1
|
Wang J, Yin C, Huo F. Recent advances in glutathione fluorescent probes based on small organic molecules and their bioimaging. Analyst 2024. [PMID: 39670499 DOI: 10.1039/d4an01373e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Glutathione (GSH), as one of the most important biological mercaptans, is involved in a variety of biological processes and is considered an important biomarker in early diagnosis, treatment and disease stage monitoring. Rapid and accurate detection of GSH in complex biological systems is of great significance for pathological analysis. Fluorescence imaging technology is widely used because of its advantages of high sensitivity, high resolution and non-destructiveness. In this paper, the latest research progress on GSH-responsive organic small molecule fluorescence probes in the last five years is summarized, and their response mechanisms are classified and discussed. In addition, the probe design strategy, sensing mechanism and biological application are discussed in this review. Finally, the challenges and future research directions of developing new GSH probes are presented.
Collapse
Affiliation(s)
- Jingdong Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
2
|
Roy N, Paira P. Glutathione Depletion and Stalwart Anticancer Activity of Metallotherapeutics Inducing Programmed Cell Death: Opening a New Window for Cancer Therapy. ACS OMEGA 2024; 9:20670-20701. [PMID: 38764686 PMCID: PMC11097382 DOI: 10.1021/acsomega.3c08890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 05/21/2024]
Abstract
The cellular defense system against exogenous substances makes therapeutics inefficient as intracellular glutathione (GSH) exhibits an astounding antioxidant activity in scavenging reactive oxygen species (ROS) or reactive nitrogen species (RNS) or other free radicals produced by the therapeutics. In the cancer cell microenvironment, the intracellular GSH level becomes exceptionally high to fight against oxidative stress created by the production of ROS/RNS or any free radicals, which are the byproducts of intracellular redox reactions or cellular respiration processes. Thus, in order to maintain redox homeostasis for survival of cancer cells and their rapid proliferation, the GSH level starts to escalate. In this circumstance, the administration of anticancer therapeutics is in vain, as the elevated GSH level reduces their potential by reduction or by scavenging the ROS/RNS they produce. Therefore, in order to augment the therapeutic potential of anticancer agents against elevated GSH condition, the GSH level must be depleted by hook or by crook. Hence, this Review aims to compile precisely the role of GSH in cancer cells, the importance of its depletion for cancer therapy and examples of anticancer activity of a few selected metal complexes which are able to trigger cancer cell death by depleting the GSH level.
Collapse
Affiliation(s)
- Nilmadhab Roy
- Department of Chemistry, School of
Advanced Sciences, Vellore Institute of
Technology, Vellore-632014, Tamilnadu, India
| | - Priyankar Paira
- Department of Chemistry, School of
Advanced Sciences, Vellore Institute of
Technology, Vellore-632014, Tamilnadu, India
| |
Collapse
|
3
|
Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y, Sun Y, Zeng F, Chen X, Deng G. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther 2024; 9:55. [PMID: 38453898 PMCID: PMC10920854 DOI: 10.1038/s41392-024-01769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 03/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by the lethal accumulation of iron-dependent membrane-localized lipid peroxides. It acts as an innate tumor suppressor mechanism and participates in the biological processes of tumors. Intriguingly, mesenchymal and dedifferentiated cancer cells, which are usually resistant to apoptosis and traditional therapies, are exquisitely vulnerable to ferroptosis, further underscoring its potential as a treatment approach for cancers, especially for refractory cancers. However, the impact of ferroptosis on cancer extends beyond its direct cytotoxic effect on tumor cells. Ferroptosis induction not only inhibits cancer but also promotes cancer development due to its potential negative impact on anticancer immunity. Thus, a comprehensive understanding of the role of ferroptosis in cancer is crucial for the successful translation of ferroptosis therapy from the laboratory to clinical applications. In this review, we provide an overview of the recent advancements in understanding ferroptosis in cancer, covering molecular mechanisms, biological functions, regulatory pathways, and interactions with the tumor microenvironment. We also summarize the potential applications of ferroptosis induction in immunotherapy, radiotherapy, and systemic therapy, as well as ferroptosis inhibition for cancer treatment in various conditions. We finally discuss ferroptosis markers, the current challenges and future directions of ferroptosis in the treatment of cancer.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yihuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
4
|
Timson RC, Khan A, Uygur B, Saad M, Yeh HW, DelGaudio NL, Weber R, Alwaseem H, Gao J, Yang C, Birsoy K. Development of a mouse model expressing a bifunctional glutathione-synthesizing enzyme to study glutathione limitation in vivo. J Biol Chem 2024; 300:105645. [PMID: 38218225 PMCID: PMC10869265 DOI: 10.1016/j.jbc.2024.105645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
Glutathione (GSH) is a highly abundant tripeptide thiol that performs diverse protective and biosynthetic functions in cells. While changes in GSH availability are associated with inborn errors of metabolism, cancer, and neurodegenerative disorders, studying the limiting role of GSH in physiology and disease has been challenging due to its tight regulation. To address this, we generated cell and mouse models that express a bifunctional glutathione-synthesizing enzyme from Streptococcus thermophilus (GshF), which possesses both glutamate-cysteine ligase and glutathione synthase activities. GshF expression allows efficient production of GSH in the cytosol and mitochondria and prevents cell death in response to GSH depletion, but not ferroptosis induction, indicating that GSH is not a limiting factor under lipid peroxidation. CRISPR screens using engineered enzymes further revealed genes required for cell proliferation under cellular and mitochondrial GSH depletion. Among these, we identified the glutamate-cysteine ligase modifier subunit, GCLM, as a requirement for cellular sensitivity to buthionine sulfoximine, a glutathione synthesis inhibitor. Finally, GshF expression in mice is embryonically lethal but sustains postnatal viability when restricted to adulthood. Overall, our work identifies a conditional mouse model to investigate the limiting role of GSH in physiology and disease.
Collapse
Affiliation(s)
- Rebecca C Timson
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York, USA
| | - Artem Khan
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York, USA
| | - Beste Uygur
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York, USA
| | - Marwa Saad
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, New York, USA
| | - Hsi-Wen Yeh
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York, USA
| | - Nicole L DelGaudio
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York, USA
| | - Ross Weber
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hanan Alwaseem
- The Proteomics Resource Center, The Rockefeller University, New York, New York, USA
| | - Jing Gao
- The CRISPR & Genome Editing Center, The Rockefeller University, New York, New York, USA
| | - Chingwen Yang
- The CRISPR & Genome Editing Center, The Rockefeller University, New York, New York, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York, USA.
| |
Collapse
|
5
|
Timson RC, Khan A, Uygur B, Saad M, Yeh HW, DelGaudio N, Weber R, Alwaseem H, Gao J, Yang C, Birsoy K. A mouse model to study glutathione limitation in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574722. [PMID: 38260639 PMCID: PMC10802487 DOI: 10.1101/2024.01.08.574722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Glutathione (GSH) is a highly abundant tripeptide thiol that performs diverse protective and biosynthetic functions in cells. While changes in GSH availability are linked to many diseases, including cancer and neurodegenerative disorders, determining the function of GSH in physiology and disease has been challenging due to its tight regulation. To address this, we generated cell and mouse models that express a bifunctional glutathione-synthesizing enzyme from Streptococcus Thermophilus (GshF). GshF expression allows efficient production of GSH in the cytosol and mitochondria and prevents cell death in response to GSH depletion, but not ferroptosis, indicating that GSH is not a limiting factor under lipid peroxidation. CRISPR screens using engineered enzymes revealed metabolic liabilities under compartmentalized GSH depletion. Finally, GshF expression in mice is embryonically lethal but sustains postnatal viability when restricted to adulthood. Overall, our work identifies a conditional mouse model to investigate the role of GSH availability in physiology and disease.
Collapse
|
6
|
Aleksandrova Y, Neganova M. Deciphering the Mysterious Relationship between the Cross-Pathogenetic Mechanisms of Neurodegenerative and Oncological Diseases. Int J Mol Sci 2023; 24:14766. [PMID: 37834214 PMCID: PMC10573395 DOI: 10.3390/ijms241914766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The relationship between oncological pathologies and neurodegenerative disorders is extremely complex and is a topic of concern among a growing number of researchers around the world. In recent years, convincing scientific evidence has accumulated that indicates the contribution of a number of etiological factors and pathophysiological processes to the pathogenesis of these two fundamentally different diseases, thus demonstrating an intriguing relationship between oncology and neurodegeneration. In this review, we establish the general links between three intersecting aspects of oncological pathologies and neurodegenerative disorders, i.e., oxidative stress, epigenetic dysregulation, and metabolic dysfunction, examining each process in detail to establish an unusual epidemiological relationship. We also focus on reviewing the current trends in the research and the clinical application of the most promising chemical structures and therapeutic platforms that have a modulating effect on the above processes. Thus, our comprehensive analysis of the set of molecular determinants that have obvious cross-functional pathways in the pathogenesis of oncological and neurodegenerative diseases can help in the creation of advanced diagnostic tools and in the development of innovative pharmacological strategies.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| |
Collapse
|
7
|
Liu P, Hao L, Liu M, Hu S. Glutathione-responsive and -exhausting metal nanomedicines for robust synergistic cancer therapy. Front Bioeng Biotechnol 2023; 11:1161472. [PMID: 36970628 PMCID: PMC10036587 DOI: 10.3389/fbioe.2023.1161472] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Due to their rapid and uncontrolled proliferation, cancer cells are characterized by overexpression of glutathione (GSH), which impairs reactive oxygen species (ROS)-based therapy and weakens the chemotherapeutic agent-induced toxification. Extensive efforts have been made in the past few years to improve therapeutic outcomes by depleting intracellular GSH. Special focus has been given to the anticancer applications of varieties of metal nanomedicines with GSH responsiveness and exhaustion capacity. In this review, we introduce several GSH-responsive and -exhausting metal nanomedicines that can specifically ablate tumors based on the high concentration of intracellular GSH in cancer cells. These include inorganic nanomaterials, metal-organic frameworks (MOFs), and platinum-based nanomaterials. We then discuss in detail the metal nanomedicines that have been extensively applied in synergistic cancer therapy, including chemotherapy, photodynamic therapy (PDT), sonodynamic therapy (SDT), chemodynamic therapy (CDT), ferroptotic therapy, and radiotherapy. Finally, we present the horizons and challenges in the field for future development.
Collapse
Affiliation(s)
- Peng Liu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Biological Nanotechnology, Changsha, China
| | - Lu Hao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Min Liu, ; Shuo Hu,
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Biological Nanotechnology, Changsha, China
- *Correspondence: Min Liu, ; Shuo Hu,
| |
Collapse
|
8
|
Wang Y, Li J, Li X, Shi J, Jiang Z, Zhang CY. Graphene-based nanomaterials for cancer therapy and anti-infections. Bioact Mater 2022; 14:335-349. [PMID: 35386816 PMCID: PMC8964986 DOI: 10.1016/j.bioactmat.2022.01.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Graphene-based nanomaterials (GBNMs) has been thoroughly investigated and extensively used in many biomedical fields, especially cancer therapy and bacteria-induced infectious diseases treatment, which have attracted more and more attentions due to the improved therapeutic efficacy and reduced reverse effect. GBNMs, as classic two-dimensional (2D) nanomaterials, have unique structure and excellent physicochemical properties, exhibiting tremendous potential in cancer therapy and bacteria-induced infectious diseases treatment. In this review, we first introduced the recent advances in development of GBNMs and GBNMs-based treatment strategies for cancer, including photothermal therapy (PTT), photodynamic therapy (PDT) and multiple combination therapies. Then, we surveyed the research progress of applications of GBNMs in anti-infection such as antimicrobial resistance, wound healing and removal of biofilm. The mechanism of GBNMs was also expounded. Finally, we concluded and discussed the advantages, challenges/limitations and perspective about the development of GBNMs and GBNMs-based therapies. Collectively, we think that GBNMs could be potential in clinic to promote the improvement of cancer therapy and infections treatment.
Collapse
Affiliation(s)
- Yan Wang
- School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Juan Li
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaobin Li
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jinping Shi
- School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhaotan Jiang
- School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Can Yang Zhang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
9
|
Nayak D, Weadick B, Persaud AK, Raj R, Shakya R, Li J, Campbell MJ, Govindarajan R. EMT alterations in the solute carrier landscape uncover SLC22A10/A15 imposed vulnerabilities in pancreatic cancer. iScience 2022; 25:104193. [PMID: 35479410 PMCID: PMC9036131 DOI: 10.1016/j.isci.2022.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 01/31/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
The involvement of membrane-bound solute carriers (SLCs) in neoplastic transdifferentiation processes is poorly defined. Here, we examined changes in the SLC landscape during epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. We show that two SLCs from the organic anion/cation transporter family, SLC22A10 and SLC22A15, favor EMT via interferon (IFN) α and γ signaling activation of receptor tyrosine kinase-like orphan receptor 1 (ROR1) expression. In addition, SLC22A10 and SLC22A15 allow tumor cell accumulation of glutathione to support EMT via the IFNα/γ-ROR1 axis. Moreover, a pan-SLC22A inhibitor lesinurad reduces EMT-induced metastasis and gemcitabine chemoresistance to prolong survival in mouse models of pancreatic cancer, thus identifying new vulnerabilities for human PDAC.
Collapse
Affiliation(s)
- Debasis Nayak
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH 43210, USA
| | - Brenna Weadick
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH 43210, USA
| | - Avinash K. Persaud
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH 43210, USA
| | - Radhika Raj
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH 43210, USA
| | - Reena Shakya
- Target Validation Shared Resource, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Junan Li
- The Ohio State University College of Pharmacy, Columbus, OH 43210, USA
| | - Moray J. Campbell
- Molecular Carcinogenesis and Chemoprevention Program, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
- Biomedical Informatics Shared Resource, The Ohio State University, Columbus, OH 43210, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH 43210, USA
- Translational Therapeutics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Yang J, Zhao Y, Zhou Y, Wei X, Wang H, Si N, Yang J, Zhao Q, Bian B, Zhao H. Advanced nanomedicines for the regulation of cancer metabolism. Biomaterials 2022; 286:121565. [DOI: 10.1016/j.biomaterials.2022.121565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/24/2022] [Accepted: 05/03/2022] [Indexed: 12/22/2022]
|
11
|
Li X, Liu C, Gao N, Sheng W, Zhu B. A melatonin-based targetable fluorescent probe for screening of tumor cells and real-time imaging of glutathione fluctuations in tumor cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Ogata FT, Simões Sato AY, Coppo L, Arai RJ, Stern AI, Pequeno Monteiro H. Thiol-Based Antioxidants and the Epithelial/Mesenchymal Transition in Cancer. Antioxid Redox Signal 2022; 36:1037-1050. [PMID: 34541904 DOI: 10.1089/ars.2021.0199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The epithelial/mesenchymal transition (EMT) is commonly associated with tumor metastasis. Oxidative and nitrosative stress is maintained in cancer cells and is involved in the EMT. Cancer cells are endowed with high levels of enzymatic and nonenzymatic antioxidants, which counteract the effects of oxidative and nitrosative stress. Thiol-based antioxidant systems such as the thioredoxin/thioredoxin reductase (Trx/TrxR) and glutathione/glutaredoxin (GSH/Grx) are continually active in cancer cells, while the thioredoxin-interacting protein (Txnip), the negative regulator of the Trx/TrxR system, is downregulated. Recent Advances: Trx/TrxR and GSH/Grx systems play a major role in maintaining EMT signaling and cancer cell progression. Critical Issues: Enhanced stress conditions stimulated in cancer cells inhibit EMT signaling. The elevated expression levels of the Trx/TrxR and GSH/Grx systems in these cells provide the antioxidant protection necessary to guarantee the occurrence of the EMT. Future Directions: Elevation of the intracellular reactive oxygen species and nitric oxide concentrations in cancer cells has been viewed as a promising strategy for elimination of these cells. The development of inhibitors of GSH synthesis and of the Trx/TrxR system together with genetic-based strategies to enhance Txnip levels may provide the necessary means to achieve this goal. Antioxid. Redox Signal. 36, 1037-1050.
Collapse
Affiliation(s)
- Fernando Toshio Ogata
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMol, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alex Yuri Simões Sato
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMol, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lucia Coppo
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Jun Arai
- Department of Oncology and Radiology, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina-Universidade de São Paulo, São Paulo, Brazil
| | - Arnold Ira Stern
- Grossman School of Medicine, New York University, New York, New York, USA
| | - Hugo Pequeno Monteiro
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMol, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Effect of Kaempferol and Its Glycoside Derivatives on Antioxidant Status of HL-60 Cells Treated with Etoposide. Molecules 2022; 27:molecules27020333. [PMID: 35056649 PMCID: PMC8777684 DOI: 10.3390/molecules27020333] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 11/23/2022] Open
Abstract
Kaempferol is a well-known antioxidant found in many plants and plant-based foods. In plants, kaempferol is present mainly in the form of glycoside derivatives. In this work, we focused on determining the effect of kaempferol and its glycoside derivatives on the expression level of genes related to the reduction of oxidative stress—NFE2L2, NQO1, SOD1, SOD2, and HO-1; the enzymatic activity of superoxide dismutases; and the level of glutathione. We used HL-60 acute promyelocytic leukemia cells, which were incubated with the anticancer drug etoposide and kaempferol or one of its three glycoside derivatives isolated from the aerial parts of Lens culinaris Medik.—kaempferol 3-O-[(6-O-E-caffeoyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P2), kaempferol 3-O-[(6-O-E-p-coumaroyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P5), and kaempferol 3-O-[(6-O-E-feruloyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P7). We showed that none of the tested compounds affected NFE2L2 gene expression. Co-incubation with etoposide (1 µM) and kaempferol (10 and 50 µg/mL) leads to an increase in the expression of the HO-1 (9.49 and 9.33-fold at 10 µg/mL and 50 µg/mL, respectively), SOD1 (1.68-fold at 10 µg/mL), SOD2 (1.72-fold at 10–50 µg/mL), and NQO1 (1.84-fold at 50 µg/mL) genes in comparison to cells treated only with etoposide. The effect of kaempferol derivatives on gene expression differs depending on the derivative. All tested polyphenols increased the SOD activity in cells co-incubated with etoposide. We observed that the co-incubation of HL-60 cells with etoposide and kaempferol or derivative P7 increases the level of total glutathione in these cells. Taken together, our observations suggest that the antioxidant activity of kaempferol is related to the activation of antioxidant genes and proteins. Moreover, we observed that glycoside derivatives can have a different effect on the antioxidant cellular systems than kaempferol.
Collapse
|
14
|
Chen G, Wang Y, Kong X, Li HW, Li B, Yu X, Wu L, Wu Y. Synergistic TME-manipulation Effects of a Molybdenum-based Polyoxometalate Enhanced the PTT Effects on Cancer Cells. NEW J CHEM 2022. [DOI: 10.1039/d2nj00278g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intrinsic features of tumors often give rise to unsatisfied outcomes of photothermal treatment (PTT). Remarkably, the tumor microenvironment (TME) with abundant anti-oxidants, elevated hydrogen peroxide (H2O2), and low pH...
Collapse
|
15
|
LI Q, QIN X, YU Y, QUAN S, XIAO P. Schisandra chinensis polysaccharides exerts anti-oxidative effect in vitro through Keap1-Nrf2-ARE pathway. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.44621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qian LI
- Liuzhou Maternity and Child Healthcare Hospital, China; Affiliated Maternity Hospital and Affiliated Children’s Hospital of Guangxi University of Science and Technology, China; Guangzhou University of Chinese Medicine, China
| | - Xiankun QIN
- Liuzhou Maternity and Child Healthcare Hospital, China; Affiliated Maternity Hospital and Affiliated Children’s Hospital of Guangxi University of Science and Technology, China
| | - Yang YU
- Guangzhou University of Chinese Medicine, China
| | | | - Ping XIAO
- Liuzhou Maternity and Child Healthcare Hospital, China; Affiliated Maternity Hospital and Affiliated Children’s Hospital of Guangxi University of Science and Technology, China
| |
Collapse
|
16
|
Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Wang K, Lu J, Li J, Gao Y, Mao Y, Zhao Q, Wang S. Current trends in smart mesoporous silica-based nanovehicles for photoactivated cancer therapy. J Control Release 2021; 339:445-472. [PMID: 34637819 DOI: 10.1016/j.jconrel.2021.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Photoactivated therapeutic strategies (photothermal therapy and photodynamic therapy), due to the adjusted therapeutic area, time and light dosage, have prevailed for the fight against tumors. Currently, the monotherapy with limited treatment effect and undesired side effects is gradually replaced by multimodal and multifunctional nanosystems. Mesoporous silica nanoparticles (MSNs) with unique physicochemical advantages, such as huge specific surface area, controllable pore size and morphology, functionalized modification, satisfying biocompatibility and biodegradability, are considered as promising candidates for multimodal photoactivated cancer therapy. Excitingly, the innovative nanoplatforms based on the mesoporous silica nanoparticles provide more and more effective treatment strategies and display excellent antitumor potential. Given the rapid development of antitumor strategies based on MSNs, this review summarizes the current progress in MSNs-based photoactivated cancer therapy, mainly consists of (1) photothermal therapy-related theranostics; (2) photodynamic therapy-related theranostics; (3) multimodal synergistic therapy, such as chemo-photothermal-photodynamic therapy, phototherapy-immunotherapy and phototherapy-radio therapy. Based on the limited penetration of irradiation light in photoactivated therapy, the challenges faced by deep-seated tumor therapy are fully discussed, and future clinical translation of MSNs-based photoactivated cancer therapy are highlighted.
Collapse
Affiliation(s)
- Kaili Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Junya Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jiali Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yinlu Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| |
Collapse
|
18
|
Liu X, Zhang Y, Zhuang L, Olszewski K, Gan B. NADPH debt drives redox bankruptcy: SLC7A11/xCT-mediated cystine uptake as a double-edged sword in cellular redox regulation. Genes Dis 2021; 8:731-745. [PMID: 34522704 PMCID: PMC8427322 DOI: 10.1016/j.gendis.2020.11.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/03/2020] [Accepted: 11/18/2020] [Indexed: 01/18/2023] Open
Abstract
Cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11; also known as xCT) plays a key role in antioxidant defense by mediating cystine uptake, promoting glutathione synthesis, and maintaining cell survival under oxidative stress conditions. Recent studies showed that, to prevent toxic buildup of highly insoluble cystine inside cells, cancer cells with high expression of SLC7A11 (SLC7A11high) are forced to quickly reduce cystine to more soluble cysteine, which requires substantial NADPH supply from the glucose-pentose phosphate pathway (PPP) route, thereby inducing glucose- and PPP-dependency in SLC7A11high cancer cells. Limiting glucose supply to SLC7A11high cancer cells results in significant NADPH “debt”, redox “bankruptcy”, and subsequent cell death. This review summarizes our current understanding of NADPH-generating and -consuming pathways, discusses the opposing role of SLC7A11 in protecting cells from oxidative stress–induced cell death such as ferroptosis but promoting glucose starvation–induced cell death, and proposes the concept that SLC7A11-mediated cystine uptake acts as a double-edged sword in cellular redox regulation. A detailed understanding of SLC7A11 in redox biology may identify metabolic vulnerabilities in SLC7A11high cancer for therapeutic targeting.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yilei Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,The University of Texas, MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
19
|
Xiong Y, Xiao C, Li Z, Yang X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem Soc Rev 2021; 50:6013-6041. [PMID: 34027953 DOI: 10.1039/d0cs00718h] [Citation(s) in RCA: 327] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glutathione (GSH), the main redox buffer, has long been recognized as a pivotal modulator of tumor initiation, progression and metastasis. It is also implicated in the resistance of platinum-based chemotherapy and radiation therapy. Therefore, depleting intracellular GSH was considered a potent solution to combating cancer. However, reducing GSH within cancer cells alone always failed to yield desirable therapeutic effects. In this regard, the convergence of GSH-scavenging agents with therapeutic drugs has thus been pursued in clinical practice. Unfortunately, the therapeutic outcomes are still unsatisfactory due to untargeted drug delivery. Advanced nanomedicine of synergistic GSH depletion and cancer treatment has attracted tremendous interest because they promise to deliver superior therapeutic benefits while alleviating life-threatening side effects. In the past five years, the authors and others have demonstrated that numerous nanomedicines, by simultaneously delivering GSH-depleting agents and therapeutic components, boost not only traditional chemotherapy and radiotherapy but also multifarious emerging treatment modalities, including photodynamic therapy, sonodynamic therapy, chemodynamic therapy, ferroptosis, and immunotherapy, to name a few, and achieved decent treatment outcomes in a large number of rodent tumor models. In this review, we summarize the most recent progress in engineering nanomedicine for GSH depletion-enhanced cancer therapies. Biosynthesis of GSH and various types of GSH-consuming strategies will be briefly introduced. The challenges and perspectives of leveraging nanomedicine for GSH consumption-augmented cancer therapies will be discussed at the end.
Collapse
Affiliation(s)
- Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China. and Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and Wuhan Institute of Biotechnology, High Tech Road 666, East Lake high tech Zone, Wuhan, 430040, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China. and Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and GBA Research Innovation Institute for Nanotechnology, Guangdong, 510530, P. R. China
| |
Collapse
|
20
|
Xu X, Zhou X, Xiao B, Xu H, Hu D, Qian Y, Hu H, Zhou Z, Liu X, Gao J, Slater NKH, Shen Y, Tang J. Glutathione-Responsive Magnetic Nanoparticles for Highly Sensitive Diagnosis of Liver Metastases. NANO LETTERS 2021; 21:2199-2206. [PMID: 33600181 DOI: 10.1021/acs.nanolett.0c04967] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liver metastasis (LM) occurs in various cancers, and its early and accurate diagnosis is of great importance. However, the detection of small LMs is still a great challenge because of the subtle differences between normal liver tissue and small metastases. Herein, we prepare glutathione (GSH)-responsive hyaluronic acid-coated iron oxide nanoparticles (HIONPs) for highly sensitive diagnosis of LMs through a facile one-pot method. HIONPs greatly enhance the signal of MRI in tumor metastases as T1 contrast agent (CA), whereas they substantially decrease the signal of liver as T2 CA as they aggregate into clusters upon the high GSH in liver. Consequently, MRI contrasted by HIONPs clearly distinguishes metastatic tumors (bright) from surrounding liver tissues (dark). HIONPs with superior LM contrasting capability and facile synthesis are very promising for clinical translation and indicate a new strategy to develop an ultrasensitive MRI CA for LM diagnosis that exploits high GSH level in the liver.
Collapse
Affiliation(s)
- Xiaodan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xiaoxuan Zhou
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Bing Xiao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hongxia Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Doudou Hu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yue Qian
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jianqing Gao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Nigel K H Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
21
|
Lu F, Wang M, Li N, Tang B. Polyoxometalate-Based Nanomaterials Toward Efficient Cancer Diagnosis and Therapy. Chemistry 2021; 27:6422-6434. [PMID: 33314442 DOI: 10.1002/chem.202004500] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/26/2020] [Indexed: 12/11/2022]
Abstract
As an emerging class of inorganic metal oxides, organically functionalized polyoxometalates (POMs) or POM-based nanohybrids have been demonstrated promising potential for the inhibition of various cancer types by the virtue of their diversity in structures and significantly reduced toxicity. This contribution summarizes the latest achievement of POM-based nanomaterials in cancer diagnosis and various therapeutics to put forward our fundamental viewpoints on the design principles of modified POMs based on their application. In addition, major challenges and perspectives in this field are also discussed. We expect that this review will provide a valuable and systematic reference for the further development of POM-based nanomaterials.
Collapse
Affiliation(s)
- Fei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical, Imaging in Universities of Shandong, Institute of Molecular and Nanoscience, Shandong Normal University, Jinan, 250014, P. R. China
| | - Mengzhen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical, Imaging in Universities of Shandong, Institute of Molecular and Nanoscience, Shandong Normal University, Jinan, 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical, Imaging in Universities of Shandong, Institute of Molecular and Nanoscience, Shandong Normal University, Jinan, 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical, Imaging in Universities of Shandong, Institute of Molecular and Nanoscience, Shandong Normal University, Jinan, 250014, P. R. China
| |
Collapse
|
22
|
Cysteine and Folate Metabolism Are Targetable Vulnerabilities of Metastatic Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13030425. [PMID: 33498690 PMCID: PMC7866204 DOI: 10.3390/cancers13030425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/09/2021] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary In this work, we studied the metabolic reprogramming of same-patient-derived cell lines with increasing metastatic potential to develop new therapeutic approaches against metastatic colorectal cancer. Using a novel systems biology approach to integrate multiple layers of omics data, we predicted and validated that cystine uptake and folate metabolism, two key pathways related to redox metabolism, are potential targets against metastatic colorectal cancer. Our findings indicate that metastatic cell lines are selectively dependent on redox homeostasis, paving the way for new targeted therapies. Abstract With most cancer-related deaths resulting from metastasis, the development of new therapeutic approaches against metastatic colorectal cancer (mCRC) is essential to increasing patient survival. The metabolic adaptations that support mCRC remain undefined and their elucidation is crucial to identify potential therapeutic targets. Here, we employed a strategy for the rational identification of targetable metabolic vulnerabilities. This strategy involved first a thorough metabolic characterisation of same-patient-derived cell lines from primary colon adenocarcinoma (SW480), its lymph node metastasis (SW620) and a liver metastatic derivative (SW620-LiM2), and second, using a novel multi-omics integration workflow, identification of metabolic vulnerabilities specific to the metastatic cell lines. We discovered that the metastatic cell lines are selectively vulnerable to the inhibition of cystine import and folate metabolism, two key pathways in redox homeostasis. Specifically, we identified the system xCT and MTHFD1 genes as potential therapeutic targets, both individually and combined, for combating mCRC.
Collapse
|
23
|
Hipólito A, Nunes SC, Vicente JB, Serpa J. Cysteine Aminotransferase (CAT): A Pivotal Sponsor in Metabolic Remodeling and an Ally of 3-Mercaptopyruvate Sulfurtransferase (MST) in Cancer. Molecules 2020; 25:molecules25173984. [PMID: 32882966 PMCID: PMC7504796 DOI: 10.3390/molecules25173984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic remodeling is a critical skill of malignant cells, allowing their survival and spread. The metabolic dynamics and adaptation capacity of cancer cells allow them to escape from damaging stimuli, including breakage or cross-links in DNA strands and increased reactive oxygen species (ROS) levels, promoting resistance to currently available therapies, such as alkylating or oxidative agents. Therefore, it is essential to understand how metabolic pathways and the corresponding enzymatic systems can impact on tumor behavior. Cysteine aminotransferase (CAT) per se, as well as a component of the CAT: 3-mercaptopyruvate sulfurtransferase (MST) axis, is pivotal for this metabolic rewiring, constituting a central mechanism in amino acid metabolism and fulfilling the metabolic needs of cancer cells, thereby supplying other different pathways. In this review, we explore the current state-of-art on CAT function and its role on cancer cell metabolic rewiring as MST partner, and its relevance in cancer cells' fitness.
Collapse
Affiliation(s)
- Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Sofia C. Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - João B. Vicente
- Institute of Technology, Chemistry and Biology António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
- Correspondence: (J.B.V.); (J.S.)
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
- Correspondence: (J.B.V.); (J.S.)
| |
Collapse
|
24
|
Guo K, Cao Y, Li Z, Zhou X, Ding R, Chen K, Liu Y, Qiu Y, Wu Z, Fang M. Glycine metabolomic changes induced by anticancer agents in A549 cells. Amino Acids 2020; 52:793-809. [PMID: 32430875 DOI: 10.1007/s00726-020-02853-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022]
Abstract
Glycine plays a key role in rapidly proliferating cancer cells such as A549 cells. Targeting glycine metabolism is considered as a potential means for cancer treatment. However, the drug-induced alterations in glycine metabolism have not yet been investigated. Herein, a total of 34 glycine metabolites were examined in A549 cells with or without anticancer drug treatment. This work showed all tested anticancer agents could alter glycine metabolism in A549 cells including inhibition of pyruvate metabolism and down-regulation of betaine aldehyde and 5'-phosphoribosylglycinamide. Principal component analysis and orthogonal partial least-squares discrimination analysis exhibited the difference between control and each drug-treated group. In general, cisplatin, camptothecin, and SAHA could induce the significant down-regulation of more metabolites, compared with afatinib, gefitinib, and targretin. Both glycine, serine and threonine metabolism, and purine metabolism were significantly disturbed by the treatment with afatinib, gefitinib, and targretin. However, the treatment using cisplatin, camptothecin, and SAHA was considered to be highly responsible for the perturbation of glycine, serine and threonine metabolism, and cysteine and methionine metabolism. Finally, multivariate analysis for control and all drug-treated groups revealed 11 altered metabolites with a significant difference. It implies anti-cancer agents with different mechanisms of action might induce different comprehensive changes of glycine metabolomics. The current study provides fundamental insights into the acquisition of the role of anti-cancer agents in glycine metabolism while suppressing cancer cell proliferation, and may aid the development of cancer treatment targeting glycine metabolism.
Collapse
Affiliation(s)
- Kaiqiang Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, 361102, China
| | - Yin Cao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, 361102, China
| | - Zan Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, 361102, China
| | - Xiaoxiao Zhou
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, 361102, China
| | - Rong Ding
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, 361102, China
| | - Kejing Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, 361102, China
| | - Yan Liu
- Department of Chemical Biology and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Yingkun Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, 361102, China
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, 361102, China.
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, 361102, China.
| |
Collapse
|
25
|
Obrador E, Salvador R, López-Blanch R, Jihad-Jebbar A, Alcácer J, Benlloch M, Pellicer JA, Estrela JM. Melanoma in the liver: Oxidative stress and the mechanisms of metastatic cell survival. Semin Cancer Biol 2020; 71:109-121. [PMID: 32428715 DOI: 10.1016/j.semcancer.2020.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 12/16/2022]
Abstract
Metastatic melanoma is a fatal disease with a rapid systemic dissemination. The most frequent target sites are the liver, bone, and brain. Melanoma metastases represent a heterogeneous cell population, which associates with genomic instability and resistance to therapy. Interaction of melanoma cells with the hepatic sinusoidal endothelium initiates a signaling cascade involving cytokines, growth factors, bioactive lipids, and reactive oxygen and nitrogen species produced by the cancer cell, the endothelium, and also by different immune cells. Endothelial cell-derived NO and H2O2 and the action of immune cells cause the death of most melanoma cells that reach the hepatic microvascularization. Surviving melanoma cells attached to the endothelium of pre-capillary arterioles or sinusoids may follow two mechanisms of extravasation: a) migration through vessel fenestrae or b) intravascular proliferation followed by vessel rupture and microinflammation. Invading melanoma cells first form micrometastases within the normal lobular hepatic architecture via a mechanism regulated by cross-talk with the stroma and multiple microenvironment-related molecular signals. In this review special emphasis is placed on neuroendocrine (systemic) mechanisms as potential promoters of liver metastatic growth. Growing metastatic cells undergo functional and metabolic changes that increase their capacity to withstand oxidative/nitrosative stress, which favors their survival. This adaptive process also involves upregulation of Bcl-2-related antideath mechanisms, which seems to lead to the generation of more resistant cell subclones.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | - Rosario Salvador
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | | | - Ali Jihad-Jebbar
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | - Javier Alcácer
- Pathology Laboratory, Quirón Hospital, 46010, Valencia, Spain
| | - María Benlloch
- Department of Health & Functional Valorization, San Vicente Martir Catholic University, 46001, Valencia, Spain
| | - José A Pellicer
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | - José M Estrela
- Department of Physiology, University of Valencia, 46010, Valencia, Spain.
| |
Collapse
|
26
|
Li H, Yang Y, Qi X, Zhou X, Ren WX, Deng M, Wu J, Lü M, Liang S, Teichmann AT. Design and applications of a novel fluorescent probe for detecting glutathione in biological samples. Anal Chim Acta 2020; 1117:18-24. [PMID: 32408950 DOI: 10.1016/j.aca.2020.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
This study aimed to develop a novel and practical fluorescent method for GSH detection in complex biological samples. To this end, a series of coumarin-based fluorescent probes was designed and synthesized using various aliphatic halogens as the sensing group. By using a new evaluation method of GSH/Cys/Hcy coexisting conditions, the probe with chloropropionate (CBF3) showed a high selectivity, excellent sensitivity, good stability for GSH detection. The reaction mechanism is proposed as nucleophilic substitution/cyclization and intramolecular charge transfer (ICT), which was confirmed by LC-MS and NMR analysis, as well as density functional theory calculations. In addition, CBF3 was demonstrated to be competent not only for the quantitative detection of GSH in real serum samples, but also for sensing GSH changes in different oxidative stress models in living cells and nematodes. This study showed a practical strategy for constructing GSH-specific fluorescent probes, and provided a sensitive tool for real-time sensing of GSH in real biological samples. The findings would greatly facilitate further investigations on GSH-associated clinical diagnosis and biomedical studies.
Collapse
Affiliation(s)
- Hao Li
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Youzhe Yang
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoyi Qi
- The Affiliated Hospital of Southwest Medical University, Luzhou, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Xiaogang Zhou
- The Pharmacy School of Southwest Medical University, Luzhou, China
| | - Wen Xiu Ren
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mingming Deng
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianming Wu
- The Pharmacy School of Southwest Medical University, Luzhou, China.
| | - Muhan Lü
- The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Sicheng Liang
- The Affiliated Hospital of Southwest Medical University, Luzhou, China; The Pharmacy School of Southwest Medical University, Luzhou, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China; Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang University, Hangzhou, China.
| | | |
Collapse
|
27
|
Wanders D, Hobson K, Ji X. Methionine Restriction and Cancer Biology. Nutrients 2020; 12:nu12030684. [PMID: 32138282 PMCID: PMC7146589 DOI: 10.3390/nu12030684] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/17/2022] Open
Abstract
The essential amino acid, methionine, is important for cancer cell growth and metabolism. A growing body of evidence indicates that methionine restriction inhibits cancer cell growth and may enhance the efficacy of chemotherapeutic agents. This review summarizes the efficacy and mechanism of action of methionine restriction on hallmarks of cancer in vitro and in vivo. The review highlights the role of glutathione formation, polyamine synthesis, and methyl group donation as mediators of the effects of methionine restriction on cancer biology. The translational potential of the use of methionine restriction as a personalized nutritional approach for the treatment of patients with cancer is also discussed.
Collapse
Affiliation(s)
| | | | - Xiangming Ji
- Correspondence: ; Tel.: 404-413-1242; Fax: 404-413-1228
| |
Collapse
|
28
|
Shahbazi MA, Faghfouri L, Ferreira MPA, Figueiredo P, Maleki H, Sefat F, Hirvonen J, Santos HA. The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chem Soc Rev 2020; 49:1253-1321. [PMID: 31998912 DOI: 10.1039/c9cs00283a] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Studies of nanosized forms of bismuth (Bi)-containing materials have recently expanded from optical, chemical, electronic, and engineering fields towards biomedicine, as a result of their safety, cost-effective fabrication processes, large surface area, high stability, and high versatility in terms of shape, size, and porosity. Bi, as a nontoxic and inexpensive diamagnetic heavy metal, has been used for the fabrication of various nanoparticles (NPs) with unique structural, physicochemical, and compositional features to combine various properties, such as a favourably high X-ray attenuation coefficient and near-infrared (NIR) absorbance, excellent light-to-heat conversion efficiency, and a long circulation half-life. These features have rendered bismuth-containing nanoparticles (BiNPs) with desirable performance for combined cancer therapy, photothermal and radiation therapy (RT), multimodal imaging, theranostics, drug delivery, biosensing, and tissue engineering. Bismuth oxyhalides (BiOx, where X is Cl, Br or I) and bismuth chalcogenides, including bismuth oxide, bismuth sulfide, bismuth selenide, and bismuth telluride, have been heavily investigated for therapeutic purposes. The pharmacokinetics of these BiNPs can be easily improved via the facile modification of their surfaces with biocompatible polymers and proteins, resulting in enhanced colloidal stability, extended blood circulation, and reduced toxicity. Desirable antibacterial effects, bone regeneration potential, and tumor growth suppression under NIR laser radiation are the main biomedical research areas involving BiNPs that have opened up a new paradigm for their future clinical translation. This review emphasizes the synthesis and state-of-the-art progress related to the biomedical applications of BiNPs with different structures, sizes, and compositions. Furthermore, a comprehensive discussion focusing on challenges and future opportunities is presented.
Collapse
Affiliation(s)
- Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Akentieva NP, Sanina NA, Gizatullin AR, Shkondina NI, Prikhodchenko TR, Shram SI, Zhelev N, Aldoshin SM. Cytoprotective Effects of Dinitrosyl Iron Complexes on Viability of Human Fibroblasts and Cardiomyocytes. Front Pharmacol 2019; 10:1277. [PMID: 31780929 PMCID: PMC6859909 DOI: 10.3389/fphar.2019.01277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
Nitric oxide (NO) is an important signaling molecule that plays a key role in maintaining vascular homeostasis. Dinitrosyl iron complexes (DNICs) generating NO are widely used to treat cardiovascular diseases. However, the involvement of DNICs in the metabolic processes of the cell, their protective properties in doxorubicin-induced toxicity remain to be clarified. Here, we found that novel class of mononuclear DNICs with functional sulfur-containing ligands enhanced the cell viability of human lung fibroblasts and rat cardiomyocytes. Moreover, DNICs demonstrated remarkable protection against doxorubicin-induced toxicity in fibroblasts and in rat cardiomyocytes (H9c2 cells). Data revealed that the DNICs compounds modulate the mitochondria function by decreasing the mitochondrial membrane potential (ΔΨm). Results of flow cytometry showed that DNICs were not affected the proliferation, growth of fibroblasts. In addition, this study showed that DNICs did not affect glutathione levels and the formation of reactive oxygen species in cells. Moreover, results indicated that DNICs maintained the ATP equilibrium in cells. Taken together, these findings show that DNICs have protective properties in vitro. It was further suggested that DNICs may be uncouplers of oxidative phosphorylation in mitochondria and protective mechanism is mainly provided by the leakage of excess charge through the mitochondrial membrane. It is assumed that the DNICs have the therapeutic potential for treating cardiovascular diseases and for decreasing of chemotherapy-induced cardiotoxicity in cancer survivors.
Collapse
Affiliation(s)
- Natalia Pavlovna Akentieva
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Laboratory of Toxicology and Experimental Chemotherapy, Moscow State Regional University, Moscow, Russia
- Faculty of Medicine, Karabük University, Karabük, Turkey
| | - Natalia Alekseevna Sanina
- Laboratory of Structural Chemistry, Department of Structure of Matter, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of fundamental physical and chemical engineering, Lomonosov Moscow State University, Moscow, Russia
| | - Artur Rasimovich Gizatullin
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Natalia Ivanovna Shkondina
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Tatyana Romanovna Prikhodchenko
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Stanislav Ivanovich Shram
- Neuropharmacology Sector, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai Zhelev
- School of Medicine, University of Dundee, Dundee, United Kingdom
- Medical University Plovdiv, Plovdiv, Bulgaria
| | - Sergei Michailovich Aldoshin
- Laboratory of Structural Chemistry, Department of Structure of Matter, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of fundamental physical and chemical engineering, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
30
|
Tumor microenvironment-manipulated radiocatalytic sensitizer based on bismuth heteropolytungstate for radiotherapy enhancement. Biomaterials 2019; 189:11-22. [DOI: 10.1016/j.biomaterials.2018.10.016] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 02/07/2023]
|
31
|
Akhtar MJ, Ahamed M, Alhadlaq HA. Challenges facing nanotoxicology and nanomedicine due to cellular diversity. Clin Chim Acta 2018; 487:186-196. [PMID: 30291894 DOI: 10.1016/j.cca.2018.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
This review examines the interaction of nanomaterials (NMs) with cells from the perspective of major cellular differentiations. The structure and composition of cells reflect their role and function in a particular organ or environment. The normal differentiated-state and diseased cells may respond to NMs very differently. This review progresses with due care on nanotoxicology while emphasizing the potential of NMs in treating stress-associated disorders, including cancer and degeneration. The striking potential of NMs in inducing ROS, scavenging ROS, depleting cellular antioxidants, replenishing antioxidants, mimicking antioxidant enzyme activity, and modulating the immune system all show their considerable potential in treating cancer and other aging-associated disorders. It is now clear that NMs become more active and versatile when they come into contact with biological machinery, surprisingly in some cases, in a manner dependent on cell type. The mechanisms leading to the contrasting bioresponse of NMs ranging from toxicity to anticancer and from cell survival to carcinogenicity followed by their immuno-modulating potential show NMs to be a highly promising agent in biomedical therapy. This first-of-its-kind article seeks the challenges to be addressed that could provide a solid rationale in translating the promises of nanomedicine. A thorough understanding of normal and cancer biology could help to minimize the gap between basic and translational research in nanotechnology-based therapy.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia..
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.; Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
32
|
Zhang XY, Elfarra AA. Toxicity mechanism-based prodrugs: glutathione-dependent bioactivation as a strategy for anticancer prodrug design. Expert Opin Drug Discov 2018; 13:815-824. [PMID: 30101640 DOI: 10.1080/17460441.2018.1508207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION 6-Mercaptopurine (6-MP) and 6-thioguanine (6-TG), two anticancer drugs, have high systemic toxicity due to a lack of target specificity. Therefore, increasing target selectivity should improve drug safety. Areas covered: The authors examined the hypothesis that new prodrug designs based upon mechanisms of kidney-selective toxicity of trichloroethylene would reduce systemic toxicity and improve selectivity to kidney and tumor cells. Two approaches specifically were investigated. The first approach was based upon bioactivation of trichloroethylene-cysteine S-conjugate by renal cysteine S-conjugate β-lyases. The prodrugs obtained were kidney-selective but exhibited low turnover rates. The second approach was based on the toxic mechanism of trichloroethylene-cysteine S-conjugate sulfoxide, a Michael acceptor that undergoes rapid addition-elimination reactions with biological thiols. Expert opinion: Glutathione-dependent Michael addition-elimination reactions appear to be an excellent strategy to design highly efficient anticancer drugs. Targeting glutathione could be a promising approach for the development of anticancer prodrugs because cancer cells usually upregulate glutathione biosynthesis and/or glutathione S-transferases expression.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- a Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Adnan A Elfarra
- b Department of Comparative Biosciences and the Molecular and Environmental Toxicology Center , University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
33
|
A novel tetrahydroisoquinoline (THIQ) analogue induces mitochondria-dependent apoptosis. Eur J Med Chem 2018; 150:719-728. [PMID: 29573707 DOI: 10.1016/j.ejmech.2018.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/31/2022]
Abstract
Lung cancer continues to be a leading cause of cancer-related death worldwide, with non-small cell lung cancer (NSCLC) accounting for more than 80% of lung cancer cases. Current therapies for NSCLC have only limited effect and treatment resistance develops rapidly. In a previous study, we have shown that C1-phenylethynyl tetrahydroisoquinoline (THIQ) analogue 4 has anti-proliferative activity against PC3 human prostate cancer cells. However, this anticancer effect was achieved with relatively high IC50 in A549 lung cancer cells. To improve the potency of the drug, in the present study, a series of novel THIQ analogues (analogues 5a-d) were prepared by using an oxidative C-H functionalization strategy, and their potential anticancer activities on A549 lung cancer cells were investigated. Among these analogues, analogue 5c can markedly inhibit A549 cell proliferation in a dose-dependent manner with a reasonable IC50 of 14.61 ± 1.03 μM. This effect was mediated by analogue 5c-induced G0/G1 phase arrest and cell apoptosis. Treatment with analogue 5c was shown to induce reactive oxygen species (ROS) accumulation, disruption of mitochondrial membrane potential, reduction of glutathione, elevation of intracellular calcium ion (Ca2+), and activation of Caspase-3. Furthermore, analogue 5c can lead to DNA double-strand break and the activation of p53 pathway in A549 cells. In conclusion, the oxidative C-H functionalization strategy to generate analogue 5c could improve the drug anticancer efficacy by inducing mitochondria-dependent apoptosis in A549 cells.
Collapse
|
34
|
Gogoi S, Khan R. NIR upconversion characteristics of carbon dots for selective detection of glutathione. NEW J CHEM 2018. [DOI: 10.1039/c8nj00567b] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the current study, we report the near infrared (NIR) upconversion (in the range of 850–950 nm) properties of carbon nanoparticles and their utility as a fluorescence probe for selective and sensitive detection of glutathione (GSH).
Collapse
Affiliation(s)
- Satyabrat Gogoi
- Analytical Chemistry Group
- Chemical Sciences & Technology Division
- Academy of Scientific and Innovative Research
- CSIR-North East Institute of Science & Technology
- Jorhat-785006
| | - Raju Khan
- Analytical Chemistry Group
- Chemical Sciences & Technology Division
- Academy of Scientific and Innovative Research
- CSIR-North East Institute of Science & Technology
- Jorhat-785006
| |
Collapse
|
35
|
Estrela JM, Mena S, Obrador E, Benlloch M, Castellano G, Salvador R, Dellinger RW. Polyphenolic Phytochemicals in Cancer Prevention and Therapy: Bioavailability versus Bioefficacy. J Med Chem 2017; 60:9413-9436. [PMID: 28654265 DOI: 10.1021/acs.jmedchem.6b01026] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural polyphenols are organic chemicals which contain phenol units in their structures. They show antitumor properties. However, a key problem is their short half-life and low bioavailability under in vivo conditions. Still, definitively demonstrating the human benefits of isolated polyphenolic compounds (alone or in combination) using modern scientific methodology has proved challenging. The most common discrepancy between experimental and clinical observations is the use of nonphysiologically relevant concentrations of polyphenols in mechanistic studies. Thus, it remains highly controversial how applicable underlying mechanisms are with bioavailable concentrations and biological half-life. The present Perspective analyses proposed antitumor mechanisms, in vivo reported antitumor effects, and possible mechanisms that may explain discrepancies between bioavailability and bioefficacy. Polyphenol metabolism and possible toxic side effects are also considered. Our main conclusion emphasizes that these natural molecules (and their chemical derivatives) indeed can be very useful, not only as cancer chemopreventive agents but also in oncotherapy.
Collapse
Affiliation(s)
- José M Estrela
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | - Salvador Mena
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | - Elena Obrador
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | - María Benlloch
- Department of Health and Functional Valorization, San Vicente Martir Catholic University , 46008 Valencia, Spain
| | - Gloria Castellano
- Department of Health and Functional Valorization, San Vicente Martir Catholic University , 46008 Valencia, Spain
| | - Rosario Salvador
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | | |
Collapse
|
36
|
3′-Hydroxy-4′-methoxy-β-methyl-β-nitrostyrene inhibits tumor growth through ROS generation and GSH depletion in lung cancer cells. Life Sci 2017; 172:19-26. [DOI: 10.1016/j.lfs.2016.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/05/2016] [Accepted: 12/14/2016] [Indexed: 01/21/2023]
|
37
|
Synthesis of a fluorogenic probe for thiols based on a coumarin schiff base copper complex and its use for the detection of glutathione. Tetrahedron 2017. [DOI: 10.1016/j.tet.2016.12.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|