby inhibiting its transcriptional function, which can be reversed by N-acetyl-L-cysteine (NAC). We show that NFATc3 targets the promoter of RAG1 for transcriptional inhibition. We further showed that NFATc3 upregulation and RAG1 downregulation significantly associated with poor prognosis in patients with gastric cancer. Our in vivo experiments further confirmed that arsenic sulfide exerted cytotoxic activity against gastric cancer cells through inhibiting NFATc3 to activate RAG1 pathway. Conclusion These results demonstrate that arsenic sulfide targets NFATc3 to induce double strand DNA break (DSB) for cell killing through activating RAG1 expression. Our results link arsenic compound to the regulation of DNA damage control and RAG1 expression as a mechanism for its cytotoxic effect.
Collapse
|
15
|
Noorimotlagh Z, Mirzaee SA, Ahmadi M, Jaafarzadeh N, Rahim F. The possible DNA damage induced by environmental organic compounds: The case of Nonylphenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:171-181. [PMID: 29684747 DOI: 10.1016/j.ecoenv.2018.04.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Human impact on the environment leads to the release of many pollutants that produce artificial compounds, which can have harmful effects on the body's endocrine system; these are known as endocrine disruptors (EDs). Nonylphenol (NP) is a chemical compound with a nonyl group that is attached to a phenol ring. NP-induced H2AX is a sensitive genotoxic biomarker for detecting possible DNA damage; it also causes male infertility and carcinogenesis. We attempt to comprehensively review all the available evidence about the different ways with descriptive mechanisms for explaining the possible DNA damage that is induced by NP. We systematically searched several databases, including PubMed, Scopus, Web of Science, and gray literature, such as Google Scholar by using medical subheading (MeSH) terms and various combinations of selected keywords from January 1970 to August 2017. The initial search identified 62,737 potentially eligible studies; of these studies, 33 were included according to the established inclusion criteria. Thirty-three selected studies, include the topics of animal model (n = 21), cell line (n = 6), human model (n = 4), microorganisms (n = 1), solid DNA (n = 1), infertility (n = 4), apoptosis (n = 6), and carcinogenesis (n = 3). This review highlighted the possible deleterious effects of NP on DNA damage through the ability to produce ROS/RNS. Finally, it is significant to observe caution at this stage with the continued use of environmental pollutants such as NP, which may induce DNA damage and apoptosis.
Collapse
Affiliation(s)
- Zahra Noorimotlagh
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyyed Abbas Mirzaee
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mehdi Ahmadi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Neemat Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
16
|
Shubernetskaya O, Skvortsov D, Evfratov S, Rubtsova M, Belova E, Strelkova O, Cherepaninets V, Zhironkina O, Olovnikov A, Zvereva M, Dontsova O, Kireev I. Interstitial telomeric repeats-associated DNA breaks. Nucleus 2017; 8:641-653. [PMID: 28914588 PMCID: PMC5788545 DOI: 10.1080/19491034.2017.1356501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 06/28/2017] [Accepted: 07/04/2017] [Indexed: 02/08/2023] Open
Abstract
During a cell's lifespan, DNA break formation is a common event, associated with many processes, from replication to apoptosis. Most of DNA breaks are readily repaired, but some are meant to persist in time, such as the chromosome ends, protected by telomeres. Besides them, eukaryotic genomes comprise shorter stretches of interstitial telomeric repeats. We assumed that the latter may also be associated with the formation of DNA breaks meant to persist in time. In zebrafish and mouse embryos, cells containing numerous breakage foci were identified. These breaks were not associated with apoptosis or replication, nor did they seem to activate DNA damage response machinery. Unlike short-living, accidental sparse breaks, the ones we found seem to be closely associated, forming discrete break foci. A PCR-based method was developed, allowing specific amplification of DNA regions located between inverted telomeric repeats associated with breaks. The cloning and sequencing of such DNA fragments were found to denote some specificity in their distribution for different tissue types and development stages.
Collapse
Affiliation(s)
- Olga Shubernetskaya
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry Skvortsov
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Sergey Evfratov
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Maria Rubtsova
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Elena Belova
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Olga Strelkova
- A.N. Belozersky Institute of Physico-chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Varvara Cherepaninets
- A.N. Belozersky Institute of Physico-chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Oxana Zhironkina
- A.N. Belozersky Institute of Physico-chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Maria Zvereva
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
- A.N. Belozersky Institute of Physico-chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Olga Dontsova
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
- A.N. Belozersky Institute of Physico-chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia
| | - Igor Kireev
- A.N. Belozersky Institute of Physico-chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
17
|
Mariotti S, Pardini M, Teloni R, Gagliardi MC, Fraziano M, Nisini R. A method permissive to fixation and permeabilization for the multiparametric analysis of apoptotic and necrotic cell phenotype by flow cytometry. Cytometry A 2017; 91:1115-1124. [DOI: 10.1002/cyto.a.23268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/07/2017] [Accepted: 09/28/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Sabrina Mariotti
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità; Roma Italy
| | - Manuela Pardini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità; Roma Italy
| | - Raffaela Teloni
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità; Roma Italy
| | | | | | - Roberto Nisini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità; Roma Italy
| |
Collapse
|
18
|
ATM Activation and H2AX Phosphorylation Induced by Genotoxic Agents Assessed by Flow- and Laser Scanning Cytometry. Methods Mol Biol 2017; 1599:183-196. [PMID: 28477120 DOI: 10.1007/978-1-4939-6955-5_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activation of Ataxia Telangiectasia Mediated protein kinase (ATM) by its phosphorylation on serine 1981 and phosphorylation of histone H2AX on serine 139 (γH2AX) are the key events reporting DNA damage, primarily formation of DNA double strand breaks. These events are detected immunocytochemically in individual cells using phospho-specific Abs. The protocols are presented that describe the methodology of immunofluorescent labeling of cells in conjunction with specific staining of cellular DNA. Flow- and imaging-cytometry, the latter exemplified as laser scanning cytometry, is used to quantify intensity of cellular fluorescence reporting activation of ATM and induction of γH2AX with respect to cellular DNA content, which in turn reports the cell cycle phase. Different protocols are presented for analysis of cells either grown in suspension or attached to surface of culture vessels. Examples of ATM activation and H2AX phosphorylation in response to DNA damage in leukemic HL-60 cells by DNA topoisomerase I inhibitor topotecan, and in lung carcinoma A549 cells by hydrogen peroxide, are presented.
Collapse
|
19
|
Halicka D, Zhao H, Li J, Garcia J, Podhorecka M, Darzynkiewicz Z. DNA Damage Response Resulting from Replication Stress Induced by Synchronization of Cells by Inhibitors of DNA Replication: Analysis by Flow Cytometry. Methods Mol Biol 2017; 1524:107-119. [PMID: 27815899 DOI: 10.1007/978-1-4939-6603-5_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell synchronization is often achieved by transient inhibition of DNA replication. When cultured in the presence of such inhibitors as hydroxyurea, aphidicolin or excess of thymidine the cells that become arrested at the entrance to S-phase upon release from the block initiate progression through S then G2 and M. However, exposure to these inhibitors at concentrations commonly used to synchronize cells leads to activation of ATR and ATM protein kinases as well as phosphorylation of Ser139 of histone H2AX. This observation of DNA damage signaling implies that synchronization of cells by these inhibitors is inducing replication stress. Thus, a caution should be exercised while interpreting data obtained with use of cells synchronized this way since they do not represent unperturbed cell populations in a natural metabolic state. This chapter critically outlines virtues and vices of most cell synchronization methods. It also presents the protocol describing an assessment of phosphorylation of Ser139 on H2AX and activation of ATM in cells treated with aphidicolin, as a demonstrative of one of several DNA replication inhibitors that are being used for cell synchronization. Phosphorylation of Ser139H2AX and Ser1981ATM in individual cells is detected immunocytochemically with phospho-specific Abs and intensity of immunofluorescence is measured by flow cytometry. Concurrent measurement of cellular DNA content followed by multiparameter analysis allows one to correlate the extent of phosphorylation of these proteins in response to aphidicolin with the cell cycle phase.
Collapse
Affiliation(s)
- Dorota Halicka
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, 40 Sunshine Cottage Road, Valhalla, NY, 10595, USA
| | - Hong Zhao
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, 40 Sunshine Cottage Road, Valhalla, NY, 10595, USA
| | - Jiangwei Li
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, 40 Sunshine Cottage Road, Valhalla, NY, 10595, USA
| | - Jorge Garcia
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, 40 Sunshine Cottage Road, Valhalla, NY, 10595, USA
| | - Monika Podhorecka
- Department of Hemato-Oncology and Bone Marrow Transplantation, Medical University, Lublin, Poland
| | - Zbigniew Darzynkiewicz
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, 40 Sunshine Cottage Road, Valhalla, NY, 10595, USA.
| |
Collapse
|
20
|
Hollmann G, Linden R, Giangrande A, Allodi S. Increased p53 and decreased p21 accompany apoptosis induced by ultraviolet radiation in the nervous system of a crustacean. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 173:1-8. [PMID: 26807499 DOI: 10.1016/j.aquatox.2015.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/14/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
Ultraviolet (UV) radiation can produce biological damage, leading the cell to apoptosis by the p53 pathway. This study evaluated some molecular markers of the apoptosis pathway induced by UVA, UVB and UVA+ UVB (Solar Simulator, SIM) in environmental doses, during five consecutive days of exposure, in the brain of the crab Ucides cordatus. We evaluated the central nervous system (CNS) by immunoblotting the content of proteins p53, p21, phosphorylated AKT, BDNF, GDNF, activated caspase-3 (C3) and phosphohistone H3 (PH3); and by immunohistochemical tests of the cells labeled for PH3 and C3. After the fifth day of exposure, UVB radiation and SIM increased the protein content of p53, increasing the content of AKT and, somehow, blocking p21, increasing the content of activated caspase-3, which led the cells to apoptosis. The signs of death affected the increase in neurotrophins, such as BDNF and GDNF, stimulating the apoptotic cascade of events. Immunohistochemical assays and immunoblotting showed that apoptosis was present in the brains of all UV groups, while the number of mitotic cells in the same groups decreased. In conclusion, environmental doses of UV can cause apoptosis by increasing p53 and decreasing p21, revealing an UV-damage pathway for U. cordatus.
Collapse
Affiliation(s)
- Gabriela Hollmann
- Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590, Brazil.
| | - Rafael Linden
- Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590, Brazil.
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire-IGBMC, INSERM, Strasbourg, France.
| | - Silvana Allodi
- Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590, Brazil.
| |
Collapse
|
21
|
Kong L, Wang S, Wu X, Zuo F, Qin H, Wu J. Paeoniflorin attenuates ultraviolet B-induced apoptosis in human keratinocytes by inhibiting the ROS-p38-p53 pathway. Mol Med Rep 2016; 13:3553-8. [PMID: 26936104 DOI: 10.3892/mmr.2016.4953] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 01/13/2016] [Indexed: 11/06/2022] Open
Abstract
Ultraviolet (UV) light is one of the most harmful environmental factors that contribute to skin damage. Exposure to UV induces extensive generation of reactive oxygen species (ROS), and results in photoaging and skin cancer development. One approach to protecting human skin against UV radiation is the use of antioxidants. In recent years, naturally occurring herbal compounds have gained considerable attention as protective agents for UV exposure. Paeoniflorin (PF) is a novel natural antioxidant, which is isolated from peony root (Radix Paeoniae Alba). The present study evaluated the protective effects of PF on UV‑induced skin damage in vitro, and demonstrated that the effects were mediated via the ROS‑p38‑p53 pathway. The results of the present study demonstrated that treatment with PF (25, 50, and 100 µM) significantly increased the percentage of viable keratinocytes after UV‑B exposure. In addition, cell death analysis indicated that PF treatment markedly reduced UV‑B‑radiation‑induced apoptosis in keratinocytes, which was accompanied by increased procaspase 3 expression and decreased cleaved caspase 3 expression. Treatment with PF markedly reduced the production of ROS, and inhibited the activation of p38 and p53 in human keratinocytes, thus suggesting that the ROS‑p38‑p53 pathway has a role in UV‑B‑induced skin damage. In conclusion, the present study reported that PF was able to attenuate UV‑B‑induced cell damage in human keratinocytes. Notably, these effects were shown to be mediated, at least in part, via inhibition of the ROS-p38-p53 pathway.
Collapse
Affiliation(s)
- Lingwen Kong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Shangshang Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xiao Wu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Fuguo Zuo
- Department of Dermatology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Haihong Qin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
22
|
Yedjou CG, Tchounwou HM, Tchounwou PB. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 13:ijerph13010056. [PMID: 26703663 PMCID: PMC4730447 DOI: 10.3390/ijerph13010056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 11/16/2022]
Abstract
In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO₃)₂-treated cells, indicative of membrane rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO₃)₂ exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO₃)₂ exposure and its associated adverse health effects.
Collapse
Affiliation(s)
- Clement G Yedjou
- Natural Chemotherapeutics Research Laboratory, NIH-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, MS 39217, USA.
| | - Hervey M Tchounwou
- Natural Chemotherapeutics Research Laboratory, NIH-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, MS 39217, USA.
| | - Paul B Tchounwou
- Natural Chemotherapeutics Research Laboratory, NIH-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, MS 39217, USA.
| |
Collapse
|
23
|
Xu ZZ, Fu WB, Jin Z, Guo P, Wang WF, Li JM. Reactive oxygen species mediate oridonin-induced apoptosis through DNA damage response and activation of JNK pathway in diffuse large B cell lymphoma. Leuk Lymphoma 2015; 57:888-98. [PMID: 26415087 DOI: 10.3109/10428194.2015.1061127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study investigated the cytotoxic effect of oridonin (ORI), a diterpenoid isolated from Rabdosia rubescens, in human diffuse large B cell lymphoma (DLBCL) in vitro and in vivo and the potential molecular mechanisms for ORI-induced cell apoptosis. ORI treatment caused reactive oxygen species (ROS)-mediated oxidative DNA damage response (DDR) and the c-Jun N-terminal kinase (JNK) pathway activation, leading to an induction of intrinsic apoptosis. ROS abolition blocked ORI-induced apoptosis and attenuated the expression of phospho-histone H2AX and phospho-JNK, indicating that ROS-mediated DNA damage and JNK pathway activation were involved in ORI-induced apoptosis. The systemic administration of ORI suppressed the growth of human DLBCL xenografts without showing significant toxicity. These findings suggest that ORI may have promising therapeutic application in DLBCL.
Collapse
Affiliation(s)
- Zi-Zhen Xu
- a Department of Laboratory Medicine , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , PR China ;,b Department of Hematology , Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine , Shanghai , PR China
| | - Wan-Bin Fu
- b Department of Hematology , Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine , Shanghai , PR China
| | - Zhen Jin
- b Department of Hematology , Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine , Shanghai , PR China
| | - Pei Guo
- b Department of Hematology , Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine , Shanghai , PR China
| | - Wen-Fang Wang
- b Department of Hematology , Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine , Shanghai , PR China
| | - Jun-Min Li
- a Department of Laboratory Medicine , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , PR China
| |
Collapse
|
24
|
Guo K, Gao R, Yu Y, Zhang W, Yang Y, Yang A. Quantitative mRNA expression analysis of selected genes in patients with early-stage hypothyroidism induced by treatment with iodine-131. Mol Med Rep 2015; 12:7673-80. [PMID: 26398137 DOI: 10.3892/mmr.2015.4350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 08/20/2015] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the molecular markers indicative of early-stage hypothyroidism induced by treatment with iodine-131, in order to assist in further investigations of radio iodine‑induced hypothyroidism. A total of 59 patients diagnosed with hyperthyroidism (male/female, 16/43; median age, 46.4 years) and 27 healthy subjects (male/female, 7/21; median age, 44.6 years) were included in the present study. All patients were treated with appropriate doses of iodine‑131 and, three months following treatment, the patients were subdivided into two groups: A group with early‑stage hypothyroidism symptoms, and a group with non‑early‑stage hypothyroidism, including euthyroid patients and patients remaining with hyperthyroidism. Tissue samples from the patients and healthy subjects were collected by fine needle biopsies, and the mRNA expression levels of B-cell lymphoma 2 (Bcl‑2), nuclear factor (NF)‑κB, Ku70, epidermal growth factor receptor (EGFR), early growth response 1 (Egr‑1), TP53 and ataxia telangiectasia mutated were analyzed using reverse transcription‑quantitative polymerase chain reaction prior to iodine‑131 treatment. The association of the variation of target genes with susceptibility to early‑stage hypothyroidism was analyzed. Compared with normal subjects, the mRNA expression levels of Ku70 (0.768, vs. 3.304, respectively; P<0.001) and EGFR (0.859, vs. 1.752, respectively; P<0.05) were significantly higher, whereas those of NF‑κB (0.884, vs. 0.578, respectively; P<0.05) and Bcl‑2 (1.235, vs. 0.834, respectively; P<0.05) were lower in the hyperthyroid patients. Following treatment with iodine‑131, 30 of the 59 (50.8%) patients with hyperthyroidism were diagnosed with early‑stage hypothyroidism, and in the early‑stage hypothyroidism group, the mRNA expression levels of Bcl‑2 were significantly decreased (P<0.05), whereas those of Egr‑1 (P<0.05) were significantly increased, compared with the non‑early‑stage hypothyroidism group. The association between the changes in the expression levles of Bcl‑2 and Egr‑1 and susceptibility to early‑stage hypothyroidism was supported by multivariate regression analysis. No significant changes in the expression levels of the other target genes were detected. The opposing changes in the mRNA expression levels of Bcl‑2 and Egr‑1 in patients with early‑stage hypothyroidism indicates their potential as prognostic markers of early-stage hypothyroidism induced by iodine-131 treatment.
Collapse
Affiliation(s)
- Kun Guo
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Rui Gao
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Yu
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Weixiao Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Yuxuan Yang
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Aimin Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
25
|
Forment JV, Jackson SP. A flow cytometry-based method to simplify the analysis and quantification of protein association to chromatin in mammalian cells. Nat Protoc 2015; 10:1297-307. [PMID: 26226461 PMCID: PMC4743064 DOI: 10.1038/nprot.2015.066] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein accumulation on chromatin has traditionally been studied using immunofluorescence microscopy or biochemical cellular fractionation followed by western immunoblot analysis. As a way to improve the reproducibility of this kind of analysis, to make it easier to quantify and to allow a streamlined application in high-throughput screens, we recently combined a classical immunofluorescence microscopy detection technique with flow cytometry. In addition to the features described above, and by combining it with detection of both DNA content and DNA replication, this method allows unequivocal and direct assignment of cell cycle distribution of protein association to chromatin without the need for cell culture synchronization. Furthermore, it is relatively quick (takes no more than a working day from sample collection to quantification), requires less starting material compared with standard biochemical fractionation methods and overcomes the need for flat, adherent cell types that are required for immunofluorescence microscopy.
Collapse
Affiliation(s)
- Josep V. Forment
- The Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, and The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Stephen P. Jackson
- The Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, and The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| |
Collapse
|
26
|
Carneiro ML, Lopes CA, Miranda-Vilela AL, Joanitti GA, da Silva IC, Mortari MR, de Souza AR, Báo SN. Acute and subchronic toxicity of the antitumor agent rhodium (II) citrate in Balb/c mice after intraperitoneal administration. Toxicol Rep 2015; 2:1086-1100. [PMID: 28962450 PMCID: PMC5598461 DOI: 10.1016/j.toxrep.2015.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 12/26/2022] Open
Abstract
This study aimed to investigate potential acute and subchronic toxicity of rhodium (II) citrate in female Balb/c mice after intraperitoneal injections. In the acute test, independent groups received five doses; the highest dose (107.5 mg/kg) was equivalent to 33 times that used in our previous reports. The other doses were chosen as proportions of the highest, being 80.7 (75%), 53.8 (50%), 26.9 (25%) or 13.8 mg/kg (12.5%). Animals were monitored over 38 days and no severe signs of toxicity were observed, according to mortality, monitoring of adverse symptoms, hematological, biochemical and genotoxic parameters. We conclude that the median lethal dose (LD50) could be greater than 107.5 mg/kg. In the subchronic test, five doses of Rh2Cit (80, 60, 40, 20 or 10 mg/kg) were evaluated and injections were conducted on alternate days, totaling five applications per animal. Paclitaxel (57.5 mg/kg) and saline solution were controls. Clinical observations, histopathology of liver, lung and kidneys and effects on hematological, biochemistry and genotoxic records indicated that Rh2Cit induced no severe toxic effects, even at an accumulated dose up to 400 mg/kg.We suggest Rh2Cit has great potential as an antitumor drug without presenting acute and subchronic toxicity.
Collapse
Affiliation(s)
- Marcella L.B. Carneiro
- Faculty of Planaltina, University of Brasília (UnB), 73.345-010, Brazil
- Institute of Biological Sciences, Department of Cell Biology, University of Brasília (UnB), 70.910-900, Brazil
| | - Cláudio A.P. Lopes
- Institute of Biological Sciences, Department of Cell Biology, University of Brasília (UnB), 70.910-900, Brazil
| | - Ana L. Miranda-Vilela
- Institute of Biological Sciences, Department of Genetics and Morphology, University of Brasília (UnB), 70.910-900, Brazil
- Faculty of Medicine, Faciplac, Campus Gama/DF, 72460-000, Brazil
| | | | | | - Márcia R. Mortari
- Institute of Biological Sciences, Department of Physiological Sciences, University of Brasília (UnB), 70.910-900, Brazil
| | - Aparecido R. de Souza
- Institute of Chemistry, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74.001-970, Brazil
| | - Sônia N. Báo
- Institute of Biological Sciences, Department of Cell Biology, University of Brasília (UnB), 70.910-900, Brazil
- Corresponding author at: University of Brasilia, Institute of Biological Sciences, Brasília, Brazil.
| |
Collapse
|
27
|
Wang S, Zhou M, Ouyang J, Geng Z, Wang Z. Tetraarsenictetrasulfide and Arsenic Trioxide Exert Synergistic Effects on Induction of Apoptosis and Differentiation in Acute Promyelocytic Leukemia Cells. PLoS One 2015; 10:e0130343. [PMID: 26110921 PMCID: PMC4481354 DOI: 10.1371/journal.pone.0130343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/19/2015] [Indexed: 12/18/2022] Open
Abstract
Since arsenic trioxide (As3+) has been successfully used in the treatment of acute promyelocytic leukemia (APL), its adverse effects on patients have been problematic and required a solution. Considering the good therapeutic potency and low toxicity of tetraarsenictetrasulfide (As4S4) in the treatment of APL, we investigated the effects of combining As4S4 and As3+ on the apoptosis and differentiation of NB4 and primary APL cells. As4S4, acting similarly to As3+, arrested the G1/S transition, induced the accumulation of cellular reactive oxygen species, and promoted apoptosis. Additionally, low concentrations of As4S4 (0.1–0.4 μM) induced differentiation of NB4 and primary APL cells. Compared with the As4S4- or As3+-treated groups, the combination of As4S4 and As3+ obviously promoted apoptosis and differentiation of NB4 and primary APL cells. Mechanistic studies suggested that As4S4 acted synergistically with As3+ to down-regulate Bcl-2 and nuclear factor-κB expression, up-regulate Bax and p53 expression, and induce activation of caspase-12 and caspase-3. Moreover, the combination of low concentrations of As4S4 and As3+ enhanced degradation of the promyelocytic leukemia-retinoic acid receptor α oncoprotein. In summary, As4S4 and As3+ synergistically induce the apoptosis and differentiation of NB4 and primary APL cells.
Collapse
Affiliation(s)
- Shuping Wang
- State key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Min Zhou
- Department of Hematology, DrumTower Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Jian Ouyang
- Department of Hematology, DrumTower Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Zhirong Geng
- State key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- * E-mail: (ZG); (ZW)
| | - Zhilin Wang
- State key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- * E-mail: (ZG); (ZW)
| |
Collapse
|
28
|
Yuan W, Yuan Y, Zhang T, Wu S. Role of Bmi-1 in regulation of ionizing irradiation-induced epithelial-mesenchymal transition and migration of breast cancer cells. PLoS One 2015; 10:e0118799. [PMID: 25734775 PMCID: PMC4348174 DOI: 10.1371/journal.pone.0118799] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/22/2015] [Indexed: 12/29/2022] Open
Abstract
Radiotherapy is a widely used treatment for cancer. However, recent studies suggest that ionizing radiation (IR) can promote tumor invasion and metastasis. Bmi-1, a member of the polycomb group protein family, has been observed as a regulator of oxidative stress and promotes metastasis in some tumors. But, its potential role in the metastasis induced by IR of breast cancer has not been explored. In our study, we found that increased levels of Bmi-1 were correlated to EMT of breast cancer cells. Through analyzing the EMT state and metastasis of breast cancer induced by IR, we found the metastatic potential of breast cancer cells can either be inhibited or accelerated by IR following a time-dependent pattern. Silencing Bmi-1 completely abolished the ability of the IR to alter, reduce or increase, the migration of breast cancer cells. Also, when Bmi-1 was knocked down, the effect of inhibition of PI3K/AKT signaling on EMT affected by IR was blocked. These results suggest that Bmi-1 is a key gene in regulation of EMT and migration of breast cancer cells induced by IR through activation of PI3K/AKT signaling; therefore, Bmi-1 could be a new target for inhibiting metastasis caused by IR.
Collapse
Affiliation(s)
- Weiwei Yuan
- Department of Oncology, the General Hospital of Chengdu Military District, Chengdu, Sichuan, P. R. China
- Department of Chemistry and Biochemistry, and Edison Biotechnology Institute, Ohio University, Athens, Ohio, 45701, United States of America
| | - Ye Yuan
- Department of Chemistry and Biochemistry, and Edison Biotechnology Institute, Ohio University, Athens, Ohio, 45701, United States of America
| | - Tao Zhang
- Department of Oncology, the General Hospital of Chengdu Military District, Chengdu, Sichuan, P. R. China
- * E-mail: (TZ); (SW)
| | - Shiyong Wu
- Department of Chemistry and Biochemistry, and Edison Biotechnology Institute, Ohio University, Athens, Ohio, 45701, United States of America
- * E-mail: (TZ); (SW)
| |
Collapse
|
29
|
Dose-dependent effects of selenite (Se(4+)) on arsenite (As(3+))-induced apoptosis and differentiation in acute promyelocytic leukemia cells. Cell Death Dis 2015; 6:e1596. [PMID: 25590806 PMCID: PMC4669761 DOI: 10.1038/cddis.2014.563] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/19/2014] [Accepted: 11/28/2014] [Indexed: 12/14/2022]
Abstract
To enhance the therapeutic effects and decrease the adverse effects of arsenic on the treatment of acute promyelocytic leukemia, we investigated the co-effects of selenite (Se4+) and arsenite (As3+) on the apoptosis and differentiation of NB4 cells and primary APL cells. A 1.0-μM concentration of Se4+ prevented the cells from undergoing As3+-induced apoptosis by inhibiting As3+ uptake, eliminating As3+-generated reactive oxygen species, and repressing the mitochondria-mediated intrinsic apoptosis pathway. However, 4.0 μM Se4+ exerted synergistic effects with As3+ on cell apoptosis by promoting As3+ uptake, downregulating nuclear factor-кB, and activating caspase-3. In addition to apoptosis, 1.0 and 3.2 μM Se4+ showed contrasting effects on As3+-induced differentiation in NB4 cells and primary APL cells. The 3.2 μM Se4+ enhanced As3+-induced differentiation by promoting the degradation of promyelocytic leukemia protein–retinoic acid receptor-α (PML–RARα) oncoprotein, but 1.0 μM Se4+ did not have this effect. Based on mechanistic studies, Se4+, which is similar to As3+, might bind directly to Zn2+-binding sites of the PML RING domain, thus controlling the fate of PML–RARα oncoprotein.
Collapse
|
30
|
Kim BM, Rhee JS, Lee KW, Kim MJ, Shin KH, Lee SJ, Lee YM, Lee JS. UV-B radiation-induced oxidative stress and p38 signaling pathway involvement in the benthic copepod Tigriopus japonicus. Comp Biochem Physiol C Toxicol Pharmacol 2015; 167:15-23. [PMID: 25152408 DOI: 10.1016/j.cbpc.2014.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/08/2014] [Accepted: 08/14/2014] [Indexed: 12/17/2022]
Abstract
Ultraviolet B (UV-B) radiation presents an environmental hazard to aquatic organisms. To understand the molecular responses of the intertidal copepod Tigriopus japonicus to UV-B radiation, we measured the acute toxicity response to 96 h of UV-B radiation, and we also assessed the intracellular reactive oxygen species (ROS) levels, glutathione (GSH) content, and antioxidant enzyme (GST, GR, GPx, and SOD) activities after 24 h of exposure to UV-B with LD50 and half LD50 values. Also, expression patterns of p53 and hsp gene families with phosphorylation of p38 MAPK were investigated in UV-B-exposed copepods. We found that the ROS level, GSH content, and antioxidant enzyme activity levels were increased with the transcriptional upregulation of antioxidant-related genes, indicating that UV-B induces oxidative stress by generating ROS and stimulating antioxidant enzymatic activity as a defense mechanism. Additionally, we found that p53 expression was significantly increased after UV-B irradiation due to increases in the phosphorylation of the stress-responsive p38 MAPK, indicating that UV-B may be responsible for inducing DNA damage in T. japonicus. Of the hsp family genes, transcriptional levels of hsp20, hsp20.7, hsp70, and hsp90 were elevated in response to a low dose of UV-B radiation (9 kJ m(-2)), suggesting that these hsp genes may be involved in cellular protection against UV-B radiation. In this paper, we performed a pathway-oriented mechanistic analysis in response to UV-B radiation, and this analysis provides a better understanding of the effects of UV-B in the intertidal benthic copepod T. japonicus.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 406-772, South Korea
| | - Kyun-Woo Lee
- Pacific Ocean Research Center, Korea Institute of Ocean Science and Technology, Ansan 426-744, South Korea
| | - Min-Jung Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan 426-791, South Korea
| | - Su-Jae Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | - Young-Mi Lee
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 110-743, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea.
| |
Collapse
|
31
|
Synthesis and antiproliferative activity of 6-phenylaminopurines. Eur J Med Chem 2014; 87:421-8. [DOI: 10.1016/j.ejmech.2014.09.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/09/2014] [Accepted: 09/29/2014] [Indexed: 12/19/2022]
|
32
|
Savić A, Filipović L, Aranđelović S, Dojčinović B, Radulović S, Sabo TJ, Grgurić-Šipka S. Synthesis, characterization and cytotoxic activity of novel platinum(II) iodido complexes. Eur J Med Chem 2014; 82:372-84. [DOI: 10.1016/j.ejmech.2014.05.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/28/2014] [Accepted: 05/25/2014] [Indexed: 10/25/2022]
|
33
|
Lin W, Tongyi S. Role of Bax/Bcl-2 family members in green tea polyphenol induced necroptosis of p53-deficient Hep3B cells. Tumour Biol 2014; 35:8065-75. [PMID: 24839007 DOI: 10.1007/s13277-014-2064-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 05/06/2014] [Indexed: 12/11/2022] Open
Abstract
Green tea polyphenol (GTP) is one of the most promising chemopreventive agent for cancer; it can inhibit cancer cell proliferation and induce apoptosis through p53-dependent cell signaling pathways. Unfortunately, many tumor cells lack the functional p53, and little is known about the effect of GTP on the p53-deficient/mutant cancer cells. To understand the p53-independent mechanisms in GTP-treated p53-dificient/mutant cancer cells, we have now examined GTP-induced cytotoxicity in human hepatoma Hep3B cells (p53-deficient). The results showed that GTP could induce Bax and Bak activation, cytochrome c release, caspase activation, and necroptosis of Hep3B cells. Bax and Bak, two key molecules of mitochondrial permeability transition pore (MPTP), were interdependently activated by GTP, with translocation and homo-oligomerization on the mitochondria. Bax and Bak induce cytochrome c release. Importantly, cytochrome c release and necroptosis were diminished in Hep3B cells (Bax(-/-)) and Hep3B cells (Bak(-/-)). Furthermore, overexpression of Bcl-2 could ameliorate GTP-induced cytochrome c release and necroptosis. Together, the findings suggested that GTP-induced necroptosis was modulated by the p53-independent pathway, which was related to the translocation of Bax and Bak to mitochondria, release of cytochrome c, and activation of caspases.
Collapse
Affiliation(s)
- Weiping Lin
- School of Pharmacy and Bioscience, Weifang Medical University, Weifang, 261000, Shandong Province, China,
| | | |
Collapse
|
34
|
Zhang W, Liu N, Wang X, Jin X, Du H, Peng G, Xue J. Benzo(a)pyrene-7,8-diol-9,10-epoxide induced p53-independent necrosis via the mitochondria-associated pathway involving Bax and Bak activation. Hum Exp Toxicol 2014; 34:179-90. [PMID: 24837741 DOI: 10.1177/0960327114533358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE) is a highly reactive DNA damage agent and can induce cell death through both p53-independent and -dependent pathways. However, little is known about the molecular mechanisms of p53-independent pathways in BPDE-induced cell death. To understand the p53-independent mechanisms, we have now examined BPDE-induced cytotoxicity in p53-deficient baby mouse kidney (BMK) cells. The results showed that BPDE could induce Bax and Bak activation, cytochrome c release, caspases activation, and necrotic cell death in the BMK cells. Bax and Bak, two key molecules of mitochondrial permeability transition pore, were interdependently activated by BPDE, with Bax and Bak translocation to and Bax/Bak homo-oligomerization in mitochondria, release of cytochrome c was induced. Importantly, cytochrome c release and necrotic cell death were diminished in BMK cells (Bax−/−), BMK cells (Bak−/−), and BMK cells (Bax−/−/Bak−/−). Furthermore, overexpression of Bcl-2 could ameliorate BPDE-induced cytochrome c release and necrosis. Together the findings suggested that BPDE-induced necrosis was modulated by the p53-independent pathway, which was related to the translocation of Bax and Bak to mitochondria, release of cytochrome c, and activation of caspases.
Collapse
Affiliation(s)
- W Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - N Liu
- Department of General Surgery, Hainan Provincial People Hospital, Haikou, China
| | - X Wang
- Department of Vascular Surgery, Xuzhou Central Hospital, Xuzhou, China
| | - X Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - H Du
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - G Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Xue
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Carolina de Oliveira Neves A, Fernandes de Araújo Júnior R, Luiza Cabral de Sá Leitão Oliveira A, Antunes de Araújo A, de Lima KMG. The use of EEM fluorescence data and OPLS/UPLS-DA algorithm to discriminate between normal and cancer cell lines: a feasibility study. Analyst 2014; 139:2423-31. [DOI: 10.1039/c4an00296b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
36
|
Garcia-Canton C, Anadon A, Meredith C. Genotoxicity evaluation of individual cigarette smoke toxicants using the in vitro γH2AX assay by high content screening. Toxicol Lett 2013; 223:81-7. [PMID: 24021168 DOI: 10.1016/j.toxlet.2013.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/29/2013] [Accepted: 08/31/2013] [Indexed: 01/01/2023]
Abstract
Cigarette smoke is a complex mixture consisting of more than 5600 identified chemical constituents of which approximately 150 have been identified so far as "tobacco smoke toxicants". Proposals made by the World Health Organisation Framework Convention on Tobacco Control mandate the lowering of nine tobacco smoke priority toxicants, including 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N-nitrosonornicotine (NNN), and benzo[a]pyrene (B[a]P) and monitoring the levels of a further nine including cadmium. Here, we evaluated the genotoxic potential in human bronchial epithelial BEAS-2B cells of four cigarette smoke toxicants; NNK, NNN, B[a]P and cadmium using the novel in vitro γH2AX assay by High Content Screening (HCS). We also examined the genotoxicity of binary mixtures of NNK and NNN reporting their relative contribution to the genotoxic end-point. The results of this preliminary assessment showed that the in vitro γH2AX assay by HCS could be used as a pre-screening tool to detect and quantify the genotoxicity effect of cigarette smoke toxicants individually and in binary mixture. Moreover, the data produced could contribute to the prioritisation of toxicant reduction research in modified tobacco products.
Collapse
Affiliation(s)
- Carolina Garcia-Canton
- British American Tobacco, Group Research and Development, Regents Park Road, Southampton, Hampshire SO15 8TL, United Kingdom; Department of Toxicology and Pharmacology, Universidad Complutense de Madrid, Madrid, Spain.
| | | | | |
Collapse
|
37
|
Bocsi J, Tárnok A. DNA amplification and repair: Further insights by cytometry. Cytometry A 2013; 83:891-2. [DOI: 10.1002/cyto.a.22392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/27/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Jozsef Bocsi
- Department of Pediatric Cardiology; Heart Centre Leipzig; Leipzig Germany
| | - Attila Tárnok
- Department of Pediatric Cardiology; Heart Centre Leipzig; Leipzig Germany
- Translational Centre for Regenerative Medicine (TRM); University of Leipzig; Leipzig Germany
| |
Collapse
|
38
|
Zhao H, Halicka HD, Li J, Biela E, Berniak K, Dobrucki J, Darzynkiewicz Z. DNA damage signaling, impairment of cell cycle progression, and apoptosis triggered by 5-ethynyl-2'-deoxyuridine incorporated into DNA. Cytometry A 2013; 83:979-88. [PMID: 24115313 DOI: 10.1002/cyto.a.22396] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/23/2013] [Accepted: 09/03/2013] [Indexed: 12/21/2022]
Abstract
The "click chemistry" approach utilizing 5-ethynyl-2'-deoxyuridine (EdU) as a DNA precursor was recently introduced to assess DNA replication and adapted to flow- and imaging-cytometry. In the present study, we observed that EdU, once incorporated into DNA, induces DNA damage signaling (DDS) such as phosphorylation of ATM on Ser1981, of histone H2AX on Ser139, of p53 on Ser15, and of Chk2 on Thr68. It also perturbs progression of cells through the cell cycle and subsequently induces apoptosis. These effects were observed in non-small cell lung adenocarcinoma A549 as well as in B-cell human lymphoblastoid TK6 and WTK1 cells, differing in the status of p53 (wt versus mutated). After 1 h EdU pulse-labeling, the most affected was cells progression through the S phase subsequent to that at which they had incorporated EdU. This indicates that DNA replication using the template containing incorporated EdU is protracted and triggers DDS. Furthermore, progression of cells having DNA pulse-labeled with EdU led to accumulation of cells in G2 , likely by activating G2 checkpoint. Consistent with the latter was activation of p53 and Chk2. Although a correlation was observed in A549 cells between the degree of EdU incorporation and the extent of γH2AX induction, such correlation was weak in TK6 and WTK1 cells. The degree of perturbation of the cell cycle kinetics by the incorporated EdU was different in the wt p53 TK6 cells as compared to their sister WTK1 cell line having mutated p53. The data are thus consistent with the role of p53 in modulating activation of cell cycle checkpoints in response to impaired DNA replication. The confocal microscopy analysis of the 3D images of cells exposed to EdU for 1 h pulse and then grown for 24 or 48 h revealed an increased number of colocalized γH2AX and p53BP1 foci considered to be markers of DNA double-strand breaks and enlarged nuclei.
Collapse
Affiliation(s)
- Hong Zhao
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, New York, 10595
| | | | | | | | | | | | | |
Collapse
|
39
|
Garcia-Canton C, Anadon A, Meredith C. Assessment of the in vitro γH2AX assay by High Content Screening as a novel genotoxicity test. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 757:158-66. [PMID: 23988589 DOI: 10.1016/j.mrgentox.2013.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/07/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022]
Abstract
The γH2AX assay is widely used as a marker of DNA damage in multiple scientific fields such as cancer biomarker, clinical studies and radiation biology. In particular, the in vitro γH2AX assay has been suggested as a novel in vitro genotoxicity test with potential as a pre-screening tool. However, to date, limited assessments have been carried out to evaluate the sensitivity, specificity and accuracy of the in vitro γH2AX assay. In this study, the microscopy-based system combining automated cellular image acquisition with software quantification for High Content Screening (HCS) has been used for the first time to evaluate the in vitro γH2AX assay. A panel of well-characterised genotoxic and non-genotoxic compounds was selected to assess the performance of the in vitro γH2AX assay in the human bronchial epithelial cell line BEAS-2B. The results obtained during this preliminary assessment indicate that the in vitro γH2AX assay has a high accuracy (86%) as a result of high sensitivity and specificity (86-92% and 80-88% respectively). Our data highlight the potential for γH2AX detection in HCS as a complement to the current regulatory genotoxicity battery of in vitro assays. We therefore recommend more comprehensive assessments to confirm the performance of the in vitro γH2AX assay by HCS with a more extensive set of compounds.
Collapse
Affiliation(s)
- Carolina Garcia-Canton
- British American Tobacco, Group Research and Development, Regents Park Road, Southampton, Hampshire SO15 8TL, United Kingdom; Department of Toxicology and Pharmacology, Universidad Complutense de Madrid, Madrid, Spain.
| | | | | |
Collapse
|
40
|
Tarnok A, Darzynkiewicz Z. New insights into cell cycle and DNA damage response machineries through high-resolution AMICO quantitative imaging cytometry. Cell Prolif 2013; 46:497-500. [PMID: 23952744 DOI: 10.1111/cpr.12050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/28/2013] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Progress in biology and medicine research is being driven by development of new instrumentation and associated methodologies which open analytical capabilities that expand understanding of complexity of biological systems. Application of cytometry, which is now widely used in so many disciplines of biology, is the best example of such a progress. METHODOLOGY Recent publications push the envelope in expanding capabilities of cytometry by introducing a high resolution imaging cytometry defined as Automated Microscopy for Image CytOmetry (AMICO). This instrumentation is utilized to further elucidate mechanisms of the cell cycle progression and also the DNA damage response. This approach is going beyond the presently possible analytical technologies regarding throughput and depth of information. CONCLUSIONS The possibility of multiparametric analysis combined with the high resolution mapping of individual constituents of cell cycle and DNA damage response machineries provides new tools to probe molecular mechanism of these processes. The capability of analysis of proximity of these constituents to each other offered by AMICO is a novel and potentially important approach that can be used to elucidate mechanisms of other biological processes.
Collapse
Affiliation(s)
- A Tarnok
- Department of Paediatric Cardiology, Cardiac Centre, and Translational Centre for Regenerative Medicine (TRM), Universität Leipzig, 04289, Leipzig, Germany
| | | |
Collapse
|
41
|
Halicka HD, Zhao H, Li J, Lee YS, Hsieh TC, Wu JM, Darzynkiewicz Z. Potential anti-aging agents suppress the level of constitutive mTOR- and DNA damage- signaling. Aging (Albany NY) 2013; 4:952-65. [PMID: 23363784 PMCID: PMC3615161 DOI: 10.18632/aging.100521] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two different mechanisms are considered to be the primary cause of aging. Cumulative DNA damage caused by reactive oxygen species (ROS), the by-products of oxidative phosphorylation, is one of these mechanisms (ROS concept). Constitutive stimulation of mitogen- and nutrient-sensing mTOR/S6 signaling is the second mechanism (TOR concept). The flow- and laser scanning- cytometric methods were developed to measure the level of the constitutive DNA damage/ROS- as well as of mTOR/S6- signaling in individual cells. Specifically, persistent activation of ATM and expression of γH2AX in untreated cells appears to report constitutive DNA damage induced by endogenous ROS. The level of phosphorylation of Ser235/236-ribosomal protein (RP), of Ser2448-mTOR and of Ser65-4EBP1, informs on constitutive signaling along the mTOR/S6 pathway. Potential gero-suppressive agents rapamycin, metformin, 2-deoxyglucose, berberine, resveratrol, vitamin D3 and aspirin, all decreased the level of constitutive DNA damage signaling as seen by the reduced expression of γH2AX in proliferating A549, TK6, WI-38 cells and in mitogenically stimulated human lymphocytes. They all also decreased the level of intracellular ROS and mitochondrial trans-membrane potential ΔΨm, the marker of mitochondrial energizing as well as reduced phosphorylation of mTOR, RP-S6 and 4EBP1. The most effective was rapamycin. Although the primary target of each on these agents may be different the data are consistent with the downstream mechanism in which the decline in mTOR/S6K signaling and translation rate is coupled with a decrease in oxidative phosphorylation, (revealed by ΔΨm) that leads to reduction of ROS and oxidative DNA damage. The decreased rate of translation induced by these agents may slow down cells hypertrophy and alleviate other features of cell aging/senescence. Reduction of oxidative DNA damage may lower predisposition to neoplastic transformation which otherwise may result from errors in repair of DNA sites coding for oncogenes or tumor suppressor genes. The data suggest that combined assessment of constitutive γH2AX expression, mitochondrial activity (ROS, ΔΨm) and mTOR signaling provides an adequate gamut of cell responses to evaluate effectiveness of gero-suppressive agents.
Collapse
Affiliation(s)
- H Dorota Halicka
- Brander Cancer Research Institute, Department of Pathology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Zhao H, Halicka HD, Li J, Darzynkiewicz Z. Berberine suppresses gero-conversion from cell cycle arrest to senescence. Aging (Albany NY) 2013; 5:623-36. [PMID: 23974852 PMCID: PMC3796215 DOI: 10.18632/aging.100593] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/20/2013] [Indexed: 01/05/2023]
Abstract
Berberine (BRB), a natural alkaloid, has a long history of medicinal use in both Ayurvedic and old Chinese medicine. Recently, available as a dietary supplement, Berberine is reported to have application in treatment of variety diseases. Previously we observed that BRB inhibited mTOR/S6 signaling concurrently with reduction of the level of endogenous oxidants and constitutive DNA damage response. We currently tested whether Berberine can affect premature, stress-induced cellular senescence caused by mitoxantrone. The depth of senescence was quantitatively measured by morphometric parameters, senescence-associated β-galactosidase, induction of p21WAF1, replication stress (γH2AX expression), and mTOR signaling; the latter revealed by ribosomal S6 protein (rpS6) phosphorylation. All these markers of senescence were distinctly diminished, in a concentration-dependent manner, by Berberine. In view of the evidence that BRB localizes in mitochondria, inhibits respiratory electron chain and activates AMPK, the observed attenuation of the replication stress-induced cellular senescence most likely is mediated by AMPK that leads to inhibition of mTOR signaling. In support of this mechanism is the observation that rhodamine123, the cationic probe targeting mitochondrial electron chain, also suppressed rpS6 phosphorylation. The present findings reveal that: (a) in cells induced to senescence BRB exhibits gero-suppressive properties by means of mTOR/S6 inhibition; (b) in parallel, BRB reduces the level of constitutive DNA damage response, previously shown to report oxidative DNA damage by endogenous ROS; (c) there appears to a causal linkage between the (a) and (b) activities; (d) the in vitro model of premature stress-induced senescence can be used to assess effectiveness of potential gero-suppressive agents targeting mTOR/S6 and ROS signaling; (e) since most of the reported beneficial effects of BRB are in age-relate diseases, it is likely that gero-suppression is the primary activity of this traditional medicine.
Collapse
Affiliation(s)
- Hong Zhao
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
43
|
Berniak K, Rybak P, Bernas T, Zarębski M, Biela E, Zhao H, Darzynkiewicz Z, Dobrucki JW. Relationship between DNA damage response, initiated by camptothecin or oxidative stress, and DNA replication, analyzed by quantitative 3D image analysis. Cytometry A 2013; 83:913-24. [PMID: 23846844 DOI: 10.1002/cyto.a.22327] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/29/2013] [Accepted: 06/06/2013] [Indexed: 01/03/2023]
Abstract
A method of quantitative analysis of spatial (3D) relationship between discrete nuclear events detected by confocal microscopy is described and applied in analysis of a dependence between sites of DNA damage signaling (γH2AX foci) and DNA replication (EdU incorporation) in cells subjected to treatments with camptothecin (Cpt) or hydrogen peroxide (H2O2). Cpt induces γH2AX foci, likely reporting formation of DNA double-strand breaks (DSBs), almost exclusively at sites of DNA replication. This finding is consistent with the known mechanism of induction of DSBs by DNA topoisomerase I (topo1) inhibitors at the sites of collisions of the moving replication forks with topo1-DNA "cleavable complexes" stabilized by Cpt. Whereas an increased level of H2AX histone phosphorylation is seen in S-phase of cells subjected to H2O2, only a minor proportion of γH2AX foci coincide with DNA replication sites. Thus, the increased level of H2AX phosphorylation induced by H2O2 is not a direct consequence of formation of DNA lesions at the sites of moving DNA replication forks. These data suggest that oxidative stress induced by H2O2 and formation of the primary H2O2-induced lesions (8-oxo-7,8-dihydroguanosine) inhibits replication globally and triggers formation of γH2AX at various distances from replication forks. Quantitative analysis of a frequency of DNA replication sites and γH2AX foci suggests also that stalling of replicating forks by Cpt leads to activation of new DNA replication origins. © 2013 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- K Berniak
- Division of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | | | | | | | |
Collapse
|